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Abstract: ATPG tool generated patterns are a major component 
of test data for large SOCs. With increasing sizes of  chips, 
higher integration involving IP cores and the need for patterns 
targeting multiple fault models for better defect coverage in 
newer technologies, the issues of adequate coverage and 
reasonable test data volume and application time dominate the 
economics of test. We address the problem of generating 
compact set of test patterns across multiple fault models. 
Traditional approaches use separate ATPG for each fault 
models and minimize patterns either during pattern generation 
through static or dynamic compaction, or after pattern 
generation by simulating all patterns over all fault models for 
static compaction. We propose a novel ATPG technique where 
all fault models of interest are concurrently targeted in a single 
ATPG run. Patterns are generated in small intervals, each 
consisting of 16, 32 or 64 patterns. In each interval fault model 
specific ATPG setups generate separate pattern sets for their 
respective fault model. An effectiveness criterion then selects 
exactly one of those pattern sets. The selected set covers 
untargeted faults that would have required the most additional 
patterns. Pattern generation intervals are repeated until 
required coverage for faults of all models of interest is achieved. 
The sum total of all selected interval pattern sets is the overall 
test set for the DUT. Experiments on industrial circuits show 
pattern count reductions of 21% to 68%. The technique is 
independent of any special ATPG tool or scan compression 
technique and requires no change or additional support in an 
existing ATPG system. 
 
Keywords: ATPG optimizations, pattern merge, test data 
volume reduction, composite fault models. 
 
1. INTRODUCTION 

 
Manufacturing test contributes a significant portion 

to the overall cost of an IC and the tester time required for 
test application is a critical entity for cost minimization. 
Due to the larger designs and process variations seen in 
the advanced technology nodes, the number of fault 
models to be considered for minimizing test escapes has 
gone up. Consequently there is an increase in test data 
volume (TDV) and test application time (TAT). An 
account of the costs of testing on an ATE is given in [1] 
and a cost model proposed in [2] gives a good explanation 
of the cost metrics. TDV and TAT are popular test cost 
metrics and are proportional to the number of patterns 
required to get the desired coverage, the maximum scan 
chain length and the number of inputs and outputs. An 
insight on TDV for SOCs is provided in [3]. 

Test compression techniques listed by [4] have been 
used to contain TDV and TAT by reducing the scan chain 
lengths and increasing the number of chains by providing 

extra hardware for test data distribution among these 
chains. They basically exploit the fact that only 2-5% of 
the bits in the pattern are ‘care bits’ and the rest can be 
compressed [4]. The work in [5] explores the solution 
space for maximizing compression on some large 
industrial designs. However, there are limits as explained 
in [6]. Procedures such as test point insertion, mixing 
combinational and sequential compression approaches 
and more complex test compression logic can potentially 
improve the compression, but at the expense of additional 
hardware complexity. In order to achieve further 
reduction in test data volume, we have to look beyond the 
on-chip compression techniques. Reducing the number of 
patterns through ‘pattern reuse’ can be a good solution. 

In this work, we target test pattern reduction with the 
help of a simple ATPG flow improvement across multiple 
fault models. Effective and efficient pattern sets are 
chosen based on the proposed metric. We intend to 
exploit both ‘care’ and ‘don’t care’ bits in a pattern to 
efficiently combine and compact the pattern sets of 
different models into one single set. The technique has 
been evaluated across complex models such as path delay, 
dynamic bridging and small delay defect driven faults in 
addition to the stuck-at and transition delay fault models. 
The results show a comparison with existing pattern 
optimization approaches. The rest of the paper is 
organized into six sections. Prior work in the area of 
multiple fault model pattern optimizations is reviewed in 
Section 2. The motivation for the work in this paper is 
explained in Section 3. A detailed description of the 
methodology is provided in Section 4. Sections 5 and 6 
provide the results on large SOC designs and observations 
are made based on these results. Section 7 concludes the 
paper. 

 
2. TEST PATTERN REUSABILITY 
 

 

ATPG 
Methodology 

Stuck-At 
Patterns 

Transition 
Patterns

Path Delay 
Patterns 

Bridging 
Patterns 

OPTIMIZED PATTERN SET 

Figure 1: Pattern optimization across multiple fault models. 
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Test pattern reuse is a general term associated with 
the ability of patterns of one fault model to detect faults 
belonging to another fault model, thereby enabling 
reusability. This characteristic can be exploited to reduce 
the final pattern count when multiple fault models are 
considered. As fault models under consideration increase 
in number there is more room for pattern reuse as pattern-
sets associated with different models have varied care-bit 
densities. Figure 1 illustrates a general pattern 
optimization approach across fault models by exploiting 
pattern reusability. One fine example is that of transition 
fault patterns for the ‘Launch off Shift’ (LOS) scan 
approach (as against ‘Launch off Capture’ (LOC)) and 
stuck-at patterns. Experimental results in [7] show the 
effectiveness of stuck-at ATPG patterns for transition 
fault detection. 

A pattern selection approach for the combination of 
stuck-at, transition and IDDQ models is discussed in [8]. 
Hybrid LP-ILP technique is used to optimize patterns 
after their generation. The solution to the LP formulation 
gives a pattern set that ensures the desired coverage 
across all the models under consideration. Though this 
technique optimizes the pattern count, the exponential 
complexity of linear programming is not suitable for large 
designs. Another technique proposed in [9] considers path 
delay, transition and stuck-at models on large SoC 
designs. The algorithm starts with ATPG on the path 
delay faults and later uses the generated patterns to detect 
transition faults. The remaining transition faults are 
targeted through ATPG and the process is continued till 
stuck-at faults are also targeted. Though both the works 
provide good pattern optimization, the optimization is 
limited due to the non-dynamic nature of fault model 
selection. The methodology proposed in this paper makes 
this selection variable during the ATPG process and 
enables further pattern count reduction for a reasonable 
run time overhead. 

 
3. MOTIVATION 
 

In a deterministic ATPG process, patterns are 
generated to target a set of faults that are specific to a 
fault model. At the end of the process, we get pattern sets 
and the detected faults for each fault model. It has also 
been found that reuse of test patterns is possible amongst 
the fault models. The proposed concurrent ATPG 
algorithm exploits these facts to minimize the final test 
set: 
• Since patterns have a large number of unspecified or 
‘don’t care’ bits in them, opportunities exist for 
augmenting the random pattern detectability across fault 
models. 
• Transition test patterns have been found to provide 
good coverage for stuck-at faults. The converse is true as 
well. The usage of the stuck-at patterns for detecting 
delay faults depends on whether a ‘Launch off Shift’ 

(LOS) or a ‘Launch off Capture’ (LOC) scheme is being 
used [10]. In the former case, this is straightforward due 
to similar clocking used. In a concurrent ATPG flow, 
patterns can be generated for all other models and then the 
resulting optimized pattern set can be used to fault 
simulate on the stuck-at model. The remaining stuck-at 
faults can be detected with patterns. 
• Since path-delay patterns target cumulative delay 
faults on an entire path, transition faults on nodes on the 
path under test are detected by the same pattern. If the 
number of detectable faults with the path-delay fault 
pattern set is high, the transition fault coverage with those 
patterns will also be proportionately high. This can also 
significantly reduce the transition fault pattern-set. On the 
other hand, transition patterns typically do not give a good 
coverage on path delay faults since they typically 
propagate the transition through the shortest (easiest) 
paths. If small delay defect (SDD) model is considered 
instead of transition fault model, the probability of getting 
path delay coverage improves since the timing slack 
information forces SDD ATPG to propagate transition 
through longer paths. 
• Dynamic bridging fault model requires a transition on 
the victim node. Hence there exists a high probability of 
detecting transition faults while targeting the dynamic 
bridging fault model. 
 

These observations indicate how we can reuse 
patterns targeted for one fault model for detecting faults 
in another fault model. Significant pattern count reduction 
can be achieved if ATPG is performed simultaneously on 
all fault models. Since current ATPG tools target only one 
fault model at a time, we create a flow to support such a 
concurrent ATPG process in our work. The ATPG run is 
split into small intervals. In each interval, patterns are 
generated targeting all fault models under consideration 
separately. And the pattern set for each fault model is 
cross fault simulated on the other fault models. The 
pattern-set that has highest effectiveness across all fault 
models is selected for that interval. This process is 
repeated till final coverage levels are achieved for all fault 
models. In the next section, we will describe the 
effectiveness algorithm in detail. The size of the final 
pattern-set Ptotal can be denoted as:  

 

∑≤
i

itotal PP  , where i ∈F 

 
where F is the set of fault models considered and P is the 
set of patterns for each fault model. 

 
4. ALGORITHM FOR CONCURRENT ATPG 
 

The proposed flow is shown in Figure 2. The 
following abbreviations have been used for convenience: 
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N:– Number of fault models. 
FC_cumn:– Cumulative fault coverage for model ‘n’. 
FC_currn:– Fault coverage of model ‘n’ in the current 
interval. 
FC_currn/m:– Fault coverage of model ‘m’ after fault 
simulation with model ‘n’ patterns. 
Pn:– Pattern set of model ‘n’. 
Fn:– Fault set for model ‘n’ at the start of an interval. 
Fn

*:– Fault set for model ‘n’ after ATPG. 
Fn/m:– Fault set after fault simulation of model ‘n’ 
patterns on model ‘m’. 
I:– Number of patterns in an interval. 
FFCn:– Final fault coverage for model ‘n’. 
SPn/m:– Saved patterns for fault model ‘m’ after fault 
simulation of model ‘n’ patterns on model ‘m’. 
SPn:– Total saved patterns across all models if model ‘n’ 
patterns are chosen in an interval. 
 

Information for concurrent ATPG like the ‘list of 
fault models to be considered for optimization’, ‘number 
of patterns per interval’ and ‘fault coverage limit’ for each 
model is provided to start with. With this initial data for 
all the fault models in hand, we begin an interval by 
generating the specified number of patterns (size of 
interval) for each fault model and then use these pattern 
sets to fault simulate on each of the other fault models 
under consideration. The effectiveness of each of the 
pattern sets is then evaluated using a metric. Pattern sets 
chosen to be optimal (using this metric) at the end of an 
interval are saved along with corresponding detected fault 
sets (for all the models). Undetected faults for all fault 
models are targeted at the start of the next interval. This 
process of pattern generation is continued till the desired 
coverage for all the fault models is obtained. 

The metric used for determining the most effective 
pattern set at the end of an interval is related to the 
amount of pattern savings that is realized across all the 
fault models. The number of saved patterns denoted by 
SPn for a fault model ‘n’ is defined as the total number of 
the patterns saved across all the other fault models when 
patterns of fault model ‘n’ are chosen at the end of an 
interval. In other words, we need not generate SPn number 
of patterns if we use fault model ‘n’ patterns since they 
detect faults across other fault models, which otherwise 
requires SPn additional patterns with targeted ATPG. 
Depending upon the speed and accuracy requirements, we 
can adopt either an approximate or an accurate metric for 
determining the SPn. 
 
a. Accurate metric 
To calculate the accurate metric of savings with patterns 
Pn, fault simulation is performed on the undetected faults 
of fault model ‘m’ with Pn. ATPG is then run for fault 
model ‘m’ on a fault set containing only the faults 
detected by Pn. The number of patterns required to get 
equivalent detection on model ‘m’ through ATPG is 

termed as SPn/m. The SPn/m denotes number of patterns 
saved (need not be generated) by selecting patterns of set 
Pn for the final pattern set in the interval. This process is 
repeated on all other fault models with pattern set Pn. The 
sum is denoted as SPn. 
 
b. Approximate metric 
To calculate the approximate metric of pattern set Pn, fault 
simulation is performed on fault model ‘m’ with Pn on 
undetected faults in the current interval to get FC_currn/m. 
To get the effectiveness of the set Pn, a simple ratio-
metric calculation is performed. If I patterns from set Pm 
are required to get FC_currm coverage, the number of 
model ‘m’ patterns that would be needed to get 
FC_currn/m is calculated as: 

 
SPn/m = (FC_currn/m / FC_currm) * I 

        
This number represents saving achieved by selecting Pn 
over Pm in the interval. The individual savings on each 
fault model with pattern set Pn are summed up to get SPn.   

This metric is calculated for all fault models and the 
pattern set having highest SP is selected for the current 
interval. The approach using the accurate metric 
consumes more CPU time compared to that using the 
approximate metric since it involves an extra ATPG step 
for effectiveness calculation. It was also observed that the 
basic algorithm (as described in Figure 2) can be speeded 
up by parallelizing certain independent parts of the flow. 
Though fault simulation has to always follow pattern 
generation for each model in the flow without any room 
for concurrency, individual model runs can be parallelized 
as all information is available at the start of the interval. 
This parallelization has also been incorporated into the 
algorithm to reduce run times. 

 
Table 1: Sample iteration of the flow with approximate metric for 

an interval limit of 32 patterns. 
 Stuck-at (1) Transition (2) 

Step 1 FC_curr1 = 0, F1 FC_curr2 = 0, F2 

Step 2 FC_curr1 = 58, P1 FC_curr2 = 48, P2 

Step 3 FC_curr2/1 = 30 FC_curr1/2 = 30 
Step 4 

(approx) 
SP2/1 = SP2 = 16.55 (32 * 

FC_curr2/1/ FC_curr1) 
SP1/2 = SP1 = 20 (32* 
FC_ curr1/2/ FC_curr2) 

Conclusion: After Step 4, SP1 > SP2, Stuck-at fault  
pattern set is more effective than transition fault pattern set 
 
Table 1 provides a snapshot of the pattern generation 

and fault simulation flow when stuck-at and transition 
models are used. Step 1 initializes the fault coverage 
numbers for fault models 1 and 2 to zero. In Step 2, 
pattern generation is performed on both fault models with 
pattern count limited to the interval size. In Step 3, fault 
simulation on the other fault models is performed (e.g. 
stuck-at fault patterns for current interval are simulated 
against transition faults and vice-versa). In Step 4, the 
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metric to evaluate the best pattern set for the current 
interval is calculated. The metric can either be an 
approximate one or an accurate one. The pattern set that 
achieves the highest pattern savings is chosen in that 
interval.  

 

 
 

 
 
5. EXPERIMENTAL RESULTS 
 

Experiments were carried out on some SoCs in Texas 
Instruments to evaluate the practical benefits explained in 

the previous sections. The methodology was tried on 
several different fault model combinations. In addition to 
uncompressed ATPG, designs with combinational 
(Synopsys’ DFTMAX) [11] and sequential (Synopsys’ 
DBIST) [12] compression techniques were used. LOC 
and LOS at-speed approaches were used, but since LOS 
tends to provide more benefits over LOC in terms of 
pattern count and coverage levels, the former was chosen 
whenever we had an option to choose between the two 
approaches. The fault models considered were stuck-at, 
transition / small delay defect (SDD), bridging and path 
delay. TetraMAX [13] was used for ATPG and fault 
simulation. Table 2 lists the size of the designs used in the 
experiments. Percentage of pattern count reduction was 
taken as the metric for evaluation of the results. In order 
to reduce the run times the approximate metric was used. 

 
Table 2: Statistics of designs used in the experiments. 

Design Flip-flop 
count 

Gate count 
(in millions) 

ATPG 
technique 

A 219574 4  LOC 
B 240000 2.5 LOS 
C 33792 0.4 LOS 

 
The results shown in Table 3 were obtained for 

Designs A and B by bypassing the compression features 
available for them. The unoptimized results are nothing 
but a sum of the pattern counts of each model. The results 
are compared against both the unoptimized runs and the 
existing optimization technique that is used by a number 
of teams at Texas Instruments [9]. Pattern count 
reductions of up to 45% were obtained when compared to 
the approach of combining patterns from standalone 
ATPG runs. A comparison with [9] showed 
improvements of up to 26% on an average. From the 
table, it can be observed that optimal benefit is achieved 
when stuck-at and transition faults are considered. This is 
mainly due to the fact that the two models have large 
fault-sets and pattern counts as compared to either 
bridging or path delay fault models. The scope for reuse 
increases with increase in number of patterns due to 
matching care bits and increased probability of random 
fault detection. Design A could not be simulated for the 
combination of stuck-at and transition models because it 
uses the LOC approach for at-speed testing. It can be seen 
that the model which has the largest standalone pattern 
count forces a limit on the compaction possible. For 
Design B, it can also be observed that dynamic pattern 
mixing results in lesser pattern count than the transition 
fault model. We attribute this anomaly to the new ATPG 
run that gets fired for every interval in dynamic pattern 
mixing mode. ATPG tool starts with a new random seed 
in each interval, increasing the chances of detecting more 
faults than with that of using single seed for entire pattern 
generation. 

‘N’ specified, FC’s are initialized; Interval limit is ‘I’. 
FC_cumn = 0, ∀ n ∈{1, 2,…, N} 

Interval begins. Initial fault-set is obtained for the interval - 
Fn, Perform ATPG on all models. 

Update FC_currn, ∀ n ∈{1, 2,…, N} 
Save patterns and new fault-set - Pn and Fn

* 

On fault set Fm, Perform Fault Simulation with Pn, 
Update FC_currn/m, ∀ n ≠ m and n, m ∈{1, 2,…, N} 

Save new fault-set – Fn/m 

Accurate metric? 

Saved Patterns for model ‘m’ is 
computed using the relation, 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

N

m m

mn
n I

currFC
currFCSP

0

/

_
_

∀ m ≠ n and m, n ∈{1, 2,.., N} 

Run ATPG on only those 
faults detected by Pn in Fm . 

Number of model ‘m’ 
patterns obtained is SPn/m, 

which when summed across 
N gives us SPn. 

Compute pattern set having the highest SP, 
Let SPi = Maximum {SPn}, where i∈{1, 2,…, N} 

Update fault coverage values with the fault model chosen in 
the interval, in this case model i. 

FC_cumn = FC_cumn + FC_curri/n , ∀ n ∈{1, 2,…, N} 
FC_cumi = FC_cumi + FC_curri , where i∈{1, 2,…, N} 

Save Pi 

Update fault files, 
Fi  ←   Fi

* , where i∈{1, 2,…, N} 
Fn  ←   Fi/n

 , ∀ n ∈{1, 2,…, N} 
Interval ends. 

FC_cumn >= FFCn? 
Or  FC_currn = 0 ? 
∀ n ∈{1, 2,.., N} 

Pattern generation is complete. Save chosen pattern set Pi 
Final Fault Coverage is FC_cumn , ∀ n ∈{1, 2,…, N} 

N Y 

N 

Y 

Figure 2: Basic concurrent ATPG flow. 
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Table 4 provides the results for all the three designs 
in scan compression mode. Designs A and C uses a 
combinational compression technique (DFTMAX) 
whereas B uses a sequential compression technique 
(DBIST). Design B was evaluated using pattern intervals 
as opposed to pattern numbers where each pattern interval 
was made up of 32 patterns. The overall benefits over [9] 
were reduced when compared to the same design set in 
the uncompressed mode, but a look at the table shows a 
30% average reduction against the unoptimized set. 
Stuck-at and transition models again seem to dominate for 
the same reasons mentioned before. 

 
6. OBSERVATIONS 
 

The designs used for experimentation were varied in 
size and so were the ATPG techniques used on each of 
them. This variety has helped to arrive at the following 
observations: 
a) As shown in Table 3 and Table 4, the advantage with 
concurrent ATPG is less in the presence of scan 
compression. This can be attributed to: (i) The care bit 
availability with scan compression is lesser, leaving less 
scope of pattern-reuse. (ii) The don’t care bits are also 
less random, due to increased correlation. The results with 
combinational and sequential compression differ since 
don’t care bits in the former are more correlated. 
b) Figure 3, 4 and 5 give a good account of the pattern 
mixing across fault models that occurs during the course 
of a concurrent ATPG run for one of the combinations 
with Design A. As observed from the graphs, the fault 
model chosen by the algorithm varies frequently during 
the ATPG process indicating that it is beneficial to 
employ this technique against the existing optimization 
[9]. 
c) Path delay faults require relatively higher percentage 
of specified bits compared to other models. Reuse of path 
delay patterns is not very effective as the fault simulation 
coverage with these patterns on other models doesn’t 
yield high benefits. It can be clearly observed from Figure 
5 that the path delay model gets de-prioritized due to the 
combined dominance of the transition and dynamic 
bridging models and requires its own patterns. Situations 
like this force an approach that combines the method in 
[9] with concurrent ATPG. In this case, the path delay 
patterns can be generated with a standalone run and can 
then be used for fault simulation with transition and 
dynamic bridging fault models. 
d) Run times were large mainly due to the frequent 
ATPG and fault simulation processes at each interval. The 
ATPG run times can be reduced by increasing the interval 
size. In most fault model combinations with concurrent 
ATPG, there would be only one model left for coverage 
improvement towards the end of the process. Once this 
state is reached the pattern limitation can be taken off to 

allow the ATPG to run till the desired coverage is reached 
for that model. This will reduce run times. 
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Figure 3: Transition fault coverage when run along with dynamic 
bridging and path delay fault models. 
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Figure 4: Bridging fault coverage when run along with transition 
and path delay fault models. 
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Figure 5: Path delay fault coverage when run along with transition 
and bridging fault models. 

 
7. CONCLUSION 
 
For large SOCs, structural test patterns obtained using 
ATPG tools continue to dominate the test time. As the 
number of fault models being targeted increases, the 
number of such patterns increases too. This paper presents 
a methodology for reducing the pattern count across 
multiple fault models. ATPG is performed in steps and 
various fault models are concurrently targeted. Pattern 
sets for a given fault model are incrementally generated 
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and simulated across the other fault models. Stuck-at, 
transition, path delay and bridging fault patterns have 
been considered for experiments, with and without scan 
compression. This approach has been applied to several 
industrial designs in Texas Instruments and benefits from 
21% to 68% are seen with and without compression, as 
compared to the conventional approach of just adding the 
patterns across all fault models. When compared to 
existing optimization technique, benefits with scan 
compression are in the range of 3% to 14%, whereas they 
are 17% to 36% without scan compression. This method 
does not require any modification to the ATPG flow. 
Other ideas for further optimizations have also been 
identified in the paper and will be explored in future 
work. 
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Table 3: Pattern statistics for all the designs in non compression mode.  

Design Fault model 
combinations 

Test 
coverage % 

Pattern Count % Reduction w.r.t 
Unoptimized Optimized using [9] Concurrent ATPG Unoptimized [9] 

A 

Transition 96.91 14590 14059 

22784 20.91 17.24 
Dynamic Bridging 90.79 12592 11666 

Path delay 37.45 1806 1806 
Final Pattern Count 28808 27531 

A 
Transition 96.7 13919 13482 

18752 28.78 27.58 Dynamic Bridging 90.79 12412 12412 
Final Pattern Count 26331 25894 

A 

Small Delay  96.03 12896 2784 

8768 67.69 46.06 
Dynamic Bridging 90.79 12412 11666 

Path delay 37.45 1806 1806 
Final Pattern Count 27144 16256 

B 
Stuck-at 96.41 1535 1535 

4448 45.12 36.23 Transition 91.97 6570 5441 
Final Pattern Count 8105 6976 

 
 

Table 4: Pattern statistics for all the designs in compression mode.  

Design Fault model 
combinations 

Test 
coverage % 

Pattern Count (DFTMAX) / Intervals (DBIST) % Reduction w.r.t 
Unoptimized Optimized using [9] Concurrent ATPG Unoptimized [9] 

A 
(DFTMAX) 

Transition 96.91 25056 14048 
33250 26.72 3.25 Dynamic Bridging 89.56 20320 20320 

Final Pattern Count 45376 34368 

B 
(DBIST) 

Stuck-At 96.49 326 35 

1084 31.21 13.9 
Transition 91.60 1214 1214 

Static Bridging 70.36 17 3 
Dynamic Bridging 61.84 19 7 

Final Pattern Count 1576 1259 

C 
(DFTMAX) 

Stuck-At 99.03 4706 498 
11392 30.91 7.24 Transition 95.29 11784 11784 

Final Pattern Count 16490 12282 
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