
An Efficient Storage Mechanism to Distribute
Disk Load in a VoD Server

D.N. Sujatha1, K. Girish1, K.R. Venugopal1, and L.M. Patnaik2

1 Department of Computer Science and Engineering
University Visvesvaraya College of Engineering Bangalore University

Bangalore-560001, India
suj sat@yahoo.com

2 Microprocessor Applications Laboratory, Indian Institute of Science
Bangalore-560012, India

Abstract. In this paper, a storage mechanism is devised to balance the
load and to provide immediate service to the clients with a start-up de-
lay of 2ms to 7 ms. The video storage is based on the probability of the
clients requesting for the video. Videos with higher probability of being
requested are stored and replicated to ensure guaranteed retrieval. Par-
ity generation scheme is employed to provide reliability to non-popular
videos. The system is also capable of handling disk failures transparently
and thereby providing a reliable service to the clients.

Keywords: Fault Tolerance, Load Balancing, Start-up Delay, Video
Server.

1 Introduction

Recent developments in storage mechanisms are making high performance Video-
on-Demand (VoD) servers a reality. The video server stores heterogeneous in-
formation on array of high capacity storage servers and deliver them to the
geographically distributed clients. The design constraint is to develop a large-
scale cost-effective video server with a scalability to admit and service the client’s
requests simultaneously.

2 Previous Works

A comparison of different RAID levels is made to bring out Random Duplicate
Assignment (RDA) [1]. In this strategy the video is striped and instead of being
stored sequentially they are randomly allocated in different disks and each strip
is mirrored to enable fault tolerance. The time required to access next block
in the disk increase as the blocks are randomly allocated. A map between the
blocks is to be maintained to handle this problem, which is an additional over-
head. Golubchik et al. [2] discusses fundamental issues associated with providing
fault tolerance in multi-disk VoD servers. In [3], [4] Replication of videos and
placement of video blocks based on popularity is discussed.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 478–483, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server 479

3 System Architecture

The overview of storage mechanism is shown in Fig. 1. The video is divided
into blocks based on number of disks. Each block is stored in different disks
sequentially so that only once a block of video stored on the disk. The first disk
to store the video is rotated to ensure that the load is balanced among the disks.
If the block requested is stored in a disk, which is serving another client, the
request is queued. The requests in the request queue are serviced in round robin
fashion. If the video is popular then, the video is stripped across the array of the
disks and mirrored. The request is serviced by the mirrored storage, in case of
increase load for the popular videos. The mirrored data is also accessed in case of
disk failure containing the popular videos. If the video is non-popular video, it is
stripped across the disks with the last disk in the set of disks to store the parity
information. Performing XoR operation between all the blocks of data generates
parity block. This helps to rebuild the video block in case of disk failure.

Fig. 1. Overview of the Storage Mechanism

4 Algorithm

A: Video Storage (VideoId)
1. Determine the popularity of the video.
2. If (video is popular) then BlockSize = VideoSize / n

else BlockSize = VideoSize / n-1
3. If(space available to store video at BlockSize on disk j)

While(V ideoSize ≥ 0)
begin

j = ((V ideoId%n) + i)%n
reduceV ideoSizebyBlockSize.
storeblockondisk j

480 D.N. Sujatha et al.

increment i by1
end

4. if(videoispopular) then mirrortheblocksinmirrorstorage.
else Pj = B0 ⊕ B1

While (i < n)
begin

pj = pj ⊕ Bi

Store Pj in disk j
end

B: Handle Request (Video id)
1. found = search index table for VideoId
2. While (found=EOF)
3. Retrieve video info from index table.

begin
if (block not corrupted) and if (disk not loaded)
begin

stream block i from disk j
j = j+1

end
else if (video is popular) then handle request from replica disk

else Forward Request (Video Id)
else if (video is not popular)then rebuild block from parity block

else stream from replica.
end

The storage routine shows how the videos are stored in the server to fa-
cilitate load balancing and the HandleRequest routine is designed to illustrate
the behavior of the server on arrival of the request.

4.1 Illustrated Example

Consider the storage of 5 videos V0, V1, V2, V3, V4 of file size 1500Mb, 1000Mb,
2000Mb, 800 Mb, and 3000 Mb respectively, where V0, V1, V4 are popular videos
and V2, V3 are non-popular videos. The disk-id of first block is disk-1, disk-2,
disk-3, disk-4 and disk-5 with block size 300 Mb, 200 Mb, 800 Mb, 169 Mb and
600 Mb respectively. Considering 10 disks in the video server with 5 primary
disks, the storage allocation for each video in their corresponding disks is given
in Table 1. The request arrivals are indicated in Table. 2. The requests are served
with each request being allocated bandwidth (Refer Table. 3). If the disk is busy
serving different client it is moved to the request queue (Refer Table. 4). The
request queue is checked for every 5 sec and if queue is not empty then, the
clients are served in round robin fashion. It is assumed that the request queue
capacity is 5. If the number of requests increases or the delay increases more
than 10 ms then, the request is forwarded to other video server.

An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server 481

Table 1. Storage of Videos

Video-id Block-size(Mb) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
V0 1500/5=300 B0 B1 B2 B3 B4
V1 1000/5=200 B4 B0 B1 B2 B3
V2 2000/4=500 B3 P B0 B1 B2
V3 800/5=160 B2 B3 P B0 B1
V4 3000/5=600 B1 B2 B3 B4 B0

Table 2. Request Arrival

Request Request-id Arrival clock time(secs)
R0 3 0
R1 1 5
R2 1 5
R3 3 5
R4 0 8
R5 1 8
R6 2 15
R7 0 15
R8 4 15
R9 0 18

Table 3. Bandwidth Allocated to Requests

Time(ms) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
T0=00 R0(600Mb) 2Mbps
T1=05 R1(200Mb) R0(590Mb) 1Mbps 1Mbps
T2=08 R4(300Mb) R1(197Mb) R0(587Mb) 0.6Mbps 0.6Mbps
T3=10 R4(298.2Mb) R0(200Mb) R3(160Mb) 0.6Mbps 0.6Mbps
T4=15 R4(295.2Mb) R5(200Mb) R6(800Mb) R0(585.2Mb) R8(600Mb)
T5=18 R4(294.2Mb) R5(200Mb) R6(499.4Mb) R0(584.6Mb) R8(599.4Mb)
T6=20 R7(300Mb) R1(195.2Mb) R6(499Mb) R3(157Mb) R8(599.9Mb)

Table 4. Request Waiting in the Request Queue

Time(ms) Disk-1 Disk-2 Disk-3 Disk-4 Disk-5
T0=00
T1=05 R2(200Mb) R3(160Mb)
T2=08 R2(200Mb) R3(160Mb) R5(200Mb)
T3=10 R2(200Mb) R3(585.2Mb) R1(195.2Mb)
T4=15 R7(300Mb) R1(195.2Mb) R3(157Mb) R2(197Mb)
T5=18 R7(300Mb) R7(197Mb) R0(584.2Mb) R9(300Mb) R2(199.7Mb)
T6=20 R9(300Mb) R2(197Mb) R0(584.2Mb) R4(294.2Mb) R5(199Mb)

5 Simulation and Performance Analysis

Fig. 2, illustrates the start-up delay of the clients to begin downloading the video
after the request is made. The average delay increases with the increase of load, as

482 D.N. Sujatha et al.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80

A
ve

ra
ge

 D
el

ay
(m

s)

Load

8 disks
10 disks
12 disks

Fig. 2. Start-up Delay

 0

 20

 40

 60

 80

 100

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 ti
m

e
to

 d
ow

nl
oa

d(
se

c)

Bandwidth(Mbps)

Load-20
Load-40
Load-60

Fig. 3. Bandwidth Utilization for Varying Load

the clients are queued if the disk is busy serving other clients. The delay increases
by 17% with the increase of load. The start up delay can be further decreased
with increase in number of disks in the system which is evident from the graph.
Fig. 2, also depicts the decrease in start up delay with increase in number of disks.
Bandwidth utilization for varying load is ascertained in Fig. 3. The increase
in bandwidth decreases time to download the entire video. Variations of load
increase the time to download by 2% to 4%. Increase in bandwidth reduces the
time to download by 75% reaching saturation at higher bandwidth rates.

An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server 483

6 Conclusions

An efficient storage mechanism has been proposed to balance the load in the
video server. The system has a low delay of 2ms - 7ms for a varying load. The
bandwidth is utilized efficiently and less time is required to download the videos.
The feasibility of replication-on-demand is critically dependent on the replication
bandwidth availability. We believe that the simplicity of their implementation
and the flexibility they offer makes these policies especially attractive for imple-
mentation in scalable video servers. Our future work is to examine the possibility
of providing fault tolerance along with balancing the load in a video server.

References

1. Choe, Y.R., Pai, V.S.: Achieving Reliable Parallel Performance in a VoD Storage
Server Using Randomization and Replication. In: Intl. Parallel and Distributed Pro-
cessing Symposium, pp. 1–10 (2007)

2. Golubchik, L., Muntz, R.R., Chou, C.-F., Berso, S.: Design of Fault-Tolerant Large-
Scale VoD Servers: with Emphasis on High-Performance and Low-Cost. IEEE Trans
on Parallel and Distributed Systems 12(4), 97–109 (2001)

3. Zhou, X., Xu, C.-Z.: Optimal Video Replication and Placement on a Cluster of
Video-on-Demand Servers. In: Intl. Conference on Parallel Processing, pp. 547–555
(2002)

4. Huang, X.-M., Lin, C.-R., Chen, M.-S.: Design and Performance Study of Rate
Staggering Storage for Scalable Video in a Disk-Array-Based Video Server. In: Intl.
Workshop on Network and Operating Systems support for Digital Audio and Video,
pp. 177–182 (2005)

	An Efficient Storage Mechanism to Distribute Disk Load in a VoD Server
	Introduction
	Previous Works
	System Architecture
	Algorithm
	Illustrated Example

	Simulation and Performance Analysis
	Conclusions

