AN EFFICIENT SQUARE-ROOT ALGORITHM FOR BLAST

Babak Hassibi

Mathematics of Communications Research
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974

ABSTRACT

Bell Labs Layered Space-Time (BLAST) is a scheme for
transmitting information over a rich-scattering wireless en-
vironment using multiple receive and transmit antennas.
The main computational bottleneck in the BLAST algo-
rithm is a “nulling and cancelation” step, where the opti-
mal ordering for the sequential estimation and detection of
the received signals is determined. To reduce the computa-
tional cost of BLAST, in this paper we develop an efficient
square-root algorithm for the nulling and cancellation step.
The main features of the algorithm include efficiency: the
computational cost is reduced by 0.7M, where M is the
number of transmit antennas, and numerical stability: the
algorithm is division-free and uses only orthogonal trans-
formations. In a 14 antenna system designed for transmis-
sion of 1 Mbit/sec over a 30 kHz channel, the nulling and
cancellation computation is reduced from 190 MFlops/sec
to 19 MFlops/sec, with the overall computations being re-
duced from 220 MFlops/sec to 49 MFlops/sec. The numer-
ical stability of the algorithm also make it attractive for
implementation in fixed-point (rather than floating-point)
architectures.

1. INTRODUCTION

In theory multiple transmit and receive antennas can greatly
increase the capacity, as well as significantly lower the prob-
ability of error, of a wireless communications link. One
practical scheme for for transmittng information over a flat-
fading, rich-scattering, wireless environment is Bell Labs
Layered Space-Time (BLAST) [1]. BLAST has the poten-
tial to increase the capacity of the wireless link by a factor
of M (where M is the minimum of the number of receive
and transmit antennas), and is applicable for fixed wireless
access (as in a wireless LAN).

Since multi-antenna communications allows for infor-
mation transmission at very high rates, a major issue of con-
cern is to keep the computational complexity of the decod-
ing algorithm within reasonable bounds. Thus, maximum-
likelihood decoding, for example, is clearly beyond question
since it typically requires a search over the prohibitively
large set of all possible transmitted signals. BLAST alle-
viates this problem by employing a “divide and conqure”
decoding strategy: at each time instant, rather than jointly
decoding the signals from all the transmit antennas, BLAST
first decodes the “strongest” signal, then cancels the ef-
fect of this strongest transmit signal from each of the re-
ceived signals, and then proceeds to decode the “strongest”
of the remaining transmit signals, and so on. This detection
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scheme is referred to as sequential nulling and cancellation.
The optimal detection order is from the strongest to the
weakest signal, since this minimizes the propagation of er-
rors from one step of detection to the next.

It turns out that the main computational bottelneck
in the BLAST algorithm is the step where the optimal or-
dering for the sequential estimation and detection of the
transmitted signals, as well as the corresponding so-called
nuling vectors, is determined. Current implementations of
BLAST devote over 80% of the total computational cost
to this step. This high computational cost limits the scope
of applications that admit inexpensive real-time solutions.
Moreover, when the number of transmit and receive anten-
nas is large, the repeated pseudoinverse computations that
BLAST requires can lead to numerical instability, and so a
numerically robust and stable algorithm is desired.

In an attempt to reduce the computational complexity
of BLAST, in this paper we develop an efficient square-
root algorithm for the nulling-vector optimal-ordering step.
The main features of the algorithm include efficiency: the
computational cost is reduced by an order of magnitude,
effectively from O(M3) to O(M?), and numerical stabil-
tty: the algorithm is division-free and uses only orthogonal
transformations.

The remainder of the paper is organized as follows.
Sec. 2 describes the basic model for BLAST and outlines
the nulling and cancellation idea. The optimal detection or-
der and the nulling vectors are obtained from the repeated
computation of the pseudoinverses of certain deflated sub-
channel matrices. Sec. 3 gives the main result of this paper.
It is first shown how it is possible to obtain the optimal or-
dering and all the nulling vectors by implicitly computing
a single pseudoinverse — thereby leading to an efficient al-
gorithm. Then it is shown how all the quantities of interest
can be computed using a division-free algorithm that em-
ploys only orthogonal transformations — thereby leading
to a numerically stable algorithm. The paper is concluded
with Sec. 4.

2. THE BASIC IDEA OF BLAST

Consider the setting of Fig. 1 where we have M signals
impinging on an array of N (N > M) receivers via a rich
scattering flat-fading environment. The signals may either
come from an array of transmit antennas (as in BLAST) or
from M independent transmit antennas (as in the uplink of
a wireless LAN).

The assumption of a flat-fading environment essentially
means that the signals are narrow-band, so that we may
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Figure 1: The basic model for BLAST.

assume a channel that is not frequency-selective. In this
case, the relationship between the transmit and received
signals at each time instant may be written as:

T $1
r=Hs+v, z= , 8= (1)

N SM

where H € CV*M is the channel matrix and v € CV rep-
resents spatially and temporally additive white noise. The
assumption that the channel is rich-scattering essentially
means that the elements of the channel matrix (when viewed
as random variables) are independent of one another.

Finally, it is also convenient to partition the channel
matrix into its rows and columns as follows:

H,
H= = [ hy by ]
Hy

2.1. The Procedure

In BLAST information is transmitted in bursts of length
Lt + Lp, where Lt denotes the length of the training se-
quence and Lp denotes the length of the payload. Detecting
the payload signals consists of three main steps:

1. Estimate the channel matric using the training se-
quence.

2. Determine the optimal detecting order and the MMSE
nulling vectors.

3. Successive nulling and cancellation:

(a) obtain the least-mean-squares estimate of the
“strongest” transmit signal.

(b) slice the least-mean-squares estimate to the near-
est value in the signal constellation.

(¢) cancel the effect of the sliced strongest transmit
signal from the vector of received signals and
return to step (3a).

We now focus on step 2 of the above procedure.

2.2. Optimal Ordering and MMSE Nulling Vectors

Assume that the signal s and additive noise v are zero-mean,
spatially white, uncorrelated random vectors with variances
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L1nm and In, respectively (% is the SNR):

Ess':—l—IM, Evv' =1y, Esv" =0
a

The linear least-mean-squares estimate of s, given the ob-
servations x = Hs + v, is

H f z
A syl
§=(al+ H'H)Y H'z= [ Jalu } [0 ],
where 1 represents the pseudo-inverse. Denoting the first
N columns of the pseudo-invserse by H}, and the i-th row
of Hf by lei, we have

3=Hlz and 3= Hl,ﬂ- 2)
H, ; is referred to as the i-th MMSE nulling vector. The
covariance matrix for the estimation error s — § is readily
seen to be

E(s—-38)(s—3)" =(al+ H H)™"

or, using the pseudo-inverse:

LAl (a])

>

P,

valu

Clearly, the “strongest” signal among the entries of s will
be the one with the smallest error covariance, i.e., the one
for which P;; is the smallest.

Suppose that the order of the entries of s are arranged
such that the strongest signal is the M-th entry. Then
we can independently slice 5 = H;Mz to obtain a fairly
accurate estimate of the signal sps. If we denote the sliced
value by sp (i.e., if we assume correct detection), then we
can use sp; to improve our estimate of the remaining M —1
signals. Thus treating sy as a known quantity, we obtain
the following reduced order problem:

x—hysm =H(M—1)S(M_1)+v, 4)
where we have defined the deflated channel matrix, H™~1
and the reduced signal vector, sM=D a5

S1
HM=D = [ h, hyy ] and s~V = :
SM—1

The solution to (4) clearly requires us to compute the pseudo-
inverse of H{™" and the corresponding error covariance
matrix (af + HM- D+ g(M-1)-1 £ p-1),

2.2.1. Basic Algorithm

The basic idea can thus be summarized as follows:
1. Find P = (al + H*H)™! and H].
2. Find the smallest diagonal entry of P and reorder the

entries of s so that the smallest diagonal entry is the
last (M-th) one.

3. Form the least-mean-squares estimate 8§y = HZ‘M:::.
4. Obtain sy (via slicing) from 8y = H;Mz.

5. Cancel the effect of sp; and consider the reduced-order
problem (4).

6. Continue to find P™~Y and Hg,M_l)‘L, and so on.



2.3. Computational Complexity

The computational complexity of each step of the method
just described can be given as follows.

e Channel estimation: 2M Nlog, Lt (assuming the train-

ing sequence is obtained from an FFT matrix.)

Determining the nulling vectors and optimal order-
ing: This requires the computation of M pseudoin-
verses, one for each deflated subchannel matrix. The
most numerically stable way to compute the pseu-
doinverse is via the singular value decomposition. For
this scheme, using [2], the computational complexity
can be shown to be

N*M? +2NM3 + %M“.

e Processing the payload: 2MNLp.

When M = N these complexities simplify to 2M?log, L,
3411\4 4 and 2M?2Lp, respectively. Thus the complexity of the
optimal ordering and nulling vector computation grows as
the fourth power of the number of transmit antennas.

To gain some perspective on the relative computational
complexities of the above three steps, let us consider an
application that targets the transmission of 1Mb/s of data
over a 30khz wireless channel. Such a target can be achieved
using a transmission rate of 24.3 ksymbol/sec, 16-QAM
modulation, L7 = 32, Lp = 100, and M = N = 14 an-
tennas. The resulting relative computational complexities
are given in the table below.

Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 0.65
nulling and ordering 1,036,000 190.8 86.3
payload processing 156,800 28.9 13.1
TOTAL 1,200,000 221.2 100

The dominant portion, nearly %90, of the computation
involves determining the nulling vectors and optimal order-
ing. The question that begs itself, therefore, is whether this
computation be reduced in a numerically stable way?

2.4. Objectives

In coming up with an alternative algorithm the following
objectives appear to be natural:

o Cost efficiency: Is it possible to find HM DT and
P™M=1 from H} and P, without having to “re-solve”
the reduced-order problem all over again?

e Numerical stability and robustness:
— Avoid “squaring” things (forming H* H, for ex-
ample, is undesirable).
— Avoid “inverting” things (inverting H™ H to ob-
tain P is undesirable).

—~ Make as much use as possible of unitary trans-
formations.

In what follows, we will propose a square-root imple-
mentation of the algorithm that meets the above goals.
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3. A SQUARE-ROOT ALGORITHM

In order to avoid squaring H, let us begin with the QR
decomposition of the augmented channel matrix

[\/g,M]=QR:[ ]R,

where @ is an (N + M) x M matrix with orthonormal
columns, and R is M x M and nonsingular. It is not hard
to see that

Qa

Q: %)

PY*=R™' and H}=P'?Q; (6)
where PY/2P*/2 = P. Thus, given P2 and Qa, we can
compute both the pseudoinverse and the error covariance
matrix. However, before addressing the question of how
best to compute P2 and Q., let us focus on:

1. How to find the smallest diagonal entry of P?

2. How to find the square-root factor of P~ from
pl/27

3. How to find the nulling vectors?

The answers follow.

Claim 1: The diagonal entries of P are simply the squared
lengths of the rows of P2,

Claim 2: Reorder the entries of s so that the M-th diagonal
entry of P is the smallest. Consider any unitary transfor-
mation T that rotates (or reflects) the M-th row of P'/?
to lie along the direction of the M-th unit vector. In other
words,

(M—=1)/2 (M=1)/2
pl2y — [ P Py " ’ (7)
0 D
where p;f is a scalar. Then PM~Y/2 is o square-root of
pM-1)

Claim 3: Suppose that we have repeated the steps of the
above two claims until PY/? is transformed to an upper tri-
angular matriz. Moreover, let q, i=1,..., M denote the

resulting columns of Qa, i.e.,

Qa = [ ga,l 9, m ]
Then the nulling vectors for the signals s1 to sy are given
by:
2 %
H! .=p"%q

4, ®)

;)
5]

where pll-/2 denotes the i-th diagonal entry of pl/2,

In conclusion, once P!/? and Q, are computed, there is
no need to recompute them for the deflated channel matrix
HM™-1_ All the information we need is already in pi?
and Qq-



3.1. Computing P'/? and Q.

One possible way to compute P/? and Q, is via the QR
decomposition (5). However, this is undesirable since it re-
quires us to invert R to obtain P'/2. To avoid inversions,
we introduce the following algorithm which can be regarded
as an extension of the traditional square-root filtering algo-
rithm to the problem at hand (see, e.g., [3]).

Claim 4: PY/? and Q. can be computed using the following

recursion, initialized with Pl/2 =1 IM and Qo = Onxn,
1/2 1/2
1 H 13]1 1 T_e,i 0
o PR |&=| K. P, (9
—e;  Qi-1 Ai Qs

where e; is the i-th unit vector of dimension N (i.e., it
is an N X 1 vector of all zeros exzcept for the i-th entry,
which is unity), and ©; is any unitary transformation that
transforms the first row of the pre-array to lie along the
direction of the first unit row vector. After N steps the
algorithm yields the desired quantities via:

pY? = PI’,(,2 and Qo = Qn. (10)

3.2. Description of Algorithm
We can now summarize the algorithm.

1. Compute P2 and Q. by propagating the square-
root algorithm of Claim 4.

2. Find the minimum length row of Pl/2 and permute
it to be the last (Mth) row. Permute s accordingly.

3. Find a unitary  such that P!/2% is block upper

triangular:
M-1)/2 (M~-1)/2
P2y = A 1/2 ]
0 P

4. Update Q to QX.
5. The nuling vector for the M-th signal is given by
p}\fq , where 4, is the M-th row of Q.

6. Go back to step 3, but now with P(M~1/2 gpq QM-1)
(the first M — 1 columns of Q).

8.2.1. Remarks

The above algorithm satisfies our objectives of cost-efficiency:

e we have avoided computing the pseudo-inverse (or
QR decomposition) for each deflated subchannel ma-
trix. The resulting computational complexity can be
shown to be

§M3 +7NM? + 2N M.
When M = N, the computational complexity is thus

reduced from 27M*/4 to 29M>/3, i.e., roughly by a
factor of 0.7M.
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and numerical stability and robustness:

e we have avoided squaring any of the quantities.

e we have avoided computing inverses (and even scalar

divisions) altogether.

e we have used unitary transformations as much as pos-

sible.

Returning to our target application (1 Mbit/s, 30 kHz
channel, 24.3 ksymbol/sec, 16-QAM, M = N = 14, Lt =
32, Lp = 100), the resulting relative computational com-
plexities are given in the table below.

Flops/burst | MegaFlops/s | %
channel estimation 7,840 1.44 2.9
nulling and ordering 106,100 19.5 39.1
payload processing 156,800 28.9 58.0
TOTAL 270,400 49.8 100

Thus the computation for the nulling vector and opti-
mal ordering step has been reduced from 190 MFlops/s to
19 MFlops/s, and the total computation has been reduced
from 221 MFlops/s to 50 MFlops/s.

4. CONCLUSION AND FINAL REMARKS

In this paper we developed an efficient square-root algo-
rithm for BLAST which offers an order of magnitude of
savings in the computational complexity compared to ear-
lier methods.

The prominent component of the algorithm is the use of
unitary transformations (the ©; and the £) which introduce
zeros in prescribed entries of given row vectors. These can
be performed by either using a Householder reflection, or a
sequence of Givens rotations (see, e.g., [2, 3]. In hardware,
the sequence of Givens rotations can be implemented using
division-free methods, such as the CORDIC method. They
can also by parallelized by means of a systolic-array-type
architecture. Moreover, the algorithm can be generalized
to take account of updates to the the channel matrix. This
could result in changes to the optimal ordering for estimat-
ing the signals.

Finally, the savings in computational complexity, as well
as the numerical stability, of the algorithm suggest that it
may be possible to implement the algorithm using a single
commercial fixed-point DSP processor.

REFERENCES

[1] G.J. Foschini and M.J. Gans. On limits of wireless
communications in a fading environment when using
multiple antennas. Wireless Personal Communications,
6(3):311, 1998.

[2] G.H. Golub and C.F. Van Loan. Matriz Computations.
Johns Hopkins University Press, Baltimore, MD, 3rd
edition, 1996.

[3] T. Kailath, A.H. Sayed, and B. Hassibi. Linear Estima-
tion. Prentice-Hall, Englewood Cliffs, NJ, 1999.



