
An e�cient strategy for the collection
and storage of large volumes of data
for computation

Uthayanath Suthakar1,2* , Luca Magnoni2, David Ryan Smith1, Akram Khan1 and Julia Andreeva2

Introduction

�e field of data science has become a widely discussed topic in recent years due to a

data explosion, especially with scientific experiments such as those that are part of the

Large Hadron Collider (LHC) at CERN and commercial businesses keen to enhance

their competitiveness by learning about their customers to provide tailor made prod-

ucts and services, dramatically increasing the usage of sensor devices. Traditional

techniques of collecting (e.g. lightweight Python framework), storing (e.g. Oracle) and

analysing (e.g. PL/SQL) data are no longer optimal with the overwhelming amount of

data that are being generated. �e challenge of handling big volumes of data has been

taken on by many companies, particularly those in the internet domain, leading to a

full paradigm shift in methods of data archiving, processing and visualisation. A num-

ber of new technologies have appeared, each one targeting specific aspects of large-scale

Abstract

In recent years, there has been an increasing amount of data being produced and

stored, which is known as Big Data. The social networks, internet of things, scientific

experiments and commercial services play a significant role in generating a vast

amount of data. Three main factors are important in Big Data; Volume, Velocity and

Variety. One needs to consider all three factors when designing a platform to sup-

port Big Data. The Large Hadron Collider (LHC) particle accelerator at CERN consists

of a number of data-intensive experiments, which are estimated to produce a volume

of about 30 PB of data, annually. The velocity of these data that are propagated will

be extremely fast. Traditional methods of collecting, storing and analysing data have

become insufficient in managing the rapidly growing volume of data. Therefore, it is

essential to have an efficient strategy to capture these data as they are produced. In

this paper, a number of models are explored to understand what should be the best

approach for collecting and storing Big Data for analytics. An evaluation of the perfor-

mance of full execution cycles of these approaches on the monitoring of the World-

wide LHC Computing Grid (WLCG) infrastructure for collecting, storing and analysing

data is presented. Moreover, the models discussed are applied to a community driven

software solution, Apache Flume, to show how they can be integrated, seamlessly.

Keywords: Big Data, Data pipeline, Hadoop, Apache Flume, MapReduce, HDFS

Open Access

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Suthakar et al. J Big Data (2016) 3:21

DOI 10.1186/s40537-016-0056-1

*Correspondence:

Uthayanath.Suthakar@

brunel.ac.uk
1 College of Engineering,

Design and Physical Sciences,

Brunel University London,

Uxbridge, Middlesex UB8

3PH, UK

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0003-2754-8861
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-016-0056-1&domain=pdf

Page 2 of 17Suthakar et al. J Big Data (2016) 3:21

distributed data-processing. All these technologies, such as batch computation systems

(e.g. Hadoop) and non-structured databases (e.g. MongoDB), can handle very large data

volumes with little financial cost. Hence, it becomes necessary to have a good under-

standing of the currently available technologies to develop a framework which can sup-

port efficient data collection, storage and analytics.

�e core aims of the presented study were the following:

 • To propose and design efficient approaches for collecting and storing data for analyt-

ics that can also be integrated with other data pipelines seamlessly.

 • To implement and test the performance of the approaches to evaluate their design.

Background

Over the past several years there has been a tremendous increase in the amount of data

being transferred between Internet users. Escalating usage of streaming multimedia and

other Internet based applications has contributed to this surge in data transmissions.

Another facet of the increase is due to the expansion of Big Data, which refers to data

sets that are many orders of magnitude larger than the standard files transmitted via the

Internet. Big Data can range in size from hundreds of gigabytes to petabytes [1].

Within the past decade, everything from banking transactions to medical history

has migrated to digital storage. �is change from physical documents to digital files

has necessitated the creation of large data sets and consequently the transfer of large

amounts of data. �ere is no sign that the continued increase in the amount of data

being stored and transmitted by users is slowing down. Every year Internet users are

moving more and more data through their Internet connections. With the growth of

internet based applications, cloud computing, and data mining, the amount of data

being stored in distributed systems around the world is growing rapidly. Depending on

the connection bandwidth available and the size of the data sets being transmitted, the

duration of data transfers can be measured in days or even weeks. �ere exists a need

for an efficient transfer technique that can move large amounts of data quickly and easily

without impacting other users or applications [1].

In addition to corporate and commercial data sets, academic data are also being pro-

duced in similarly large quantities [2]. To give an example of the size of the data sets uti-

lised by some scientific research experiments, a recent study observed a particle physics

experiment (DZero) taking place at the Fermi Lab research center. While observing the

DZero experiment between January 2013 and May 2015, Aamnitchi et al. [2] analysed the

data usage patterns of users. �ey found that 561 users processed more than 5 PB of data

with 13 million file accesses to more than 1.3 million distinct data files. An individual file

was requested by at most 45 different users during the entire analysed time period.

In the DZero experiment, and many like it, scientists are generating datasets with an

extremely large number of data files. Use of entire datasets is quite popular amongst

users, however, the individual data files in these sets are rarely used concurrently since

they are so numerous.

�ere are many scientific research facilities that have similar data demands. �e

most popular and well known example today is the LHC at CERN where thousands of

researchers in the fields of physics and computer science are involved with the various

Page 3 of 17Suthakar et al. J Big Data (2016) 3:21

experiments based there. �e experiments being conducted at the LHC generate peta-

bytes of data annually [3, 4]. One experiment, ALICE, can generate data at the rate of

1.25 GB/s. Figure 1 illustrates the growth in the size of data sets being created and stored

by CERN. �is graph shows the total amount of storage (both disk and tape) utilised by

all of the top-level servers in the CERN organisation. �e amount of data stored in the

system has grown at a steady pace over the past 3 years and is expected to grow faster

now that the intensity of their experiments is increasing, which will result in more data

collected per second [5].

Geographically dispersed researchers eagerly await access to the newest datasets as

they become available. �e task of providing and maintaining fast and efficient data

access to these users is a major undertaking. Also, monitoring computing behaviours in

the Worldwide LHC Computing Grid (WLCG), such as data transfer, data access, and

job processing, is crucial for efficient resource allocation. �is requires the gathering of

metadata which describes the data (e.g. transfer time) from geographically distributed

sources and the processing of such information to extract the relevant information for

the WLCG group [6]. Since the LHC experiments are so well known and many studies

have been conducted on their demands and requirements, one can use the LHC experi-

ments as a suitable case study for this research.

To meet the computing demands of experiments like those at the LHC, a specialised

distributed computing environment is needed. Grid computing fits the needs of the

LHC experiments and other similar research initiatives.

�e WLCG was created by CERN in 2002 in order to facilitate the access and dissemi-

nation of experimental data. �e goal of the WLCG is to develop, build, and maintain

a distributed computing infrastructure for the storage and analysis of data from LHC

experiments [7]. �e WLCG is composed of over a hundred physical computing cent-

ers with more than 100,000 processors [8]. Since the datasets produced by the LHC

are extremely large and highly desired, the WLCG utilises replication to help meet the

demands of users. Copies of raw, processed, and simulated data are made at several loca-

tions throughout the grid.

�e WLCG utilises a four-tiered model for data dissemination. �e original raw data is

acquired and stored in the Tier-0 center at CERN. �is data is then forwarded in a highly

Fig. 1 Size of CERN LHC experimental data sets over the past years. The total disk and tape storage amounts

aggregated for all Tier-1 locations in the CERN grid (adapted from [5])

Page 4 of 17Suthakar et al. J Big Data (2016) 3:21

controlled fashion on dedicated network connections to all Tier-1 sites. �e Tier-1 sites

are located in Canada, Germany, Spain, France, Italy, Nordic countries, Netherlands,

Republic of Korea, Russian Federation, Taipei, United Kingdom and USA (Fermilab-

CMS and BNL ATLAS).

�e role of the Tier-1 sites varies according to the particular experiment, but in gen-

eral they are responsible for managing permanent data storage (of raw, simulated, and

processed data) and providing computational capacity for processing and analysis [7].

�e Tier-1 centers are connected with CERN through dedicated links (Fig. 2) to ensure

high reliability and high-bandwidth data exchange, but they are also connected to many

research networks and to the Internet [8]. �e underlying components of a Tier-1 site

consist of online (disk) storage, archival (tape) storage, computing (process farms), and

structured information (database) storage. Tier-1 sites are independently managed and

have pledged specific levels of service to CERN. It is left to a given site’s administrators

to guarantee that these services are reliably provided.

�e Tier-2 sites are used for Monte Carlo event simulation and for end-user analy-

sis. Any data generated at Tier-2 sites is forwarded back to Tier-1 centers for archival

storage.

Other computing facilities in universities and research laboratories are able to retrieve

data from Tier-2 sites for processing and analysis. �ese sites constitute the Tier-3 cent-

ers, which are outside the scope of the controlled WLCG project and are individually

maintained and governed. Tier-3 sites allow researchers to retrieve, host, and analyse

specific datasets of interest. Freed from the reprocessing and simulation responsibilities

Fig. 2 WLCG Tier-1 and Tier-2 connections [8]

Page 5 of 17Suthakar et al. J Big Data (2016) 3:21

of Tier-1 and Tier-2 centers, these Tier-3 sites can devote their resources to their own

desired analyses and are allowed more flexibility with fewer constraints [9]. As there are

thousands of researchers eagerly waiting for new data to analyse, many users will find

less competition for time and resources at Tier-3 sites than at the Tier-2 sites.

It is important to note that users connecting to either Tier-2 or Tier-3 sites will use

public, shared network connections, including the Internet. Grid traffic and normal

world wide web traffic will both be present on these shared links. A user will also be

sharing the site that they access with multiple other users. �ese factors can affect the

performance of the data transfer between the selected retrieval site and the user. Retriev-

ing these large data files also places a burden on shared resources and impacts other

grid and non-grid users. When it comes to retrieving data in the WLCG, a normal user

(depending on their security credentials) can access data on either Tier-2 or Tier-3 sites.

�e user would select a desired site and issue a request for a specific data file. Selecting

a site to utilise can be a complicated task, with the performance a user obtains being

dependent on the location chosen.

Grid computing has emerged as a framework for aggregating geographically distrib-

uted, heterogeneous resources that enables secure and unified access to computing,

storage and networking resources for Big Data [10]. Grid applications have vast data-

sets and/or carry out complex computations that require secure resource sharing among

geographically distributed systems.

Grids offer coordinated resource sharing and problem solving in dynamic, multi-

institutional virtual organisations [11]. A virtual organisation (VO) comprises a set of

individuals and/or institutions having access to computers, software, data, and other

resources for collaborative problem-solving or other purposes [12]. A grid can also be

defined as a system that coordinates resources that are not subject to centralised control,

using standard, open, general-purpose protocols and interfaces in order to deliver non-

trivial qualities of service [13].

A number of new technologies have emerged for handling big-scale distributed data-

processing, (e.g. Hadoop), where the belief is that moving computation to where data

reside is less time consuming than moving data to a different location for computation

when dealing with Big Data. �is is certainly true when the volume of data is very large

because this approach will reduce network congestion and improve the overall per-

formance of the system. However, a key grid principle contradicts with this as in the

grid approach computing elements (CE) and storage elements (SE) should be isolated,

although this is changing in modern grid systems. Currently, a lot of scientific experi-

ments are beginning to adopt the “new” Big Data technologies, in particular for meta-

data analytics at the LHC, hence the reason for the presented study.

Parallelising is used in order to enhance computations of Big Data. �e well known

MapReduce [14] framework that has been used in this paper has been well developed in

the area of Big Data science and has the parallelization feature. Its other key features are

its inherent data management and fault tolerant capabilities.

�e Hadoop framework has also been employed in this paper. It is an open-source

MapReduce software framework. For its functions it relies on the Hadoop Distributed

File System (HDFS) [15], which is a derivative of the Google File System (GFS) [16]. In its

function as a fault-tolerance and data management system, as the user provides data to

Page 6 of 17Suthakar et al. J Big Data (2016) 3:21

the framework, the HDFS splits and replicates the input data across a number of cluster

nodes.

�e approaches for collecting and storing Big Data for analytics described in this paper

were implemented on a community-driven software solution, Apache Flume, in order to

understand how the approaches can be integrated seamlessly the data pipeline. Apache

Flume is used for effectively gathering, aggregating, and transporting large amounts of

data. It has a flexible and simple architecture, which makes it fault tolerant and robust

with tunable reliability and data recovery mechanisms. It uses a simple extensible data

model that allows online analytic applications [17].

Design and methodology

When data messages are consumed from a data transport layer and written into stor-

age, there will most likely be some sort of data transformation carried out before storage

in the storage layer. Such a transformation could be extracting the body from the mes-

sage and removing the header as it is not required, or serialisation or compression of the

data. �e WLCG uses a Python agent, the Dashboard consumer, to collect infrastructure

status updates, transform them, and store them in the data repository, which is imple-

mented in Oracle. It uses Procedural Language/Structured Query Language (PL/SQL)

procedures for analytics. �is is an example of a traditional approach that is commonly

used. However, these technologies and methods are no longer optimal for data collec-

tion, storage and analytics as they are not primarily designed for handling Big Data.

�ere needs to be a strategy in place to carry out the required transformation as this will

play a significant role in improving the performance of subsequent computations. In this

paper three different approaches were explored:

1. Implement the data transformation logic within the data pipeline. �erefore, the

messages, M, will be read by the consumer, to apply the transformation <T> and to

write the results into the storage layer, S, for analytics <A>:

2. Write the raw messages, M, directly into the storage layer, S, without any modifica-

tion. �en there is another intermediate transformation <iT> that reads the raw data

from storage, transforms the data and writes the results into a new path but to the

same storage layer for analytics <A>:

3. Write the raw messages, M, into the storage layer, S, without any modification. Let

the analytics <A> jobs carry out the transformation <T>:

�e first approach is the traditional way of transforming, storing and computing data

as has been already described for the WLCG use case. However, this method relies too

much on the data pipeline. If the data pipeline is replaced then the transformation logic

would need to be re-implemented. �erefore, it is an inefficient design. Nevertheless,

this method needs to be tested on the technology that supports Big Data.

(1)M
<T>

→ S → < A >

(2)M → S
<iT>

→ S → < A >

(3)M → S → ≪ T > + < A ≫

Page 7 of 17Suthakar et al. J Big Data (2016) 3:21

�e second approach has two benefits as the transformation logic is moved to a cen-

tralised location and untampered raw data are stored as well as the transformed data.

�erefore, in the case of any inaccuracy in the transformed data, the correct trans-

formed data can be recreated from the raw data. �is is not possible with the first

method because as soon as the data are transformed the raw data are discarded. Never-

theless, the second approach is very complex as there is a requirement for a job to trans-

form the data, rather than the consumer carrying out the transformation, and it raises

the question of when and how this job should be scheduled. �is approach also requires

increased data storage as both raw and transformed data will be kept. A transformation

job could be used here to compress the raw data and archive it to reduce the amount of

storage required.

�e third option is very simple and straight forward, as the raw data will be written

into the storage layer without any modification. �e transformation will only take place

at the data analytics time. �e transformation logic can be implemented in a shared

library, which can be imported into any analytics jobs. �erefore, the transformation will

take place as and when it is required. �is way, the untempered raw data is still kept in

the storage layer and no additional job or storage is needed for data transformation. �is

approach does add an extra execution time overhead to the analytics jobs and will repeat

the data transformation every time an analytics job is carried out. �is should, however,

not be too much of a problem as Big Data technologies are built to enhance computation

speed by parallelising jobs. Hence, this arrangement should not significantly affect the

execution time. A summary of the advantages and disadvantages of the proposed three

approaches is given in Table 1.

Table 1 Summary of advantages and disadvantages of the proposed approaches

Advantage Disadvantage

Approach 1
Data transformation occurs

within the data pipeline

Well tested approach: typical
scenario in most data analytics
platforms

Complex: transformation logic is kept
in the data pipeline so in the case
of data pipeline replacement the
transformation logic needs to be
re-implemented

Lost data authenticity: the data is
transformed by the data pipeline so
the raw data is lost

Approach 2
Data transformation occurs

within the storage layer

Easy to migrate/replace: the
transformation logic is moved
to a centralised location so it is
easier to migrate or replace the
data pipeline

Raw data is intact: meets regulatory
standards of storing the raw data
both before and after transfor-
mation

Complex: an intermediate job is
required for transformation

Large storage needed: both raw and
transformed data are stored

Approach 3
Data transformation occurs

within the analytics jobs

Clean and simple: no complexity
added to the data pipeline

Less storage needed: only raw data
is stored

Easy to migrate or replace: the
transformation logic is moved to
a centralised location

Increased execution overhead: the
analytics job will transform the data

Repetition: transformation will take
place every time an analytics job is
executed

Page 8 of 17Suthakar et al. J Big Data (2016) 3:21

Implementation

�e data pipeline presented in this paper uses Dirq library that offers a queue system, using

the underlying file system for storage for consuming messages, which allows concurrent

read and write operations [18]. �erefore, it can support a variety of heterogeneous applica-

tions and services that can write messages and have multiple readers reading the messages

simultaneously. �e data pipeline was developed using the Hadoop native library that reads

messages from the Dirq library and writes them into HDFS using an appending mecha-

nism. �e Hadoop software framework was originally designed as a create-once-read-many

system [19]. �erefore, appending was not available in the initial software release but later

versions, 2.0 onwards, supported this mechanism. Hadoop also has the benefit of working

well with a few large files but is not as efficient when working with a large number of small

files. �e appending method is convenient as it allows for the creation of a single large file.

For the first approach, the data will be consumed from the Dirq, transformed and writ-

ten into HDFS. �e implementation of the second approach is similar to the first with

the exception of no transformation being carried out in the pipeline. However, it requires

chained MapReduce jobs in a centralised Hadoop cluster in order to take the raw data

that has not previously been processed, and apply the appropriate data transformation,

merge the transformed data with previously transformed data, delete the old trans-

formed data, update the raw data as processed and merge and compress the raw data.

An issue was encountered during testing of this second approach where it was found

that data that were not processed by the transformation job were not then available for

analytics. �e third approach is again like the second approach in that no transformation

is carried out in the data pipeline, but the transformation logic is implemented in a com-

mon library and is available to be imported into any analytics jobs. �erefore, the trans-

formation can be carried out as and when it is required. �is approach does not have

the issue of data unavailability as present in the other two approaches as all written data

will be picked up by the analytics jobs and the transformation will be done as and when

required. All three approaches were implemented as a daemon that continuously ran on

the WLCG test infrastructure checking for data every 5 min.

In order to decrease the data aggregation delay from the data pipeline and to evaluate

how easy it is to migrate these approaches to a different data pipeline, Apache Flume

was used. Apache Flume is a community-driven software solution that receives mes-

sages from the transport layer and writes them into HDFS. �ere are three ways to flush

consumed data into HDFS: periodically based on the elapsed time, the size of data or the

number of events [17].

As expected, the first approach was complex as all the transformation logic was in the

custom data pipeline so the transformation logic had to be re-implemented into Apache

Flume. �e second and third approach made the migration to Apache Flume extremely

simple, as all the transformation logic was implemented within the storage layer. But, as

noted before, the second approach added complexity to the storage layer, as it required a

chain of actions for data transformation. �e third approach was the simplest to imple-

ment, as no transformation was carried out on the Apache Flume side and no transfor-

mation was carried out in the storage layer, keeping the complexity low.

All three approaches did encounter a common problem: Apache Flume pushes the

events but does not flush the file until the configured file roll time is met (e.g. every hour)

Page 9 of 17Suthakar et al. J Big Data (2016) 3:21

resulting in the data being unavailable for computation between these times. While

HDFS supports appending functionality, and the custom data pipeline, Apache Flume

does not support it. �e analytics jobs were able to read the data that were written by the

custom data pipeline but not those written by Apache Flume. �erefore, the appending

functionality was taken from the custom pipeline and implemented into Apache Flume,

making it a custom library (see Algorithm 1). With this amendment, Apache Flume was

then able to write a single file and append it while at the same time analytics jobs were

able to read the data while the data were being written into HDFS.

Algorithm 1 File appending algorithm for Apache Flume: adding a close and reopen at eve-

ry push to get the required append behaviour.

1:

2:

3:

4:

procedure create-global-data-file-writer

declare a global DataFileWriter object

create a file in HDFS

initialise the file to global DataFileWriter

1:

2:

3:

4:

5:

procedure consume-messages-and-sync-flush

create a temp DataFileWriter refelecting(reopen) the global DataFileWriter

consume all messages

append messages using temp DataFileWriter

close temp DataFileWriter WHEN messages <= 0

1:

2:

procedure roll-files

close the global DataFileWriter

Results and discussion

�e three approaches developed for the collection, storage and analytics of Big Data

described in this paper were evaluated on the WLCG infrastructure that provides the

computing resources to store, distribute and analyse the 30 petabytes of data generated

annually by the LHC and distributed to 170 computing centres around the world [20].

Furthermore, the current method used by the WLCG group for the collection and stor-

age of data for analytics was evaluated for benchmarking the new approaches.

It was very complicated to carry out performance measurements on the proposed

approaches and the current approach, as they employ different methods for consuming,

writing and transforming the data in each case. �erefore, in order to get a meaning-

ful performance measurement, a full computation cycle was carried out, including: con-

suming messages, writing to HDFS and carrying out a simple analytics job on those data.

�e full cycle comprised three segments:

1. Data ingestion with data transformation and without data transformation.

2. Intermediate data transformation using a MapReduce job.

3. A simple statistical analytic computation using a MapReduce job and a PL/SQL pro-

cedure with and without data transformation.

�e configurations of the current and proposed data pipelines in the WLCG are

shown in Fig. 3a and b respectively. For both configurations, the monitoring events are

pushed as JavaScript Object Notation (JSON) records through the STOMP protocol to

the ActiveMQ message broker. However, the configuration varies from the consumers

Page 10 of 17Suthakar et al. J Big Data (2016) 3:21

in both data pipelines. �e current configuration uses Python collectors for reading

the monitoring events, transforming and writing them into an Oracle storage database.

On the other hand, the proposed configuration uses a custom data pipeline daemon, as

explained in “Implementation” section that reads monitoring events and writes them

into a Hadoop cluster. �is configuration can be modified to support the three proposed

approaches, i.e. transform and serialise the messages into Avro format.

In order to evaluate the proposed approaches, it was decided to push messages from

the broker in batch sizes ranging from 10,000 to 100,000 messages. Data ingestion and

analytics were conducted ten times for each batch of messages in order to capture an

average performance time. �e performance measurements were carried out on a heter-

ogeneous Hadoop cluster that consisted of 15 nodes (8 nodes: 32 cores/64 GB, 7 nodes:

4 cores/8 GB).

Performance results of data ingestion with and without data transformation

�e first approach had to consume all messages from Dirq, apply a simple data transfor-

mation, which involved taking the source and destination IP address from the message

Fig. 3 Configuration of current data pipeline in WLCG (a) and the configuration of the proposed data pipe-

line for WLCG (b)

Page 11 of 17Suthakar et al. J Big Data (2016) 3:21

and using a topology mapping file to determine the domain address and replace the IP

address with the domain, and finally, convert the data file into Avro format, which is a

data serialisation framework that serialises the data into a compact binary format and

writes the file into HDFS. As shown in Fig. 4, this approach (pre-trans-avro) is slower

than the second approach (raw-json), which just reads the raw messages in JSON, an

easy-to-read format, and writes them into HDFS. �e second approach is the fastest

compared with the first and third approaches (raw-avro), which read raw data, convert

them into Avro format and write them into HDFS. �e third approach was faster than

the first approach because it does not do any transformation.

�e current approach (pyth-traditional-plsql) used by the WLCG is similar to the pro-

posed first approach (pre-trans-avro) but the difference is that it uses the Python agent

for collection and the Oracle database for storing the transformed data, so no serialisa-

tion is involved. Although the current approach is similar to the first of the three pro-

posed approaches the performance of the current approach was slower than all three

of the newly proposed approaches. �is is due to the connection and communication

limitations that occurs between the database and collectors.

Figure 5 shows data representing unprocessed messages from the broker, raw JSON

messages, a pre-transformed Avro and a raw Avro file written into HDFS by the custom

Fig. 4 Data ingestion from message queue to HDFS with and without data transformation

Fig. 5 Data size of the messages that were stored into HDFS with and without data transformation

Page 12 of 17Suthakar et al. J Big Data (2016) 3:21

data pipeline. �e Avro files are smaller than the JSON file and contain unprocessed data

because they are serialised into binary format. However, the pre-transformed Avro file is

larger than the raw Avro file because transformation was applied.

Performance results of intermediate data transformation using a MapReduce job

A test was designed to measure the performance of an intermediate MapReduce trans-

formation done on a centralised Hadoop cluster. As shown in Fig. 6, only the raw JSON

data will go through this transformation, as the pre-transformed Avro file has already

been transformed at the data pipeline level and the raw Avro data will be transformed at

the analytic time when it is required. Also, the data stored in the database by the Python

agent does not require an intermediate transformation as it has already been performed

at the data pipeline. Transforming the data using an intermediate job is very expensive

in terms of execution time, as the process is carried out by chained MapReduce jobs

that will transform, aggregate and merge the data. �e majority of the execution time

overhead was used for finding resources and submitting the chained jobs to the Hadoop

cluster.

Performance results of a simple analytic computation with and without data

transformation

�e final step of the evaluation cycle was to carry out a simple computation on the

100,000 messages dataset and measure the performance. Two sets of analytics jobs were

implemented to compute a summary view of the XRootD operations, performed by the

different users for each WLCG site belonging to the XRootD federation [20]. An analyt-

ics job was modified to include the data transformation prior to the computation. �e

modified job was executed on the raw Avro data. As shown in Fig. 7, an extra execution

time overhead was added to the modified analytics job when compared with unmodified

Fig. 6 Intermediate MapReduce job for data transformation. Only the raw JSON messages are transformed

with the MapReduce job

Page 13 of 17Suthakar et al. J Big Data (2016) 3:21

job that computed pre-transformed data, but the computation was seamless, as the

MapReduce framework adopts a parallel programming model. �erefore, the jobs will

be split into multiple tasks and will be sent to data nodes where the data reside. �e cur-

rent approach used by the WLCG (pyth-traditional-plsql) for analytics was very slow

compared with the proposed approaches due to the constraints imposed by the database

being used and its lack of scalability.

Summary of the performance results

In order to understand which approach performed better, the execution time of the larg-

est dataset of 100,000 messages was selected from “Performance results of data inges-

tion with and without data transformation”, “Performance results of intermediate data

transformation using a MapReduce job” and “Performance results of a simple analytic

computation with and without data transformation” sections and the total is presented

in Table 2. It is clear that writing the raw Avro data into HDFS and letting the analytics

do the transformation outperforms the other two proposed approaches. �e slowest of

the proposed approaches is the second approach where there is an intermediate job for

transformation. �is is understandable as the transformation is carried out by chained

MapReduce jobs, which add extra execution time overhead. �e first approach is com-

parable in terms of performance to the second approach but it will be beneficial to keep

Fig. 7 Performance measurements of the statistic computation were done on pre-transformed and the raw

100,000 messages dataset

Page 14 of 17Suthakar et al. J Big Data (2016) 3:21

T
a

b
le

 2
 T

o
ta

l
su

m
 o

f
e

x
e

cu
ti

o
n

 t
im

e
 f

o
r

1
0

0
,0

0
0

 m
e

ss
a

g
e

s
d

a
ta

se
t

fr
o

m
 “

P
e

rf
o

rm
a

n
ce

 r
e

su
lt

s
o

f
d

a
ta

 i
n

g
e

st
io

n
 w

it
h

 a
n

d
 w

it
h

o
u

t
d

a
ta

 t
ra

n
sf

o
rm

a
ti

o
n

”,
 “

P
e

rf
o

r-

m
a

n
ce

 r
e

su
lt

s
o

f
in

te
rm

e
d

ia
te

 d
a

ta
 t

ra
n

sf
o

rm
a

ti
o

n
 u

si
n

g
 a

 M
a

p
R

e
d

u
ce

 j
o

b
”

a
n

d
 “

P
e

rf
o

rm
a

n
ce

 r
e

su
lt

s
o

f
a

 s
im

p
le

 a
n

a
ly

ti
c

co
m

p
u

ta
ti

o
n

 w
it

h
 a

n
d

 w
it

h
o

u
t

d
a

ta

tr
a

n
sf

o
rm

a
ti

o
n

”
se

ct
io

n
s

D
a

ta
 t

ra
n

sf
o

rm
a

ti
o

n
“P

e
rf

o
rm

a
n

ce
 r

e
su

lt
s

o
f

d
a

ta
 in

g
e

st
io

n

w
it

h
 a

n
d

 w
it

h
o

u
t

d
a

ta
 t

ra
n

sf
o

rm
a

ti
o

n
”

se
ct

io
n

 e
x

e
cu

ti
o

n
 t

im
e

 (
s)

“P
e

rf
o

rm
a

n
ce

 r
e

su
lt

s
o

f
in

te
rm

e
d

ia
te

 d
a

ta

tr
a

n
sf

o
rm

a
ti

o
n

 u
si

n
g

 a
 M

a
p

R
e

d
u

ce
 j

o
b

”
se

ct
io

n
 e

x
e

cu
ti

o
n

 t
im

e
 (

s)

“P
e

rf
o

rm
a

n
ce

 r
e

su
lt

s
o

f
a

 s
im

p
le

 a
n

a
ly

ti
c

co
m

p
u

ta
ti

o
n

 w
it

h
 a

n
d

 w
it

h
o

u
t

d
a

ta

tr
a

n
sf

o
rm

a
ti

o
n

”
se

ct
io

n
 e

x
e

cu
ti

o
n

 t
im

e
 (

s)

To
ta

l e
x

e
cu

ti
o

n
 t

im
e

 (
s)

p
re

-t
ra

n
s-

av
ro

-m
r

1
0

0
0

4
3

1
4

3

ra
w

-j
so

n
-2

-p
re

-t
ra

n
s-

av
ro

-m
r

8
3

1
5

5
4

4
2

8
2

ra
w

-a
vr

o
-m

r
8

0
0

5
1

1
3

1

p
yt

h
-t

ra
d

it
io

n
al

1
6

6
0

2
2

4
3

9
0

Page 15 of 17Suthakar et al. J Big Data (2016) 3:21

a copy of the untempered raw data file in HDFS and let the analytics job do the trans-

formation, which is better than carrying out transformation in the data pipeline as the

authenticity is lost once the transformation is done and stored in HDFS. Although the

current approach used by the WLCG employs the same pre-transformation approach,

it performs inadequately compared with the new approaches presented in this paper,

primarily due to database communication and scalability constraints as the current

approach cannot handle the increasing data and workload.

Evaluation of Apache Flume

During the evaluation of all three proposed approaches there was still a 5 min delay in

polling data from the message queue. In order to eliminate this polling latency, custom-

made Apache Flume data collectors (as explained in “Implementation” section) that uti-

lise an appending mechanism were put in place of the consumer shown in Fig. 3b. �e

performance test results showed that the third approach is optimal. �erefore, Apache

Flume agents were configured to consume messages and flush them into HDFS directly.

Figure 8 shows spikes in the total number of messages propagated with a rate >1 kHz,

and it can be seen that Apache Flume seamlessly absorbs the load on its single virtual

machine. Meanwhile, the current Python-Oracle based consumers used by the WLCG,

running on two production virtual machines, were struggling to keep up, causing a back-

log of message stored in the broker.

Fig. 8 Spikes of messages with a rate >1 kHz. The red line is the messages received from the broker, green

denotes the messages stored in old consumers, and blue denotes the messages stored in Apache Flume

Page 16 of 17Suthakar et al. J Big Data (2016) 3:21

Conclusion

�e proposed approaches for collecting and storing Big Data for analytics presented

in this paper show how important it is to select the correct model for efficient perfor-

mance and technology migration. It is clear from the study that keeping the main logic

in a centralised location will simplify technological and architectural migration. �e

performance test results show that eliminating any transformation at the data inges-

tion level and moving it to the analytics job is beneficial as the overall process time is

reduced, untempered raw data are kept in the storage level for fault-tolerance, and the

required transformation can be done as and when required using a framework such as

MapReduce. �e presented results show that this proposed approach outperformed

the approach employed at the WLCG and following this work the new approach has

been adopted by the WLCG and it has been used for collecting, storing, and analysing

metadata at CERN since April 2015 [6]. �is approach can be easily applied to other

use cases (e.g. in commercial businesses for collecting customer interest datasets) and

is not restricted to scientific applications. Future work will include looking at how the

data pipeline in the new approach will perform if the MapReduce framework were to be

replaced by the Spark ecosystem which supports in-memory processing [21].

Authors’ contributions

US is the primary researcher for this study. His contributions include the original idea, literature review, implementation

and initial drafting of the article. LM guided the initial research concept and played a crucial role in the design of the

analytics approaches presented. DRS discussed the results with the primary author to aid writing of the evaluation and

conclusion sections and played an essential role in editing the paper. AK and JA helped organise the structure of the

manuscript and edit the article. All authors read and approved the final manuscript.

Author details
1 College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK.
2 European Organisation for Nuclear Research, CERN, Geneva, Switzerland.

Acknowledgements

The work by Uthayanath Suthakar was supported by a Brunel University London College of Engineering, Design and

Physical Sciences Thomas Gerald Gray postgraduate research scholarship.

Competing interests

The authors declare that they have no competing interests.

Received: 2 August 2016 Accepted: 14 October 2016

References

 1. Snijders C, Matzat U, Reips U-D. Big Data: big gaps of knowledge in the field of internet science. Int J Internet Sci.

2012;7(1):1–5.

 2. Aamnitchi A, Doraimani S, Garzoglio G. Filecules in high energy physics: characteristics and impact on resource

management. In: High performance distributed computing. 2016. p. 69–80.

 3. Minoli D. A networking approach to grid computing. Hoboken: Wiley; 2004.

 4. Nicholson C, et al. Dynamic data replication in LCG 2008. Concurr Comput Pract Exp. 2008;20(11):1259–71.

 5. CERN. LHC physics data taking gets underway at new record collision energy of 8TeV. http://press.web.cern.ch.

Accessed 18 Dec 2015.

 6. Magnoni L, Suthakar U, Cordeiro C, Georgiou M, Andreeva J, Khan A, Smith DR. Monitoring WLCG with lambda-

architecture: a new scalable data store and analytics platform for monitoring at petabyte scale. J Phys Conf Ser.

2015;664(5):052023.

 7. Knobloch J, Robertson L. LHC computing grid: technical design report-LCG-TDR-001. CERN; 2015.

 8. WLCG: The worldwide LHC computing grid infrastructure. http://wlcg.web.cern.ch. Accessed 20 Dec 2015.

 9. Grim, K. Tier-3 computing centers expand options for physicists, International Science Grid This Week (iSGTW).

ISGTW. 2009.

 10. Foster I, Kesselman C. The grid 2: blueprint for a new computing infrastructure. San Francisco: Morgan Kaufmann

Publishers Inc.; 2013.

 11. Foster I, Kesselman C, Tuecke S. The anatomy of the grid: enabling scalable virtual organizations. Int J High Perform

Comput Appl. 2011;15(3):200–22.

http://press.web.cern.ch
http://wlcg.web.cern.ch

Page 17 of 17Suthakar et al. J Big Data (2016) 3:21

 12. Laure E, Fisher SM, Frohner A, Grandi C, Kunszt PZ, Krenek A, Mulmo O, Pacini F, Prelz F, White J, Barroso M, Buncic P,

Hemmer F, Meglio AD, Edlund A. Programming the grid with gLite. Comput Methods Sci Technol. 2006;12(1):33–45.

 13. Foster I. What is the grid? A three point checklist, GRIDToday. GRIDToday; 2011.

 14. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.

 15. Shvachko K, Kuang H, Radia S, Chansler R. The Hadoop distributed file system. IEEE 26th symposium on mass stor-

age systems and technologies (MSST); 2010. p. 1–10.

 16. Ghemawat S, Gobioff H, Leung ST. The google file system. ACM SIGOPS Oper Syst Rev. 2003;375:29–43.

 17. Apache Flume project. https://flume.apache.org. Accessed 02 Jan 2016.

 18. Skaburska K. The Dirq project. http://dirq.readthedocs.org. Accessed 27 Dec 2015.

 19. White T. Hadoop: the definitive guide. O’Really Media. Sunnyvale: Yahoo Press; 2010.

 20. Gardner R, Campana S, Duckeck G, Elmsheuser J, Hanushevsky A, Honig FG, Iven J, Legger F, Vukotic I, Yang W. The

Atlas collaboration: data federation strategies for ATLAS using XRootD. J Phys Conf Ser. 2014;513(4):042049.

 21. Zaharia, M et al. In: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.

NSDI’12. Berkeley: Proceedings of the 9th USENIX conference on networked systems design and implementation-

USENIX association; 2012. p. 2.

https://flume.apache.org
http://dirq.readthedocs.org

	An efficient strategy for the collection and storage of large volumes of data for computation
	Abstract
	Introduction
	Background
	Design and methodology
	Implementation
	Results and discussion
	Performance results of data ingestion with and without data transformation
	Performance results of intermediate data transformation using a MapReduce job
	Performance results of a simple analytic computation with and without data transformation
	Summary of the performance results
	Evaluation of Apache Flume

	Conclusion
	Authors’ contributions
	References

