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Introduction

�e field of data science has become a widely discussed topic in recent years due to a 

data explosion, especially with scientific experiments such as those that are part of the 

Large Hadron Collider (LHC) at CERN and commercial businesses keen to enhance 

their competitiveness by learning about their customers to provide tailor made prod-

ucts and services, dramatically increasing the usage of sensor devices. Traditional 

techniques of collecting (e.g. lightweight Python framework), storing (e.g. Oracle) and 

analysing (e.g. PL/SQL) data are no longer optimal with the overwhelming amount of 

data that are being generated. �e challenge of handling big volumes of data has been 

taken on by many companies, particularly those in the internet domain, leading to a 

full paradigm shift in methods of data archiving, processing and visualisation. A num-

ber of new technologies have appeared, each one targeting specific aspects of large-scale 
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distributed data-processing. All these technologies, such as batch computation systems 

(e.g. Hadoop) and non-structured databases (e.g. MongoDB), can handle very large data 

volumes with little financial cost. Hence, it becomes necessary to have a good under-

standing of the currently available technologies to develop a framework which can sup-

port efficient data collection, storage and analytics.

�e core aims of the presented study were the following:

  • To propose and design efficient approaches for collecting and storing data for analyt-

ics that can also be integrated with other data pipelines seamlessly.

  • To implement and test the performance of the approaches to evaluate their design.

Background

Over the past several years there has been a tremendous increase in the amount of data 

being transferred between Internet users. Escalating usage of streaming multimedia and 

other Internet based applications has contributed to this surge in data transmissions. 

Another facet of the increase is due to the expansion of Big Data, which refers to data 

sets that are many orders of magnitude larger than the standard files transmitted via the 

Internet. Big Data can range in size from hundreds of gigabytes to petabytes [1].

Within the past decade, everything from banking transactions to medical history 

has migrated to digital storage. �is change from physical documents to digital files 

has necessitated the creation of large data sets and consequently the transfer of large 

amounts of data. �ere is no sign that the continued increase in the amount of data 

being stored and transmitted by users is slowing down. Every year Internet users are 

moving more and more data through their Internet connections. With the growth of 

internet based applications, cloud computing, and data mining, the amount of data 

being stored in distributed systems around the world is growing rapidly. Depending on 

the connection bandwidth available and the size of the data sets being transmitted, the 

duration of data transfers can be measured in days or even weeks. �ere exists a need 

for an efficient transfer technique that can move large amounts of data quickly and easily 

without impacting other users or applications [1].

In addition to corporate and commercial data sets, academic data are also being pro-

duced in similarly large quantities [2]. To give an example of the size of the data sets uti-

lised by some scientific research experiments, a recent study observed a particle physics 

experiment (DZero) taking place at the Fermi Lab research center. While observing the 

DZero experiment between January 2013 and May 2015, Aamnitchi et al. [2] analysed the 

data usage patterns of users. �ey found that 561 users processed more than 5 PB of data 

with 13 million file accesses to more than 1.3 million distinct data files. An individual file 

was requested by at most 45 different users during the entire analysed time period.

In the DZero experiment, and many like it, scientists are generating datasets with an 

extremely large number of data files. Use of entire datasets is quite popular amongst 

users, however, the individual data files in these sets are rarely used concurrently since 

they are so numerous.

�ere are many scientific research facilities that have similar data demands. �e 

most popular and well known example today is the LHC at CERN where thousands of 

researchers in the fields of physics and computer science are involved with the various 
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experiments based there. �e experiments being conducted at the LHC generate peta-

bytes of data annually [3, 4]. One experiment, ALICE, can generate data at the rate of 

1.25 GB/s. Figure 1 illustrates the growth in the size of data sets being created and stored 

by CERN. �is graph shows the total amount of storage (both disk and tape) utilised by 

all of the top-level servers in the CERN organisation. �e amount of data stored in the 

system has grown at a steady pace over the past 3 years and is expected to grow faster 

now that the intensity of their experiments is increasing, which will result in more data 

collected per second [5].

Geographically dispersed researchers eagerly await access to the newest datasets as 

they become available. �e task of providing and maintaining fast and efficient data 

access to these users is a major undertaking. Also, monitoring computing behaviours in 

the Worldwide LHC Computing Grid (WLCG), such as data transfer, data access, and 

job processing, is crucial for efficient resource allocation. �is requires the gathering of 

metadata which describes the data (e.g. transfer time) from geographically distributed 

sources and the processing of such information to extract the relevant information for 

the WLCG group [6]. Since the LHC experiments are so well known and many studies 

have been conducted on their demands and requirements, one can use the LHC experi-

ments as a suitable case study for this research.

To meet the computing demands of experiments like those at the LHC, a specialised 

distributed computing environment is needed. Grid computing fits the needs of the 

LHC experiments and other similar research initiatives.

�e WLCG was created by CERN in 2002 in order to facilitate the access and dissemi-

nation of experimental data. �e goal of the WLCG is to develop, build, and maintain 

a distributed computing infrastructure for the storage and analysis of data from LHC 

experiments [7]. �e WLCG is composed of over a hundred physical computing cent-

ers with more than 100,000 processors [8]. Since the datasets produced by the LHC 

are extremely large and highly desired, the WLCG utilises replication to help meet the 

demands of users. Copies of raw, processed, and simulated data are made at several loca-

tions throughout the grid.

�e WLCG utilises a four-tiered model for data dissemination. �e original raw data is 

acquired and stored in the Tier-0 center at CERN. �is data is then forwarded in a highly 

Fig. 1 Size of CERN LHC experimental data sets over the past years. The total disk and tape storage amounts 

aggregated for all Tier-1 locations in the CERN grid (adapted from [5])
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controlled fashion on dedicated network connections to all Tier-1 sites. �e Tier-1 sites 

are located in Canada, Germany, Spain, France, Italy, Nordic countries, Netherlands, 

Republic of Korea, Russian Federation, Taipei, United Kingdom and USA (Fermilab-

CMS and BNL ATLAS).

�e role of the Tier-1 sites varies according to the particular experiment, but in gen-

eral they are responsible for managing permanent data storage (of raw, simulated, and 

processed data) and providing computational capacity for processing and analysis [7]. 

�e Tier-1 centers are connected with CERN through dedicated links (Fig. 2) to ensure 

high reliability and high-bandwidth data exchange, but they are also connected to many 

research networks and to the Internet [8]. �e underlying components of a Tier-1 site 

consist of online (disk) storage, archival (tape) storage, computing (process farms), and 

structured information (database) storage. Tier-1 sites are independently managed and 

have pledged specific levels of service to CERN. It is left to a given site’s administrators 

to guarantee that these services are reliably provided.

�e Tier-2 sites are used for Monte Carlo event simulation and for end-user analy-

sis. Any data generated at Tier-2 sites is forwarded back to Tier-1 centers for archival 

storage.

Other computing facilities in universities and research laboratories are able to retrieve 

data from Tier-2 sites for processing and analysis. �ese sites constitute the Tier-3 cent-

ers, which are outside the scope of the controlled WLCG project and are individually 

maintained and governed. Tier-3 sites allow researchers to retrieve, host, and analyse 

specific datasets of interest. Freed from the reprocessing and simulation responsibilities 

Fig. 2 WLCG Tier-1 and Tier-2 connections [8]
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of Tier-1 and Tier-2 centers, these Tier-3 sites can devote their resources to their own 

desired analyses and are allowed more flexibility with fewer constraints [9]. As there are 

thousands of researchers eagerly waiting for new data to analyse, many users will find 

less competition for time and resources at Tier-3 sites than at the Tier-2 sites.

It is important to note that users connecting to either Tier-2 or Tier-3 sites will use 

public, shared network connections, including the Internet. Grid traffic and normal 

world wide web traffic will both be present on these shared links. A user will also be 

sharing the site that they access with multiple other users. �ese factors can affect the 

performance of the data transfer between the selected retrieval site and the user. Retriev-

ing these large data files also places a burden on shared resources and impacts other 

grid and non-grid users. When it comes to retrieving data in the WLCG, a normal user 

(depending on their security credentials) can access data on either Tier-2 or Tier-3 sites. 

�e user would select a desired site and issue a request for a specific data file. Selecting 

a site to utilise can be a complicated task, with the performance a user obtains being 

dependent on the location chosen.

Grid computing has emerged as a framework for aggregating geographically distrib-

uted, heterogeneous resources that enables secure and unified access to computing, 

storage and networking resources for Big Data [10]. Grid applications have vast data-

sets and/or carry out complex computations that require secure resource sharing among 

geographically distributed systems.

Grids offer coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organisations [11]. A virtual organisation (VO) comprises a set of 

individuals and/or institutions having access to computers, software, data, and other 

resources for collaborative problem-solving or other purposes [12]. A grid can also be 

defined as a system that coordinates resources that are not subject to centralised control, 

using standard, open, general-purpose protocols and interfaces in order to deliver non-

trivial qualities of service [13].

A number of new technologies have emerged for handling big-scale distributed data-

processing, (e.g. Hadoop), where the belief is that moving computation to where data 

reside is less time consuming than moving data to a different location for computation 

when dealing with Big Data. �is is certainly true when the volume of data is very large 

because this approach will reduce network congestion and improve the overall per-

formance of the system. However, a key grid principle contradicts with this as in the 

grid approach computing elements (CE) and storage elements (SE) should be isolated, 

although this is changing in modern grid systems. Currently, a lot of scientific experi-

ments are beginning to adopt the “new” Big Data technologies, in particular for meta-

data analytics at the LHC, hence the reason for the presented study.

Parallelising is used in order to enhance computations of Big Data. �e well known 

MapReduce [14] framework that has been used in this paper has been well developed in 

the area of Big Data science and has the parallelization feature. Its other key features are 

its inherent data management and fault tolerant capabilities.

�e Hadoop framework has also been employed in this paper. It is an open-source 

MapReduce software framework. For its functions it relies on the Hadoop Distributed 

File System (HDFS) [15], which is a derivative of the Google File System (GFS) [16]. In its 

function as a fault-tolerance and data management system, as the user provides data to 
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the framework, the HDFS splits and replicates the input data across a number of cluster 

nodes.

�e approaches for collecting and storing Big Data for analytics described in this paper 

were implemented on a community-driven software solution, Apache Flume, in order to 

understand how the approaches can be integrated seamlessly the data pipeline. Apache 

Flume is used for effectively gathering, aggregating, and transporting large amounts of 

data. It has a flexible and simple architecture, which makes it fault tolerant and robust 

with tunable reliability and data recovery mechanisms. It uses a simple extensible data 

model that allows online analytic applications [17].

Design and methodology

When data messages are consumed from a data transport layer and written into stor-

age, there will most likely be some sort of data transformation carried out before storage 

in the storage layer. Such a transformation could be extracting the body from the mes-

sage and removing the header as it is not required, or serialisation or compression of the 

data. �e WLCG uses a Python agent, the Dashboard consumer, to collect infrastructure 

status updates, transform them, and store them in the data repository, which is imple-

mented in Oracle. It uses Procedural Language/Structured Query Language (PL/SQL) 

procedures for analytics. �is is an example of a traditional approach that is commonly 

used. However, these technologies and methods are no longer optimal for data collec-

tion, storage and analytics as they are not primarily designed for handling Big Data. 

�ere needs to be a strategy in place to carry out the required transformation as this will 

play a significant role in improving the performance of subsequent computations. In this 

paper three different approaches were explored:

1. Implement the data transformation logic within the data pipeline. �erefore, the 

messages, M, will be read by the consumer, to apply the transformation <T> and to 

write the results into the storage layer, S, for analytics <A>:  

2. Write the raw messages, M, directly into the storage layer, S, without any modifica-

tion. �en there is another intermediate transformation <iT> that reads the raw data 

from storage, transforms the data and writes the results into a new path but to the 

same storage layer for analytics <A>:  

3. Write the raw messages, M, into the storage layer, S, without any modification. Let 

the analytics <A> jobs carry out the transformation <T>:  

�e first approach is the traditional way of transforming, storing and computing data 

as has been already described for the WLCG use case. However, this method relies too 

much on the data pipeline. If the data pipeline is replaced then the transformation logic 

would need to be re-implemented. �erefore, it is an inefficient design. Nevertheless, 

this method needs to be tested on the technology that supports Big Data.

(1)M
<T>

→ S → < A >

(2)M → S
<iT>

→ S → < A >

(3)M → S → ≪ T > + < A ≫
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�e second approach has two benefits as the transformation logic is moved to a cen-

tralised location and untampered raw data are stored as well as the transformed data. 

�erefore, in the case of any inaccuracy in the transformed data, the correct trans-

formed data can be recreated from the raw data. �is is not possible with the first 

method because as soon as the data are transformed the raw data are discarded. Never-

theless, the second approach is very complex as there is a requirement for a job to trans-

form the data, rather than the consumer carrying out the transformation, and it raises 

the question of when and how this job should be scheduled. �is approach also requires 

increased data storage as both raw and transformed data will be kept. A transformation 

job could be used here to compress the raw data and archive it to reduce the amount of 

storage required.

�e third option is very simple and straight forward, as the raw data will be written 

into the storage layer without any modification. �e transformation will only take place 

at the data analytics time. �e transformation logic can be implemented in a shared 

library, which can be imported into any analytics jobs. �erefore, the transformation will 

take place as and when it is required. �is way, the untempered raw data is still kept in 

the storage layer and no additional job or storage is needed for data transformation. �is 

approach does add an extra execution time overhead to the analytics jobs and will repeat 

the data transformation every time an analytics job is carried out. �is should, however, 

not be too much of a problem as Big Data technologies are built to enhance computation 

speed by parallelising jobs. Hence, this arrangement should not significantly affect the 

execution time. A summary of the advantages and disadvantages of the proposed three 

approaches is given in Table 1.

Table 1 Summary of advantages and disadvantages of the proposed approaches

Advantage Disadvantage

Approach 1
Data transformation occurs  

within the data pipeline

Well tested approach: typical 
scenario in most data analytics 
platforms

Complex: transformation logic is kept 
in the data pipeline so in the case 
of data pipeline replacement the 
transformation logic needs to be 
re-implemented

Lost data authenticity: the data is 
transformed by the data pipeline so 
the raw data is lost

Approach 2
Data transformation occurs  

within the storage layer

Easy to migrate/replace: the 
transformation logic is moved 
to a centralised location so it is 
easier to migrate or replace the 
data pipeline

Raw data is intact: meets regulatory 
standards of storing the raw data 
both before and after transfor-
mation

Complex: an intermediate job is 
required for transformation

Large storage needed: both raw and 
transformed data are stored

Approach 3
Data transformation occurs  

within the analytics jobs

Clean and simple: no complexity 
added to the data pipeline

Less storage needed: only raw data 
is stored

Easy to migrate or replace: the 
transformation logic is moved to 
a centralised location

Increased execution overhead: the 
analytics job will transform the data

Repetition: transformation will take 
place every time an analytics job is 
executed
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Implementation

�e data pipeline presented in this paper uses Dirq library that offers a queue system, using 

the underlying file system for storage for consuming messages, which allows concurrent 

read and write operations [18]. �erefore, it can support a variety of heterogeneous applica-

tions and services that can write messages and have multiple readers reading the messages 

simultaneously. �e data pipeline was developed using the Hadoop native library that reads 

messages from the Dirq library and writes them into HDFS using an appending mecha-

nism. �e Hadoop software framework was originally designed as a create-once-read-many 

system [19]. �erefore, appending was not available in the initial software release but later 

versions, 2.0 onwards, supported this mechanism. Hadoop also has the benefit of working 

well with a few large files but is not as efficient when working with a large number of small 

files. �e appending method is convenient as it allows for the creation of a single large file.

For the first approach, the data will be consumed from the Dirq, transformed and writ-

ten into HDFS. �e implementation of the second approach is similar to the first with 

the exception of no transformation being carried out in the pipeline. However, it requires 

chained MapReduce jobs in a centralised Hadoop cluster in order to take the raw data 

that has not previously been processed, and apply the appropriate data transformation, 

merge the transformed data with previously transformed data, delete the old trans-

formed data, update the raw data as processed and merge and compress the raw data. 

An issue was encountered during testing of this second approach where it was found 

that data that were not processed by the transformation job were not then available for 

analytics. �e third approach is again like the second approach in that no transformation 

is carried out in the data pipeline, but the transformation logic is implemented in a com-

mon library and is available to be imported into any analytics jobs. �erefore, the trans-

formation can be carried out as and when it is required. �is approach does not have 

the issue of data unavailability as present in the other two approaches as all written data 

will be picked up by the analytics jobs and the transformation will be done as and when 

required. All three approaches were implemented as a daemon that continuously ran on 

the WLCG test infrastructure checking for data every 5 min.

In order to decrease the data aggregation delay from the data pipeline and to evaluate 

how easy it is to migrate these approaches to a different data pipeline, Apache Flume 

was used. Apache Flume is a community-driven software solution that receives mes-

sages from the transport layer and writes them into HDFS. �ere are three ways to flush 

consumed data into HDFS: periodically based on the elapsed time, the size of data or the 

number of events [17].

As expected, the first approach was complex as all the transformation logic was in the 

custom data pipeline so the transformation logic had to be re-implemented into Apache 

Flume. �e second and third approach made the migration to Apache Flume extremely 

simple, as all the transformation logic was implemented within the storage layer. But, as 

noted before, the second approach added complexity to the storage layer, as it required a 

chain of actions for data transformation. �e third approach was the simplest to imple-

ment, as no transformation was carried out on the Apache Flume side and no transfor-

mation was carried out in the storage layer, keeping the complexity low.

All three approaches did encounter a common problem: Apache Flume pushes the 

events but does not flush the file until the configured file roll time is met (e.g. every hour) 
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resulting in the data being unavailable for computation between these times. While 

HDFS supports appending functionality, and the custom data pipeline, Apache Flume 

does not support it. �e analytics jobs were able to read the data that were written by the 

custom data pipeline but not those written by Apache Flume. �erefore, the appending 

functionality was taken from the custom pipeline and implemented into Apache Flume, 

making it a custom library (see Algorithm 1). With this amendment, Apache Flume was 

then able to write a single file and append it while at the same time analytics jobs were 

able to read the data while the data were being written into HDFS.

Algorithm 1 File appending algorithm for Apache Flume: adding a close and reopen at eve-

ry push to get the required append behaviour. 

1: 

2: 

3: 

4: 

procedure create-global-data-file-writer 

declare a global DataFileWriter object 

create a file in HDFS 

initialise the file to global DataFileWriter 

1: 

2: 

3: 

4: 

5: 

procedure consume-messages-and-sync-flush 

create a temp DataFileWriter refelecting(reopen) the global DataFileWriter 

consume all messages 

append messages using temp DataFileWriter 

close temp DataFileWriter WHEN messages <= 0 

1: 

2: 

procedure roll-files 

close the global DataFileWriter 

Results and discussion

�e three approaches developed for the collection, storage and analytics of Big Data 

described in this paper were evaluated on the WLCG infrastructure that provides the 

computing resources to store, distribute and analyse the 30 petabytes of data generated 

annually by the LHC and distributed to 170 computing centres around the world [20]. 

Furthermore, the current method used by the WLCG group for the collection and stor-

age of data for analytics was evaluated for benchmarking the new approaches.

It was very complicated to carry out performance measurements on the proposed 

approaches and the current approach, as they employ different methods for consuming, 

writing and transforming the data in each case. �erefore, in order to get a meaning-

ful performance measurement, a full computation cycle was carried out, including: con-

suming messages, writing to HDFS and carrying out a simple analytics job on those data. 

�e full cycle comprised three segments:

1. Data ingestion with data transformation and without data transformation.

2. Intermediate data transformation using a MapReduce job.

3. A simple statistical analytic computation using a MapReduce job and a PL/SQL pro-

cedure with and without data transformation.

�e configurations of the current and proposed data pipelines in the WLCG are 

shown in Fig. 3a and b respectively. For both configurations, the monitoring events are 

pushed as JavaScript Object Notation (JSON) records through the STOMP protocol to 

the ActiveMQ message broker. However, the configuration varies from the consumers 
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in both data pipelines. �e current configuration uses Python collectors for reading 

the monitoring events, transforming and writing them into an Oracle storage database. 

On the other hand, the proposed configuration uses a custom data pipeline daemon, as 

explained in “Implementation” section that reads monitoring events and writes them 

into a Hadoop cluster. �is configuration can be modified to support the three proposed 

approaches, i.e. transform and serialise the messages into Avro format.

In order to evaluate the proposed approaches, it was decided to push messages from 

the broker in batch sizes ranging from 10,000 to 100,000 messages. Data ingestion and 

analytics were conducted ten times for each batch of messages in order to capture an 

average performance time. �e performance measurements were carried out on a heter-

ogeneous Hadoop cluster that consisted of 15 nodes (8 nodes: 32 cores/64 GB, 7 nodes: 

4 cores/8 GB).

Performance results of data ingestion with and without data transformation

�e first approach had to consume all messages from Dirq, apply a simple data transfor-

mation, which involved taking the source and destination IP address from the message 

Fig. 3 Configuration of current data pipeline in WLCG (a) and the configuration of the proposed data pipe-

line for WLCG (b)
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and using a topology mapping file to determine the domain address and replace the IP 

address with the domain, and finally, convert the data file into Avro format, which is a 

data serialisation framework that serialises the data into a compact binary format and 

writes the file into HDFS. As shown in Fig. 4, this approach (pre-trans-avro) is slower 

than the second approach (raw-json), which just reads the raw messages in JSON, an 

easy-to-read format, and writes them into HDFS. �e second approach is the fastest 

compared with the first and third approaches (raw-avro), which read raw data, convert 

them into Avro format and write them into HDFS. �e third approach was faster than 

the first approach because it does not do any transformation.

�e current approach (pyth-traditional-plsql) used by the WLCG is similar to the pro-

posed first approach (pre-trans-avro) but the difference is that it uses the Python agent 

for collection and the Oracle database for storing the transformed data, so no serialisa-

tion is involved. Although the current approach is similar to the first of the three pro-

posed approaches the performance of the current approach was slower than all three 

of the newly proposed approaches. �is is due to the connection and communication 

limitations that occurs between the database and collectors.

Figure 5 shows data representing unprocessed messages from the broker, raw JSON 

messages, a pre-transformed Avro and a raw Avro file written into HDFS by the custom 

Fig. 4 Data ingestion from message queue to HDFS with and without data transformation

Fig. 5 Data size of the messages that were stored into HDFS with and without data transformation



Page 12 of 17Suthakar et al. J Big Data  (2016) 3:21 

data pipeline. �e Avro files are smaller than the JSON file and contain unprocessed data 

because they are serialised into binary format. However, the pre-transformed Avro file is 

larger than the raw Avro file because transformation was applied.

Performance results of intermediate data transformation using a MapReduce job

A test was designed to measure the performance of an intermediate MapReduce trans-

formation done on a centralised Hadoop cluster. As shown in Fig. 6, only the raw JSON 

data will go through this transformation, as the pre-transformed Avro file has already 

been transformed at the data pipeline level and the raw Avro data will be transformed at 

the analytic time when it is required. Also, the data stored in the database by the Python 

agent does not require an intermediate transformation as it has already been performed 

at the data pipeline. Transforming the data using an intermediate job is very expensive 

in terms of execution time, as the process is carried out by chained MapReduce jobs 

that will transform, aggregate and merge the data. �e majority of the execution time 

overhead was used for finding resources and submitting the chained jobs to the Hadoop 

cluster.

Performance results of a simple analytic computation with and without data 

transformation

�e final step of the evaluation cycle was to carry out a simple computation on the 

100,000 messages dataset and measure the performance. Two sets of analytics jobs were 

implemented to compute a summary view of the XRootD operations, performed by the 

different users for each WLCG site belonging to the XRootD federation [20]. An analyt-

ics job was modified to include the data transformation prior to the computation. �e 

modified job was executed on the raw Avro data. As shown in Fig. 7, an extra execution 

time overhead was added to the modified analytics job when compared with unmodified 

Fig. 6 Intermediate MapReduce job for data transformation. Only the raw JSON messages are transformed 

with the MapReduce job
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job that computed pre-transformed data, but the computation was seamless, as the 

MapReduce framework adopts a parallel programming model. �erefore, the jobs will 

be split into multiple tasks and will be sent to data nodes where the data reside. �e cur-

rent approach used by the WLCG (pyth-traditional-plsql) for analytics was very slow 

compared with the proposed approaches due to the constraints imposed by the database 

being used and its lack of scalability.

Summary of the performance results

In order to understand which approach performed better, the execution time of the larg-

est dataset of 100,000 messages was selected from “Performance results of data inges-

tion with and without data transformation”, “Performance results of intermediate data 

transformation using a MapReduce job” and “Performance results of a simple analytic 

computation with and without data transformation” sections and the total is presented 

in Table 2. It is clear that writing the raw Avro data into HDFS and letting the analytics 

do the transformation outperforms the other two proposed approaches. �e slowest of 

the proposed approaches is the second approach where there is an intermediate job for 

transformation. �is is understandable as the transformation is carried out by chained 

MapReduce jobs, which add extra execution time overhead. �e first approach is com-

parable in terms of performance to the second approach but it will be beneficial to keep 

Fig. 7 Performance measurements of the statistic computation were done on pre-transformed and the raw 

100,000 messages dataset
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a copy of the untempered raw data file in HDFS and let the analytics job do the trans-

formation, which is better than carrying out transformation in the data pipeline as the 

authenticity is lost once the transformation is done and stored in HDFS. Although the 

current approach used by the WLCG employs the same pre-transformation approach, 

it performs inadequately compared with the new approaches presented in this paper, 

primarily due to database communication and scalability constraints as the current 

approach cannot handle the increasing data and workload.

Evaluation of Apache Flume

During the evaluation of all three proposed approaches there was still a 5 min delay in 

polling data from the message queue. In order to eliminate this polling latency, custom-

made Apache Flume data collectors (as explained in “Implementation” section) that uti-

lise an appending mechanism were put in place of the consumer shown in Fig. 3b. �e 

performance test results showed that the third approach is optimal. �erefore, Apache 

Flume agents were configured to consume messages and flush them into HDFS directly. 

Figure 8 shows spikes in the total number of messages propagated with a rate >1 kHz, 

and it can be seen that Apache Flume seamlessly absorbs the load on its single virtual 

machine. Meanwhile, the current Python-Oracle based consumers used by the WLCG, 

running on two production virtual machines, were struggling to keep up, causing a back-

log of message stored in the broker.

Fig. 8 Spikes of messages with a rate >1 kHz. The red line is the messages received from the broker, green 

denotes the messages stored in old consumers, and blue denotes the messages stored in Apache Flume
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Conclusion

�e proposed approaches for collecting and storing Big Data for analytics presented 

in this paper show how important it is to select the correct model for efficient perfor-

mance and technology migration. It is clear from the study that keeping the main logic 

in a centralised location will simplify technological and architectural migration. �e 

performance test results show that eliminating any transformation at the data inges-

tion level and moving it to the analytics job is beneficial as the overall process time is 

reduced, untempered raw data are kept in the storage level for fault-tolerance, and the 

required transformation can be done as and when required using a framework such as 

MapReduce. �e presented results show that this proposed approach outperformed 

the approach employed at the WLCG and following this work the new approach has 

been adopted by the WLCG and it has been used for collecting, storing, and analysing 

metadata at CERN since April 2015 [6]. �is approach can be easily applied to other 

use cases (e.g. in commercial businesses for collecting customer interest datasets) and 

is not restricted to scientific applications. Future work will include looking at how the 

data pipeline in the new approach will perform if the MapReduce framework were to be 

replaced by the Spark ecosystem which supports in-memory processing [21].
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