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a b s t r a c t

In the context of plane fracture problems, we introduce an algorithm based on our previously proposed

rotation of edges but now including the injection of continuum softening elements directly in the process

region. This is an extension of the classical smeared (or regularized) approach to fracture and can be seen

as an intermediate proposition between purely cohesive formulations and the smeared modeling. Char-

acteristic lengths in softening are explicitly included as width of injected elements. For materials with

process regions with macroscopic width, the proposed method is less cumbersome than the cohesive

zone model. This approach is combined with smoothing of the complementarity condition of the consti-

tutive law and the consistent updated Lagrangian method recently proposed, which simplifies the inter-

nal variable transfer. Propagation-wise, we use edge rotation around crack front nodes in surface

discretizations and each rotated edge is duplicated. Modified edge positions correspond to the crack path

(predicted with the Ma-Sutton method). Regularized continuum softening elements are then introduced

in the purposively widened gap. The proposed solution has algorithmic and generality benefits with

respect to enrichment techniques such as XFEM. The propagation algorithm is simpler and the approach

is independent of the underlying element used for discretization. To illustrate the advantages of our

approach, yield functions providing particular cohesive behavior are used in testing. Traditional fracture

benchmarks and newly proposed verification tests are solved. Results are found to be good in terms of

load/deflection behavior.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Discretization methods for computational fracture are typically
based on meshfree (cf. [53,51,52]) and finite element methods
(cf. [35,19,6,20,7,13,16,15]). With the latter, crack propagation
algorithms have been developed in the past two decades with suc-
cessful results. Existing techniques are typically classified as dis-
crete or continuum-based (including combinations of these):

� Total and partial remeshing approaches [25,32,10,18], versions
of local displacement [47,46,41,57,44] (and strain [50,2,58])
enrichments, clique overlaps [38], edges repositioning or
edge-based fracture with R-adaptivity [45];

� Element erosion [63], smeared procedures [49], viscous-
regularized techniques [37], gradient and non-local continua
[60,54];

� Phase-field models based on decoupled optimization (equilib-
rium/crack evolution) with sensitivity analysis [27].

For finite strain simulations, complete numerical experimen-
tation is crucial for obtaining sound conclusions. A trade-off
emerges between algorithm intricacy (required by enrichment
methods) and increased number of degrees-of-freedom (caused
by remeshing algorithms). However, the adaptation of classical
contact and cohesive techniques to deal with enriched elements
is somehow redundant. It is worth noting that large amplitude
displacements can be dealt (see, e.g. [43]) by extended finite
elements (XFEM) if neither contact nor cohesive forces are pres-
ent. Many examples exist for XFEM with cohesive forces ([7,13])
but the generality of the results is limited by the kinematic
assumptions, which are stricter than with remeshing. Recently,
we introduced the element injection technique [5], which is
completed in this work. Distinctive features of this
technique are:
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� Edge rotation algorithm introduced by the Authors [16] with
consistent length determination.

� Insertion of ‘‘thick’’ cohesive elements in the form of regularized
continuum elements between the crack faces. Element width is
related to the softening characteristic length.

� Specialized damage functions for quasi-brittle problems and
yield functions for ductile problems.

The perspective is the one of smeared crack (see Oliver [49]) but
with a local remeshing strategy, so that the determination of the
correct characteristic length described by Oliver is no longer
required. In addition, a perfectly defined crack path is obtained,
which is not the case with smeared cracks. For materials with soft-
ening and plasticity, such as the Rousselier [55] void-fraction yield
function, cohesive laws are not directly applicable, since they
require the introduction of a large set of assumptions (unloading,
fracture modes, etc) and therefore the present approach is more
natural. The paper is organized as follows: Section 2 presents our
methodology for finite strains, based on the consistent updated
Lagrangian method. Section 3 shows the kinematics and our
quasi-brittle model, verified by a small example in Section 4. Sec-
tion 5 details the ductile damage model (based on the Rousselier
yield function) and its integration. Subsequently, two quasi-brittle
and two ductile benchmarks are shown in Section 7. Finally, in Sec-
tion 8, conclusions are drawn concerning our proposed algorithm.

2. Equilibrium for an arbitrary reference configuration

Cauchy equations of equilibrium for a given reference configura-
tion are obtained by manipulation of the spatial version of equilib-
rium (the derivations for the latter are shown in Ogden [48]). Using
standard notation (cf. [64]) we write the spatial version of Cauchy
equations as (here, i is the direction index and j is the facet index):

@rij

@xpj
þ bi ¼ 0 ð1Þ

with ri j (i; j ¼ 1;2;3) being the components of the Cauchy stress in
an orthonormed basis and bi the components of the body force vec-
tor. The coordinates xpj are the spatial, or deformed, coordinates of a
given point (p) under consideration. It is implied that (1) is satisfied
for a time parameter t 2 ½0; T� with T being the total time of analysis
and for a position xp 2 Xt belonging to the deformed position
domain at the time of analysis (here denoted Xt). Using symmetry
of the Cauchy stress and tensor notation, Eq. (1) can be presented
as:

$ � rþ b ¼ 0 ð2Þ

where $ ¼ @
@xp

is the spatial gradient operator. In addition to (2),
essential and natural boundary conditions defined in terms of two
functions gi and hi are required (cf. [40]):

ui ¼ gi on Cgi ð3Þ
rijnj ¼ hi on Chi ð4Þ

where the boundary Ct ¼ @Xt is partitioned in Cg and
Ch : Ct ¼ Cg [ Ch (the essential and the natural boundaries). In Eq.
(4), nj are the components of outer normal to Ct in the spatial con-
figuration. Using the definition of the first Piola–Kirchhoff tensor (P)
and denoting the deformation gradient as F, it is possible to modify
the derivatives in (1). Making use of the relation r ¼ 1

J PF
T with

J ¼ det F we can write the equilibrium equation in material form as:

@Pij

@Xpj

þ Jbi ¼ 0 ð5Þ

where Xpj are the material, or undeformed, coordinates of a given
point under consideration. A direct manipulation of (1) with the

use of the second Piola–Kirchhoff stress, S, allows writing the alter-
native material form of equilibrium as:

@ðF ikSkjÞ
@Xpj

þ Jbi ¼ 0 ð6Þ

or, using $0 as the material gradient operator (the derivative with
respect to Xp):

$0 � ðFSÞT þ Jb ¼ 0 ð7Þ

The time parameter t is the same in Eqs. (7) and (2). However, the
position domain is nowX0 � Xt jt¼0. Therefore, given (6), the conclu-
sion of arbitrariness ofXpj as reference coordinates allowsus to use a
reference configuration corresponding to an arbitrary instant tb and
the associated position domain Xb. Note that tb is not necessarily in
½0; T�. This results in the following generalization of (7):

$b � ðFbSbÞT þ Jbb ¼ 0 ð8Þ

where

$b ¼
@

@Xpb
ð9Þ

Fb ¼ $b � x ð10Þ
Jb ¼ det Fb ð11Þ
Sb ¼ JbF

�1
b rF�T

b ð12Þ
The time parameter t is, in Eq. (8), the same as it was in Eq. (2)

and the position domain is in this case Xb � Xt jt¼tb
. If a given time

instance ta is chosen from the interval ½0; T�, we can re-write (8) as:

$b � ðFabSabÞT þ Jabb ¼ 0 ð13Þ

where Fab ¼ $b � xpa and ST
ab ¼ Sab. This equation will be used in the

weak form of equilibrium. A fact worth pointing out is the following:
ta must be an equilibrium instant, in contrast with tb. This explains
why simplification attempts of the equilibrium Eq. (8) by switching
Fab for I result in loss of convergence in difficult problems.

3. Kinematics and stress integration

Adopting (13) as the equilibrium equation with time parameters
ta and tb, stress integration can be used in a form that avoids the
polar decomposition at each iteration. In a previous work [7] a
rate-independent rotational approach was proposed, but it entails
a more complex constitutive algorithm in finite strains. The present
derivation can be used to achieve an efficient and robust time-inte-
gration scheme for finite plastic strains. In addition, if tb ¼ 0, hyper-
elastic models can be used directly in the material form (as
discussed in detail by [39]). Let us consider three configurations
Xa;Xb and Xc (respectively at times ta P tb P tc). A consistent
(and consistently linearized) updated-Lagrangian formulation is
derived from (13). The formulation can also be viewed as total
Lagrangian, since the strain–displacement matrices are similar in
structure to those used in this formulation. The relative deforma-
tion gradient between two configurations Xa and Xb is given by1:

Fab ¼
@xpa

@xpb
ð14Þ

or, using the covariant basis (cf. [17]), the following product is
obtained:

Fab ¼ xTayb ð15Þ
where

xa ¼
@xpa
@n

� �T

ð16Þ

1 Scalar components of Fab are introduced as ½Fab �ij for the ith row and jth column.
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contains, as rows, the covariant basis vectors of configuration Xa.
Curvilinear coordinates n are often locally identified with the parent
domain coordinates. In addition, ya ¼ x�T

a contains, as columns, the
contravariant basis vectors of the same configuration. The inverse of
the deformation gradient is obtained by swapping indices a and
b : F�1

ab ¼ Fba. The Jacobian determinant, using the same notation,
is given by:

Jab ¼ det Fab ð17Þ

and measures the ratio between the volumes at configurations Xa

and Xb. The spatial covariant metric is defined as:

maa ¼ xax
T
a ð18Þ

Of course, using the spatial metric we can write the right Cau-
chy-Green tensor (see [48] for the nomenclature) between two
configurations Xa and Xb directly obtained from its definition
(15) as:

Cab ¼ yT
bmaayb ð19Þ

Stress tensors are also naturally given in relation to two config-
urations Xa and Xb. Specifically, using the Cauchy stress tensor (Saa

or r in the classical notation) can be obtained from the second
Piola–Kirchhoff stress Sab between ta and tb

2:

Saa ¼
1

Jab
FabSabF

T
ab ð20Þ

Changing the reference configuration from Xb to Xc by a direct
generalization of (20) Sac is obtained:

Sac ¼
Jac
Jab

FcbSabF
T
cb ð21Þ

Power-conjugate quantities involving this definition of stress
must be of the form:

_w ¼ 1

2
Sab :

_Cab ð22Þ

8ta > tb. The weak form of equilibrium is given by (the upper trian-
gle indicates a ‘‘virtual quantity’’, as employed by Antman [3]):

1

2

Z

Xb

Sab : C
M

abdXb

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

W
M

int

¼ W
M

ext ð23Þ

when ta > tb and, alternatively,
Z

Xa

Saa : e
M

aadXa ¼ W
M

ext ð24Þ

when ta ¼ tb. These two forms follow directly from (2) and (13) in
the previous section and the application of Green’s theorem. The
so-called ‘‘stress updates’’ in the sense of approximations for the
Lie derivative (see Chapters 7 and 8 of [61]) are typically given as:

Sab ¼ D�Sab þ
1

Jbc
FbcSbcF

T
bc

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Sbb

ð25Þ

with D�Sab being the relative constitutive stress3 and Sbb can be inter-
preted as the ‘‘transported’’ stress, whose source is purely kinematic.
The strict total Lagrangian formulation is recovered for b ¼ c ¼ 0.
When considering plasticity it is convenient for D�Sab to depend on
a ‘‘strain’’ measure, which in our case is the relative Green–Lagrange
strain:

Eab ¼
1

2
½Cab þ Ið2aTab � 1Þ� ð26Þ

where a is the linear thermal expansion coefficient and Tab is the
temperature difference between configurations Xa and Xb. For com-
pleteness, we also show that the back-stresses (here denoted by B)
are given by a similar update scheme,

Bab ¼ D�Bab þ
1

Jbc
FbcBbcF

T
bc

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Bbb

ð27Þ

To create a stress contour map, of course Cauchy stresses are
physically meaningful and correspond to Saa, calculated as

Saa ¼ Fab D�Sab þ Sbb

� �

FT
ab=Jab with the appropriate transformations

for a global coordinate system. The proposed approach implies a
re-writing of classical FeFp plasticity codes to work with time

increments (one of such codes is discussed in [14]). The lineariza-
tion of (23) is straightforward (with fewer operations at the consti-
tutive level than the traditional Kirchhoff-stress/strain rate
approach) and follows:

dW
M

int ¼
1

2

Z

Xb

Sab : dC
M

abdXb þ
1

4

Z

Xb

dCab : C : C
M

abdXb ð28Þ

The determination of Cab and Fab does not have to be compatible in
the sense that since an updated problem is solved when switching
from Xb to Xc as reference configuration, it follows that mixed for-
mulations can be used for Cab and not for Fbc in (25). Restrictions to
moderate elastic strains are of course applicable once b and c do not
coincide. The interesting versatility of the present approach is that
for hyperelastic materials we can coalesce b ¼ c ¼ 0 and the
Lagrangian description of hyperelasticity can be used without spe-
cific conditions and for arbitrarily large strains. Otherwise, it is clear
that a Lie derivative of the stress is being implicitly calculated and
the proposed algorithm belongs to the non-corotational hypoelastic
class of algorithms (discussed in [28]). The following limitations are
known to be present with this approach:

� Non-zero energy dissipation for large amplitude closed loading
cycles.

� Restriction to elastic isotropy when using elasto-plastic consti-
tutive laws.

3.1. Assumed-strain elements: polar decomposition when reaching
convergence

For assumed-strain formulations (required here in plane strain
and axisymmetric problems with plasticity), agreement should
exist between Fab and Cab. Since Cab (or alternatively, Eab) has an
assumed form (or alternatively, an enhanced form), a long standing
issue is the compatibility between Cab and Fab, see [24]. With our
consistent incremental approach, no requirement for iterative polar
decomposition exists. However, any mismatch between Fab and
FHab ¼ Rab

ffiffiffiffiffiffiffi
Cab

p
typically grows with the number of time steps. To

circumvent this problem, we perform a polar decomposition at
the end of each time step and use a kinematic rotation (here
denoted as Rkin

ab ) to obtain:

Fabjnþ1 ¼ Rkin
ab

ffiffiffiffiffiffiffi

Cab

p

ð29Þ

The kinematic rotation tensor Rkin
ab depends on the element

technology adopted. For shells, for example, the Kirchhoff rotation
can be used [17]. In this paper, a simple iso-parametric plane stress
element is used. Plane strain elements make use of a bubble shape
function and continuous pressure (the MINI elements [22]).

2 As discussed before, Sab can be interpreted as the second Piola–Kirchhoff stress at

time ta relative to the reference configuration at time tb .
3 Both elastic and inelastic parts contribute to D�Sab .
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3.2. Elastic anisotropy: rotation of axes due to motion

For anisotropic materials4 undergoing finite strains, the defini-
tion of the anisotropic axes can occur at a configuration Xc . If in this

configuration (Xc) anisotropic axes are given by the mutually
orthogonal directions ecI ; e

c
II and ecIII , the corresponding orthogonal

matrix is given as:

Rc ¼ ecI jecII jecIII½ � ð30Þ

Since change of reference configuration is accompanied by a change
in anisotropic directions, we must include that change in the previ-

Fig. 1. Verification with the three-point-bending test: relevant data and forces in the cohesive region.

Fig. 2. Effect of h in the load/displacement results: D�u2 ¼ 5� 10�3 , 14,154 initial

elements, 7366 initial nodes.

Fig. 3. Effect of D�u2 in the load/displacement results: h ¼ 0:1, 14,154 initial

elements, 7366 initial nodes.

4 Specifically when materials are initially isotropic, so that anisotropy is induced.
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ous framework. This is performed using the polar decomposition of
Fbc:

Rb ¼ RbcRc ð31Þ

where Rbc is obtained from the exact polar decomposition of Fbc and
does not require a linearization.

3.3. Quasi-brittle problems: elastic anisotropy

In the thick cohesive elements, we introduce a formulation
using a damage variable d such that d 2 ½0;1½. If two consecutive
time steps correspond to indices b and a with ta P tb, then we
can write the relative strain as:

Eab ¼ C�1
linear

Sab

1� da
� Sbb

1� db

� �

ð32Þ

where db and da are the values of d at instants tb and ta, respectively.

Using Sab ¼ vaS
H

ab with va ¼ 1� da, we can restrict any norm of Sab

by changing da. Introducing a loading function C as the difference
between a function of Sab (here denoted !) and a function of a kine-
matical history variable b (here denoted rb)

C ¼ ! vaS
H

ab

� �

� rbðbÞ ð33Þ

we can now insert the loading/unloading conditions (often identi-
fied as Kuhn-Tucker conditions) as:

C 6 0 ð34Þ
C _b ¼ 0 ð35Þ
_bP 0 ð36Þ

where _b is the time derivative of b. The power conjugacy argument
results in the following evolution law for b:

_b ¼ vaS
H

ab :
_Eab

rbðbÞ
ð37Þ

If ! is a homogeneous function of degree nd with respect to va, then

we can write C ¼ vnd
a ! SHab

� �

� rbðbÞ. Using a fully implicit formula-

tion to determine b and va is not cost effective, since the important

quantity in limiting the stresses is va. There are two possible cases:

C < 0 (unloading _C < 0 or reloading _C > 0) or C ¼ 0 (loading case).
The treatment of unloading and reloading is trivial and therefore,
for conciseness, we only consider in detail the loading case. Time
integration of these constitutive laws is based on the backward-
Euler method. Using two time steps b and a we can write:

ðba � bbÞrbðbaÞ � vaS
H

ab : Eab ¼ 0 ð38Þ

vnd
a ! SHab

� �

� rbðbaÞ ¼ 0 ð39Þ

This constitutive system is sufficient to model isotropic damage in
(anisotropic) elasticity. The specialization of functions rbðbÞ and
!ðSabÞ allows a large variety of behaviors to bemodeled. If an extrap-
olation technique is used forba (providing the approximationb�

a), Eqs.

(38) and (39) becomedecoupled. This allows the determination ofva:

va ¼
rbðb�

aÞ
! SHab

� �

2

4

3

5

1
nd

ð40Þ

Newton iteration for the determination of ba is therefore given
as:

rbðbaÞþ ðba � bbÞ
drbðbaÞ
dba

� 	

dba ¼ vaS
H

ab : Eab �ðba � bbÞrbðbaÞ ð41Þ

Since we can introduce this law in a thick cohesive element, Clinear is
obtained by transforming a reduced local elasticity matrix Clocal as:

Clinear ¼ TrðRÞClocalTeðRÞ ð42Þ

where the transformation matrix TrðRÞ is given in general 3D prob-
lems as:

TrðRÞ¼

R2
11 R2

21 R2
31 2R21R11 2R31R11 2R31R21

R2
12 R2

22 R2
32 2R22R12 2R32R12 2R32R22

R2
13 R2

23 R2
33 2R23R13 2R33R13 2R33R23

R11R12 R21R22 R31R32 R21R12þR11R22 R31R12þR11R32 R31R22þR21R32

R11R13 R21R23 R31R33 R21R13þR11R23 R31R13þR11R33 R31R23þR21R33

R12R13 R22R23 R32R33 R22R13þR12R23 R32R13þR12R33 R32R23þR22R33

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

ð43Þ
with

R ¼ eI jeII jeIII½ � ð44Þ
where eI; eII and eIII are orthogonal unit vectors corresponding to the
directions of fracture modes I; II and III. Transformation matrix
TeðRÞ is given by:

TeðRÞ ¼ TT
rðR

TÞ ð45Þ

This allows the control of elastic anisotropy and therefore pure
mode I and combined mixed mode II and III. The full orthotropic
elasticity matrix is used, resulting in:

C�1
local ¼

1
E1

� m21
E2

� m31
E3

0 0 0

� m12
E1

1
E2

� m32
E3

0 0 0

� m13
E1

� m23
E2

1
E3

0 0 0

0 0 0 G�1
12 0 0

0 0 0 0 G�1
13 0

0 0 0 0 0 G�1
23

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

ð46Þ

Symmetry implies mijEj ¼ mjiEi; i – j. Specialization for plane

stress ½C�1
local�r


 �
is obvious and for plane strain C�1

local

� 

e


 �
a static

condensation is performed:

C�1
local

� 

r ¼

1
E1

� m21
E2

0

� m21
E2

1
E2

0

� m31
E3

� m32
E3

0

0 0 G�1
12

2

6
6
6
6
4

3

7
7
7
7
5

ð47Þ

C�1
local

� 

e
¼

1
E1
� m2

31
E3

� m21
E2

� m31m32
E3

0 0

� m21
E2

� m31m32
E3

1
E2
� m2

32
E3

0 0

0 0 0 G�1
12

2

6
6
6
4

3

7
7
7
5

ð48Þ

Fig. 4. Effect of number of nodes in the load/displacement results:

h ¼ 0:1;D�u2 ¼ 5� 10�3 .
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The transformation matrix (43) has its dimensions reduced to con-
form with either case. For an adequate representation of decohe-
sion, matrix R in (44) must be calculated for the configuration Xb.
For quasi-brittle fracture the following specific laws are used:

rbðbÞ ¼ rm exp �b
rmle
Gc

� �

ð49Þ

! SHab

� �

¼ argmax
s

det SHab � sI
� �

¼ 0
h i

ð50Þ

The first corresponds to a smooth softening law and the second to
the Rankine criterion. A characteristic displacement length corre-
sponding to the fracture energy Gc is obtained by the linear
approximation:

lu ¼ 2Gc

rm
ð51Þ

Since this should be lu < le we must have a characteristic length
lc ¼ h�1lu with 0 < h < 1. In this case, nd ¼ 1. The derivative of va

with respect to Eab is given as:

dva

dEab
¼ � 1

! SHabð Þnd
rbðb�aÞ
! SHabð Þ

� 	nd
d! SHabð Þ
dSHab

� 	

� Clinear C ¼ 0

0 C < 0

8

<

:
ð52Þ

The consistent modulus C is therefore determined as:

C ¼ SHab 	
dva

dEab
þ vaClinear ð53Þ

Fig. 5. Edge-based crack propagation algorithm for shells.

P. Areias et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 50–63 55



In (52), the derivative of !ðSHabÞwith respect to SHab is obtained in
closed-form by the Acegen software [42].

4. Verification test with a quasi-brittle constitutive law

The classical three-point-bending test, represented in Fig. 1 is
employed here for verification. The constitutive law described in
subSection 3.3 is used with the following specialization, reproduc-
ing a mode I cohesive law:

� E1 ¼ E
� E2 ¼ E3 ¼ 0

The purpose of this test is to assess the following required non-
constitutive data:

� Effect of the non-dimensional characteristic length parameter h
(with values 0.025, 0.050, 0.100 and 0.200).

� Effect of imposed displacement increment D�u2 (with values
2:5� 10�3, 5� 10�3;1� 10�2 and 2� 10�2).

� Effect of mesh size (free triangular meshes with 2147, 4766,
7366, 18,779 and 51,534 nodes).

In Fig. 1, we can also observe two steps with the injected soft-
ening elements, for �v ¼ 0:6 mm and �v ¼ 1 mm. Geometry is
100� magnified. For comparison, we use both numerical and

experimental results provided, respectively, by Claudia Comi [33]
and co-workers (numerical results) and also the experimental data
gathered by Alfaiate and co-workers [1]. Fig. 2 shows the effect of
band thickness (in the non-dimensional form h) in the load/dis-
placement results. Subsequent Figs. 3 and 4 show the effect of
the step and mesh size, respectively.

The conclusions that can be drawn from the inspection of
Figs. 2–4 are:

� The effect of h in the load/deflection results is observable, but
somehow limited and in-line with the expectable accuracy for
fracture problems.

� The effect of step size is observable for large step sizes (in Fig. 3)
but subsequent decrease in step size becomes irrelevant.

� Moderate mesh size dependence still exists, but not in a monot-
onous form, as observed in Fig. 4.

5. Ductile problems with semi-implicit integration

Ductile fracture problems are relevant to test the present
approach: non-smooth constitutive laws are adopted, and material
history variables are transferred for the thick cohesive elements. In
addition, elements in the wake region are forced to unload so that
thick cohesive elements localize. It is worth noting that void-frac-
tion based models present problems in terms of integration, which
we circumvent here by using a semi-implicit integration with
extrapolation of void fraction and effective plastic strain. Using _c
as the plastic strain multiplier, v as the set of history variables

Fig. 6. Schlangen’s SEN specimen: relevant data.

Fig. 7. Schlangen’s SEN specimen: crack paths comparison. Crack paths from Schangen [59] and Dias-da-Costa [34] are shown.

3 MPa

3 MPa

(A) CMSD=0.04 mm

(B) CMSD=0.12 mm

Fig. 8. Cohesive vector tails for two distinct values of CMSD (A and B). Finer mesh is

adopted.
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for a particular material, uðD�Sab;vÞ as the yield function and
n ¼ @u=@D�Sab as the flow vector, a version of the classical elasto-
plastic constitutive system is established. The evolution law for v
and the remaining relations are given by:

_v ¼ _cwðD�Sab;vÞ ð54Þ
_c > 0 ð55Þ

u D�Sab;v
� �

> 0 ð56Þ

_cu D�Sab;v
� �

¼ 0 ð57Þ
_Ep
ab ¼ _cn ð58Þ

where w is the internal variable function (a thermodynamical
approach was recently employed by Areias and Van Goethem
[65]). In (54)–(57), w is the internal variable evolution function
and Ep

ab is the relative plastic strain. The implicit integration of the
constitutive laws reveals the following residuals fre; rc; rvg5

re ¼ C�1
linearD

�Sab � Eab þ DcnðDc;D�Sab;v rÞ ¼ 0 ð59Þ
rc ¼ ucðDc;D�Sab;v rÞ ¼ 0 ð60Þ

rv ¼ Dv � DcwðDc;D�Sab;v rÞ ¼ 0 ð61Þ

where v ¼ fc;v rg. In (61), the function uc is given as:

uc ¼ lDcþu Dc;D�Sab

� �D E

� lDc ð62Þ

where l is the shear modulus and h�i is the ramp function. This is

complemented, for plane stress, by the equation D�S
h i

33
¼ 0, cf. [17]:

DE33 ¼ Dcn33 þ
1

C3333
C3311 Dcn11 � DE11ð Þ þ C3322 Dcn22 � DE22ð Þ½ �

We further modify the constitutive system with the following
combined implicit/extrapolation scheme:

� History variables v are implicitly integrated by the backward-
Euler method after the first two constitutive equations are sat-
isfied, by applying Newton–Raphson method to the following
system:

v
H

a ¼ v
H

b þ Dcwa Dc;D�Sab;vHa
� �

, noting the dependence of wa on
v
H

a .

� Extrapolation from the previous step is adopted for the argu-
ments of n and uc:

va ¼ v
H

b þ Dta=Dtbð Þ vHb � v
H

c


 �

where vH indicates an implicitly integrated history variable and v

indicates an extrapolated history variable.

The reduced constitutive system is now:

re ¼ C�1
linearD

�Sab � Eab þ DcnðDc;D�Sab;vaÞ ¼ 0 ð63Þ
rc ¼ ucðDc;D�Sab;vaÞ ¼ 0 ð64Þ

The system (63) and (64) is solved for D�Sab and Dc by means of
the Newton–Raphson method, which requires the derivatives of
both equations with respect to D�Sab and Dc. Using the residual
rc ¼ fre; rcgT we calculate the Jacobian as:

J ¼
C�1
linear þ Dc @n

@D�Sab
nþ Dc @n

@Dc

@uc
@D�Sab

@uc
@Dc

2

4

3

5 ð65Þ

The consistent tangent modulus is defined as:

Cconsistent ¼
@D�Sab

@Eab
ð66Þ

which, of course, is obtained from the Eqs. (63), (64) by performing
the elimination for D�Sab:

Cconsistent ¼ C �
C nþ Dc @n

@Dc

� �h i

	 @uc
@D�Sab

� �T
C

� 	

@uc
@D�Sab

� �T
C nþ Dc @n

@Dc

� �

� @uc
@Dc

ð67Þ

with

C ¼ C�1
linear þ Dc

@n

@D�Sab

� ��1

ð68Þ

5.1. The Rousselier model and its integration

The Rousselier [55] model for ductile damage is characterized
by the following yield function in non-dimensional form:

uðy; Sab; fHÞ ¼
rðSabÞ
ð1� f Þyþ

r1f
y

D exp
tr½Sab�

3ð1� f Þr1

� 	

� 1 ¼ 0 ð69Þ

in which f is the void fraction and y is the hardening value, given as
a function of ep. In addition to the hardening characteristics, the
only additional properties are r1, D and f0. The property r1 can be
estimated from the original yield stress, y0 ¼ yjep¼0 and the ultimate
tensile strength, ymax ¼ maxepy as:

restimate
1 ¼ 1

3
ðy0 þ ymaxÞ ð70Þ

Fig. 9. CMSD/load results, compared with the experimental results by Schlangen

[59] and the DSDA technique [34].

5 Note that the system does not correspond to a return-mapping approach.
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Void fraction follows from volume change and is calculated as

f ¼ 1� ð1� f0Þ exp½�3em� ð71Þ

or, using a linearized version, as

f ¼ 1� ð1� f0Þð1� 3emÞ ð72Þ

It can be observed that D indirectly controls the void growth
rate. We force the growth near the critical value of void fraction
to model initiation as in the GTN model, but with a slight
difference:

f
H
¼ fc þ

ff � fc
fa � fc

ðf � fcÞ

Typically, fc ¼ 0:3 and ff ¼ 0:95. An initial void fraction f0 is also
assumed. Using Voigt notation, the corresponding deviatoric stress

is Sab0 ¼ Dev � Sab, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3Sab0 � I6 � Sab0=2
p

is the von-Mises

equivalent stress. Here, the Voigt form of I6 is given by:

½I6�ij ¼ dij 1þ
X3

k¼1

dikþ3

 !

ð73Þ

The deviatoric matrix (Dev in the Voigt form) is given by:

Dev ¼ 1

3

2 �1 �1 0 0 0

�1 2 �1 0 0 0

�1 �1 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 3

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð74Þ

The equivalent plastic strain increment is computed based on
the following power equivalence relation:

Sab � _ep ¼ ð1� f
H
Þy _ep ð75Þ

The effective plastic strain rate is given by this power
equivalence:

_ep ¼
_c

yð1� f
H
Þ Sab � n ð76Þ

Integration of constitutive quantities follow the unconditionally
stable backward-Euler scheme:

Fig. 10. Four-point bending of a concrete beam: geometry, boundary conditions, multiple point constraints (DuB ¼ DuA) and material properties. Also shown is the final

deformed mesh 10� magnified with the attached cohesive stress vectors.

Fig. 11. Four-point bending of a concrete beam: crack paths compared with the envelope of experimental results by Bocca, Carpintieri and Valente [26].

58 P. Areias et al. / Theoretical and Applied Fracture Mechanics 72 (2014) 50–63



epa ¼ epb þ
Dc

yað1� f
H
Þ Sab � n ð77Þ

Time stepping is adapted so that Dep ¼ epa � epb is kept below
5%. This measure is necessary for accuracy reasons in problems
with localization. The derivation of the derivatives of u discussed
in Section 5 are performed with AceGen [42] and exported to Sim-
plas [4]. Since any equation containing the ramp function xh i is
non-smooth, the Newton–Raphson method will typically have con-
vergence difficulties or fail to converge, a replacement can be used
with convergence advantages. Eterovic and Bathe recognized this
in 1991 [36] and used a semi-smooth function. We use the Chen-
Mangasarian replacement function ([31,30]) SðxÞ ffi hxi, which is
smooth in the complete domain, to replace the ramp function.
The function depends on an Error parameter. In the examples
we use a non-dimensional Error of 1� 10�3. Consequences of this
replacement were discussed by Areias and Rabczuk [14].

6. Crack propagation

Crack propagation follows the edge rotation recently introduced
by Areias and Rabczuk [15], complemented by the insertion of
thick cohesive elements. A Figure depicting this procedure is
shown Fig. 5. For the Rousselier model, the criterion is simply
the critical void fraction, using the condition:

f P ff ) crack advance ð78Þ
Algorithmic steps for crack propagation steps are (see Fig. 5) the

following:

1. A ranking of node tips is performed according to the advance
indicator.

2. The crack direction is estimated by Ma-Sutton criterion, consid-
ering thick cohesive elements as voids (cf. [62]).

3. At the node tip, the estimated direction is used to select the
closest edge.

4. The edge is rotated so that it matches the estimated direction.
5. A duplication of the node tip is performed, creating a new tip

(advancing the crack).
6. New thick cohesive elements are inserted.

For ductile problems, where internal variable mapping is neces-
sary, we adopt the following algorithm:

� After step 3, we unload the mesh and set the stresses to zero
(retaining all internal variables).

� The remeshing step follows the previous scheme.
� Loading up to the previous value of load or displacement
parameter is performed.

Fig. 12. Load- displacement results, compared with the results of Bocca et al. [26]

and the cracking particle method of Rabczuk and Belytschko [53] (for the case

b ¼ 200 mm) with their 68,000 particle analysis.

Fig. 13. Besson cylindrical specimen modeled with axisymmetric elements. Rele-

vant data (see also [23]).

Fig. 14. Besson cylindrical specimen: second Piola–Kirchhoff stress vs. radial

reduction, compared with the results of Besson et al. [23].
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7. Numerical examples

7.1. Quasi-brittle single edge-notched beam

This version of the single-edge-notched beam problem was
introduced by Schlangen (cf. [59]) and is now modeled. It consists
of a pre-notched beam loaded in two points and supported in other
two points. Fig. 6 contains the relevant data for this problem. It is
appropriate for the assessment of the injection method since the
experimentally observed result is a curved crack emanating from
the right corner of the notch. Curved cracks are difficult to repro-
duce with smeared models. Since P cannot be monotonous when
crack propagation occurs, a control equation is used, which
increases the shear mouth relative displacement of the initial
notch (cf. Fig. 6). This is called crack mouth sliding displacement
(CMSD) and is, in this paper, imposed at the global level.

We test three triangular meshes containing 2587, 3729 and
5573 nodes. The resulting crack path is not far from the experi-
mental envelope, as can be observed in Fig. 7 (see also Fig. 8); even
near the support the experimental observations are reasonably
reproduced. A comparison with the experimental results and the
DSDA method [1,9], along with a study of mesh size influence is
performed. As can be observed in Fig. 9, after the peak load is
reached, the numerical results are more brittle than the experi-
mental results. According to Alfaiate, Wells and Sluys [2], this is
due to the fact that an isotropic mode-I traction-jump law is used.

Since crack paths are nearly insensitive to the value of h, we fix the
value h ¼ 0:2 for the mesh size effect study.

7.2. Cohesive crack growth in a four-point bending concrete beam

The bi-notched concrete beam proposed by Bocca et al. [26] is
tested. The beam is simply supported in two points and subjected
to two point loads. The effect of beam size in brittleness is assessed
by using two different specimen dimensions. The corresponding
experimental setting is described in detail in the original work
[26]. From the set of specimens studied by Bocca et al. we retain
the specimens, both with c=b ¼ 0:8: one with b ¼ 50 and another
with b ¼ 200 mm. These have reported experimental measure-
ments in [26]. We are also concerned with the crack paths that
were reported in [26]. Using the well-known cracking particle
method, Rabczuk and Belytschko [53] obtained very good results
for the crack path prediction, although with a slightly higher load
than the experimental one. However, with the particle methods,
there is an ambiguity in assigning the support dimension for the
crack region. We use a single uniform initial mesh, with 7488
nodes and 14536 triangular elements. All relevant data is shown
in Fig. 10. For anti-symmetry reasons, we force the same mouth
horizontal displacement at the edge of notches A and B:
DuB ¼ DuA. It has been debated if quasi-static simulations allow
propagation of more than one crack (concerning this topic, see
the excellent thesis by Chaves [29]), and the imposition of same

Fig. 15. Besson cylindrical specimen: cup and cone formation and corresponding contour plots (f and ep).
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relative displacement forces both cracks to evolve simultaneously.
We obtain an excellent agreement with the experimental crack
paths, as shown in Fig. 11. The relatively wide spread of experi-
mental crack paths is typical and is a consequence of the use of 6
specimens of reference [26]. Experimentally, some residual crack
evolution in the opposite direction of the final path was observed
and we also obtained that effect. Load–displacement results are
shown in Fig. 12 where a comparison with the measurements of
Bocca et al. [26] and the cracking particle method of Rabczuk and
Belytschko [53] is made. For the smaller specimen there is a some-
how longer and lower curve than the observed one.

7.3. Cup and cone fracture

A tension test producing cup and cone fracture was described
by Besson [23] and is here reproduced. We include explicit crack
propagation by element injection subsequently to the satisfaction
of f P ff . Fig. 13 (see Fig. 14 for a comparison with results by Bes-
son) shows relevant data for this problem. The stress/displacement
results are compared with results obtained by Besson et al. [23].
We are also concerned with the cup and cone formation, which
requires a sufficiently refined mesh and elongated elements in
the radial direction. Fig. 15 shows the crack formed in the necking
region and propagating toward the outer surface, forming the cup
and cone. This type of result, combining the localization in ductile
materials and a physically meaningful ductile crack formation is
very rare in the literature. In addition, robustness is an advantage
when compared with GFEM/XFEM. The stress/displacement results
are compared with results obtained by Besson et al. [23]. Crack
path formation is compared between the two meshes in Fig. 16.
Some differences can be observed in the crack path, but these
results are in-line with what is expected from crack propagation
analysis with ductile materials.

7.4. Compact tension specimen

The compact tension specimen described by Samal et al. [56] is
reproduced. In that paper, the Rousselier yield function was
adopted to model ductile fracture of a pre-cracked (a0 ¼ 0:0161
m) specimen. Experimental results were also reported. The Authors
used a gradient model to attenuate the mesh dependence (equiva-
lent to the one by Areias et al. [8]). Relevant data for this test is
shown in Fig. 17. Here, the initial crack is explicitly represented
(which was not in the original paper). Hardening law is inserted
as a set of ordered pairs, as shown in Table 1. We monitor the force
F as a function of the imposed displacement �v and compare with
the experimental results reported in Samal’s paper. This compari-

Fig. 16. Crack path formation: comparison between 10,061 and 17,804 initial

nodes.

Fig. 17. Compact tension specimen. Lengths given in meters. The hardening

function is provided in [56].

Table 1

Hardening law used in the compact tension specimen (Fig. 17).

ep y (MPa)

0 405

0.0568 569

0.0710 584

0.0994 621

0.1207 634

0.1917 675

0.2864 721

0.5089 796

0.8260 881

1.1030 935

Fig. 18. Compact tension specimen: comparison between experimental (reported

in [56]) and numerical results for three different initial meshes.
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son is presented in Fig. 18 where good agreement can be observed,
despite the slightly higher values of reaction obtained here. Note
that higher numerical values were also reported by Samal et al.
[56]. A sequence of contour plots for the void fraction and effective
plastic strain is shown in Fig. 19. Very high deformations are pos-
sible without convergence problems.

8. Conclusions

The combination of edge rotation algorithm with anisotropic
element injection for computational fracture is advantageous from
the implementation and generality perspective. Both quasi-brittle
and ductile tests show that results are comparable to the tip reme-
shing algorithm proposed by the Authors (cf. [10,21,12,11,18]). We

found that both for quasi-brittle and ductile fracture, classical
benchmarks perform at least as well as competing techniques, with
substantially fewer algorithmic steps. Recent enrichment tech-
niques also show remarkable accuracy, but are more limiting for
large amplitude displacements and the application to general elas-
to-plastic problems is not straightforward. If element erosion is
adopted for ductile fracture problems (a typical approach in
well-known commercial codes), the difference here is that a per-
fectly crack path is obtained, in contrast with the jagged path typ-
ical of erosion processes (cf. [63,66]). Additionally, unlike gradient
or nonlocal methods [8], we have a energetically precise definition
of the length scale. Concerning the characteristic length parameter
h, we found that the value 0.1 is acceptable, but other values have
only a limited effect in the results. In the cup and cone fracture
example, we noted a slight mesh dependence effect.

Fig. 19. Compact tension specimen (cf. [56]): sequence of effective plastic strain and void fraction contour plots.
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