

An Efficient Test Data Reduction Technique Through Dynamic Pattern Mixing
Across Multiple Fault Models

S. Alampally1, R. T. Venkatesh2, P. Shanmugasundaram2, R. A. Parekhji1 and V. D. Agrawal2

1Texas Instruments, Bangalore (India) and 2Auburn University (USA).

Abstract: ATPG tool generated patterns are a major component
of test data for large SOCs. With increasing sizes of chips,
higher integration involving IP cores and the need for patterns
targeting multiple fault models for better defect coverage in
newer technologies, the issues of adequate coverage and
reasonable test data volume and application time dominate the
economics of test. We address the problem of generating
compact set of test patterns across multiple fault models.
Traditional approaches use separate ATPG for each fault
models and minimize patterns either during pattern generation
through static or dynamic compaction, or after pattern
generation by simulating all patterns over all fault models for
static compaction. We propose a novel ATPG technique where
all fault models of interest are concurrently targeted in a single
ATPG run. Patterns are generated in small intervals, each
consisting of 16, 32 or 64 patterns. In each interval fault model
specific ATPG setups generate separate pattern sets for their
respective fault model. An effectiveness criterion then selects
exactly one of those pattern sets. The selected set covers
untargeted faults that would have required the most additional
patterns. Pattern generation intervals are repeated until
required coverage for faults of all models of interest is achieved.
The sum total of all selected interval pattern sets is the overall
test set for the DUT. Experiments on industrial circuits show
pattern count reductions of 21% to 68%. The technique is
independent of any special ATPG tool or scan compression
technique and requires no change or additional support in an
existing ATPG system.

Keywords: ATPG optimizations, pattern merge, test data
volume reduction, composite fault models.

1. INTRODUCTION

Manufacturing test contributes a significant portion

to the overall cost of an IC and the tester time required for
test application is a critical entity for cost minimization.
Due to the larger designs and process variations seen in
the advanced technology nodes, the number of fault
models to be considered for minimizing test escapes has
gone up. Consequently there is an increase in test data
volume (TDV) and test application time (TAT). An
account of the costs of testing on an ATE is given in [1]
and a cost model proposed in [2] gives a good explanation
of the cost metrics. TDV and TAT are popular test cost
metrics and are proportional to the number of patterns
required to get the desired coverage, the maximum scan
chain length and the number of inputs and outputs. An
insight on TDV for SOCs is provided in [3].

Test compression techniques listed by [4] have been
used to contain TDV and TAT by reducing the scan chain
lengths and increasing the number of chains by providing

extra hardware for test data distribution among these
chains. They basically exploit the fact that only 2-5% of
the bits in the pattern are ‘care bits’ and the rest can be
compressed [4]. The work in [5] explores the solution
space for maximizing compression on some large
industrial designs. However, there are limits as explained
in [6]. Procedures such as test point insertion, mixing
combinational and sequential compression approaches
and more complex test compression logic can potentially
improve the compression, but at the expense of additional
hardware complexity. In order to achieve further
reduction in test data volume, we have to look beyond the
on-chip compression techniques. Reducing the number of
patterns through ‘pattern reuse’ can be a good solution.

In this work, we target test pattern reduction with the
help of a simple ATPG flow improvement across multiple
fault models. Effective and efficient pattern sets are
chosen based on the proposed metric. We intend to
exploit both ‘care’ and ‘don’t care’ bits in a pattern to
efficiently combine and compact the pattern sets of
different models into one single set. The technique has
been evaluated across complex models such as path delay,
dynamic bridging and small delay defect driven faults in
addition to the stuck-at and transition delay fault models.
The results show a comparison with existing pattern
optimization approaches. The rest of the paper is
organized into six sections. Prior work in the area of
multiple fault model pattern optimizations is reviewed in
Section 2. The motivation for the work in this paper is
explained in Section 3. A detailed description of the
methodology is provided in Section 4. Sections 5 and 6
provide the results on large SOC designs and observations
are made based on these results. Section 7 concludes the
paper.

2. TEST PATTERN REUSABILITY

ATPG
Methodology

Stuck-At
Patterns

Transition
Patterns

Path Delay
Patterns

Bridging
Patterns

OPTIMIZED PATTERN SET

Figure 1: Pattern optimization across multiple fault models.

2011 29th IEEE VLSI Test Symposium

978-1-61284-656-9/11/$26.00 ©2011 IEEE 285

Test pattern reuse is a general term associated with
the ability of patterns of one fault model to detect faults
belonging to another fault model, thereby enabling
reusability. This characteristic can be exploited to reduce
the final pattern count when multiple fault models are
considered. As fault models under consideration increase
in number there is more room for pattern reuse as pattern-
sets associated with different models have varied care-bit
densities. Figure 1 illustrates a general pattern
optimization approach across fault models by exploiting
pattern reusability. One fine example is that of transition
fault patterns for the ‘Launch off Shift’ (LOS) scan
approach (as against ‘Launch off Capture’ (LOC)) and
stuck-at patterns. Experimental results in [7] show the
effectiveness of stuck-at ATPG patterns for transition
fault detection.

A pattern selection approach for the combination of
stuck-at, transition and IDDQ models is discussed in [8].
Hybrid LP-ILP technique is used to optimize patterns
after their generation. The solution to the LP formulation
gives a pattern set that ensures the desired coverage
across all the models under consideration. Though this
technique optimizes the pattern count, the exponential
complexity of linear programming is not suitable for large
designs. Another technique proposed in [9] considers path
delay, transition and stuck-at models on large SoC
designs. The algorithm starts with ATPG on the path
delay faults and later uses the generated patterns to detect
transition faults. The remaining transition faults are
targeted through ATPG and the process is continued till
stuck-at faults are also targeted. Though both the works
provide good pattern optimization, the optimization is
limited due to the non-dynamic nature of fault model
selection. The methodology proposed in this paper makes
this selection variable during the ATPG process and
enables further pattern count reduction for a reasonable
run time overhead.

3. MOTIVATION

In a deterministic ATPG process, patterns are
generated to target a set of faults that are specific to a
fault model. At the end of the process, we get pattern sets
and the detected faults for each fault model. It has also
been found that reuse of test patterns is possible amongst
the fault models. The proposed concurrent ATPG
algorithm exploits these facts to minimize the final test
set:
• Since patterns have a large number of unspecified or
‘don’t care’ bits in them, opportunities exist for
augmenting the random pattern detectability across fault
models.
• Transition test patterns have been found to provide
good coverage for stuck-at faults. The converse is true as
well. The usage of the stuck-at patterns for detecting
delay faults depends on whether a ‘Launch off Shift’

(LOS) or a ‘Launch off Capture’ (LOC) scheme is being
used [10]. In the former case, this is straightforward due
to similar clocking used. In a concurrent ATPG flow,
patterns can be generated for all other models and then the
resulting optimized pattern set can be used to fault
simulate on the stuck-at model. The remaining stuck-at
faults can be detected with patterns.
• Since path-delay patterns target cumulative delay
faults on an entire path, transition faults on nodes on the
path under test are detected by the same pattern. If the
number of detectable faults with the path-delay fault
pattern set is high, the transition fault coverage with those
patterns will also be proportionately high. This can also
significantly reduce the transition fault pattern-set. On the
other hand, transition patterns typically do not give a good
coverage on path delay faults since they typically
propagate the transition through the shortest (easiest)
paths. If small delay defect (SDD) model is considered
instead of transition fault model, the probability of getting
path delay coverage improves since the timing slack
information forces SDD ATPG to propagate transition
through longer paths.
• Dynamic bridging fault model requires a transition on
the victim node. Hence there exists a high probability of
detecting transition faults while targeting the dynamic
bridging fault model.

These observations indicate how we can reuse
patterns targeted for one fault model for detecting faults
in another fault model. Significant pattern count reduction
can be achieved if ATPG is performed simultaneously on
all fault models. Since current ATPG tools target only one
fault model at a time, we create a flow to support such a
concurrent ATPG process in our work. The ATPG run is
split into small intervals. In each interval, patterns are
generated targeting all fault models under consideration
separately. And the pattern set for each fault model is
cross fault simulated on the other fault models. The
pattern-set that has highest effectiveness across all fault
models is selected for that interval. This process is
repeated till final coverage levels are achieved for all fault
models. In the next section, we will describe the
effectiveness algorithm in detail. The size of the final
pattern-set Ptotal can be denoted as:

∑≤
i

itotal PP , where i ∈F

where F is the set of fault models considered and P is the
set of patterns for each fault model.

4. ALGORITHM FOR CONCURRENT ATPG

The proposed flow is shown in Figure 2. The
following abbreviations have been used for convenience:

286

N:– Number of fault models.
FC_cumn:– Cumulative fault coverage for model ‘n’.
FC_currn:– Fault coverage of model ‘n’ in the current
interval.
FC_currn/m:– Fault coverage of model ‘m’ after fault
simulation with model ‘n’ patterns.
Pn:– Pattern set of model ‘n’.
Fn:– Fault set for model ‘n’ at the start of an interval.
Fn

*:– Fault set for model ‘n’ after ATPG.
Fn/m:– Fault set after fault simulation of model ‘n’
patterns on model ‘m’.
I:– Number of patterns in an interval.
FFCn:– Final fault coverage for model ‘n’.
SPn/m:– Saved patterns for fault model ‘m’ after fault
simulation of model ‘n’ patterns on model ‘m’.
SPn:– Total saved patterns across all models if model ‘n’
patterns are chosen in an interval.

Information for concurrent ATPG like the ‘list of
fault models to be considered for optimization’, ‘number
of patterns per interval’ and ‘fault coverage limit’ for each
model is provided to start with. With this initial data for
all the fault models in hand, we begin an interval by
generating the specified number of patterns (size of
interval) for each fault model and then use these pattern
sets to fault simulate on each of the other fault models
under consideration. The effectiveness of each of the
pattern sets is then evaluated using a metric. Pattern sets
chosen to be optimal (using this metric) at the end of an
interval are saved along with corresponding detected fault
sets (for all the models). Undetected faults for all fault
models are targeted at the start of the next interval. This
process of pattern generation is continued till the desired
coverage for all the fault models is obtained.

The metric used for determining the most effective
pattern set at the end of an interval is related to the
amount of pattern savings that is realized across all the
fault models. The number of saved patterns denoted by
SPn for a fault model ‘n’ is defined as the total number of
the patterns saved across all the other fault models when
patterns of fault model ‘n’ are chosen at the end of an
interval. In other words, we need not generate SPn number
of patterns if we use fault model ‘n’ patterns since they
detect faults across other fault models, which otherwise
requires SPn additional patterns with targeted ATPG.
Depending upon the speed and accuracy requirements, we
can adopt either an approximate or an accurate metric for
determining the SPn.

a. Accurate metric
To calculate the accurate metric of savings with patterns
Pn, fault simulation is performed on the undetected faults
of fault model ‘m’ with Pn. ATPG is then run for fault
model ‘m’ on a fault set containing only the faults
detected by Pn. The number of patterns required to get
equivalent detection on model ‘m’ through ATPG is

termed as SPn/m. The SPn/m denotes number of patterns
saved (need not be generated) by selecting patterns of set
Pn for the final pattern set in the interval. This process is
repeated on all other fault models with pattern set Pn. The
sum is denoted as SPn.

b. Approximate metric
To calculate the approximate metric of pattern set Pn, fault
simulation is performed on fault model ‘m’ with Pn on
undetected faults in the current interval to get FC_currn/m.
To get the effectiveness of the set Pn, a simple ratio-
metric calculation is performed. If I patterns from set Pm
are required to get FC_currm coverage, the number of
model ‘m’ patterns that would be needed to get
FC_currn/m is calculated as:

SPn/m = (FC_currn/m / FC_currm) * I

This number represents saving achieved by selecting Pn
over Pm in the interval. The individual savings on each
fault model with pattern set Pn are summed up to get SPn.

This metric is calculated for all fault models and the
pattern set having highest SP is selected for the current
interval. The approach using the accurate metric
consumes more CPU time compared to that using the
approximate metric since it involves an extra ATPG step
for effectiveness calculation. It was also observed that the
basic algorithm (as described in Figure 2) can be speeded
up by parallelizing certain independent parts of the flow.
Though fault simulation has to always follow pattern
generation for each model in the flow without any room
for concurrency, individual model runs can be parallelized
as all information is available at the start of the interval.
This parallelization has also been incorporated into the
algorithm to reduce run times.

Table 1: Sample iteration of the flow with approximate metric for

an interval limit of 32 patterns.
 Stuck-at (1) Transition (2)

Step 1 FC_curr1 = 0, F1 FC_curr2 = 0, F2

Step 2 FC_curr1 = 58, P1 FC_curr2 = 48, P2

Step 3 FC_curr2/1 = 30 FC_curr1/2 = 30
Step 4

(approx)
SP2/1 = SP2 = 16.55 (32 *

FC_curr2/1/ FC_curr1)
SP1/2 = SP1 = 20 (32*
FC_ curr1/2/ FC_curr2)

Conclusion: After Step 4, SP1 > SP2, Stuck-at fault
pattern set is more effective than transition fault pattern set

Table 1 provides a snapshot of the pattern generation

and fault simulation flow when stuck-at and transition
models are used. Step 1 initializes the fault coverage
numbers for fault models 1 and 2 to zero. In Step 2,
pattern generation is performed on both fault models with
pattern count limited to the interval size. In Step 3, fault
simulation on the other fault models is performed (e.g.
stuck-at fault patterns for current interval are simulated
against transition faults and vice-versa). In Step 4, the

287

metric to evaluate the best pattern set for the current
interval is calculated. The metric can either be an
approximate one or an accurate one. The pattern set that
achieves the highest pattern savings is chosen in that
interval.

5. EXPERIMENTAL RESULTS

Experiments were carried out on some SoCs in Texas
Instruments to evaluate the practical benefits explained in

the previous sections. The methodology was tried on
several different fault model combinations. In addition to
uncompressed ATPG, designs with combinational
(Synopsys’ DFTMAX) [11] and sequential (Synopsys’
DBIST) [12] compression techniques were used. LOC
and LOS at-speed approaches were used, but since LOS
tends to provide more benefits over LOC in terms of
pattern count and coverage levels, the former was chosen
whenever we had an option to choose between the two
approaches. The fault models considered were stuck-at,
transition / small delay defect (SDD), bridging and path
delay. TetraMAX [13] was used for ATPG and fault
simulation. Table 2 lists the size of the designs used in the
experiments. Percentage of pattern count reduction was
taken as the metric for evaluation of the results. In order
to reduce the run times the approximate metric was used.

Table 2: Statistics of designs used in the experiments.

Design Flip-flop
count

Gate count
(in millions)

ATPG
technique

A 219574 4 LOC
B 240000 2.5 LOS
C 33792 0.4 LOS

The results shown in Table 3 were obtained for

Designs A and B by bypassing the compression features
available for them. The unoptimized results are nothing
but a sum of the pattern counts of each model. The results
are compared against both the unoptimized runs and the
existing optimization technique that is used by a number
of teams at Texas Instruments [9]. Pattern count
reductions of up to 45% were obtained when compared to
the approach of combining patterns from standalone
ATPG runs. A comparison with [9] showed
improvements of up to 26% on an average. From the
table, it can be observed that optimal benefit is achieved
when stuck-at and transition faults are considered. This is
mainly due to the fact that the two models have large
fault-sets and pattern counts as compared to either
bridging or path delay fault models. The scope for reuse
increases with increase in number of patterns due to
matching care bits and increased probability of random
fault detection. Design A could not be simulated for the
combination of stuck-at and transition models because it
uses the LOC approach for at-speed testing. It can be seen
that the model which has the largest standalone pattern
count forces a limit on the compaction possible. For
Design B, it can also be observed that dynamic pattern
mixing results in lesser pattern count than the transition
fault model. We attribute this anomaly to the new ATPG
run that gets fired for every interval in dynamic pattern
mixing mode. ATPG tool starts with a new random seed
in each interval, increasing the chances of detecting more
faults than with that of using single seed for entire pattern
generation.

‘N’ specified, FC’s are initialized; Interval limit is ‘I’.
FC_cumn = 0, ∀ n ∈{1, 2,…, N}

Interval begins. Initial fault-set is obtained for the interval -
Fn, Perform ATPG on all models.

Update FC_currn, ∀ n ∈{1, 2,…, N}
Save patterns and new fault-set - Pn and Fn

*

On fault set Fm, Perform Fault Simulation with Pn,
Update FC_currn/m, ∀ n ≠ m and n, m ∈{1, 2,…, N}

Save new fault-set – Fn/m

Accurate metric?

Saved Patterns for model ‘m’ is
computed using the relation,

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

N

m m

mn
n I

currFC
currFCSP

0

/

_
_

∀ m ≠ n and m, n ∈{1, 2,.., N}

Run ATPG on only those
faults detected by Pn in Fm .

Number of model ‘m’
patterns obtained is SPn/m,

which when summed across
N gives us SPn.

Compute pattern set having the highest SP,
Let SPi = Maximum {SPn}, where i∈{1, 2,…, N}

Update fault coverage values with the fault model chosen in
the interval, in this case model i.

FC_cumn = FC_cumn + FC_curri/n , ∀ n ∈{1, 2,…, N}
FC_cumi = FC_cumi + FC_curri , where i∈{1, 2,…, N}

Save Pi

Update fault files,
Fi ← Fi

* , where i∈{1, 2,…, N}
Fn ← Fi/n

 , ∀ n ∈{1, 2,…, N}
Interval ends.

FC_cumn >= FFCn?
Or FC_currn = 0 ?
∀ n ∈{1, 2,.., N}

Pattern generation is complete. Save chosen pattern set Pi
Final Fault Coverage is FC_cumn , ∀ n ∈{1, 2,…, N}

N Y

N

Y

Figure 2: Basic concurrent ATPG flow.

288

Table 4 provides the results for all the three designs
in scan compression mode. Designs A and C uses a
combinational compression technique (DFTMAX)
whereas B uses a sequential compression technique
(DBIST). Design B was evaluated using pattern intervals
as opposed to pattern numbers where each pattern interval
was made up of 32 patterns. The overall benefits over [9]
were reduced when compared to the same design set in
the uncompressed mode, but a look at the table shows a
30% average reduction against the unoptimized set.
Stuck-at and transition models again seem to dominate for
the same reasons mentioned before.

6. OBSERVATIONS

The designs used for experimentation were varied in
size and so were the ATPG techniques used on each of
them. This variety has helped to arrive at the following
observations:
a) As shown in Table 3 and Table 4, the advantage with
concurrent ATPG is less in the presence of scan
compression. This can be attributed to: (i) The care bit
availability with scan compression is lesser, leaving less
scope of pattern-reuse. (ii) The don’t care bits are also
less random, due to increased correlation. The results with
combinational and sequential compression differ since
don’t care bits in the former are more correlated.
b) Figure 3, 4 and 5 give a good account of the pattern
mixing across fault models that occurs during the course
of a concurrent ATPG run for one of the combinations
with Design A. As observed from the graphs, the fault
model chosen by the algorithm varies frequently during
the ATPG process indicating that it is beneficial to
employ this technique against the existing optimization
[9].
c) Path delay faults require relatively higher percentage
of specified bits compared to other models. Reuse of path
delay patterns is not very effective as the fault simulation
coverage with these patterns on other models doesn’t
yield high benefits. It can be clearly observed from Figure
5 that the path delay model gets de-prioritized due to the
combined dominance of the transition and dynamic
bridging models and requires its own patterns. Situations
like this force an approach that combines the method in
[9] with concurrent ATPG. In this case, the path delay
patterns can be generated with a standalone run and can
then be used for fault simulation with transition and
dynamic bridging fault models.
d) Run times were large mainly due to the frequent
ATPG and fault simulation processes at each interval. The
ATPG run times can be reduced by increasing the interval
size. In most fault model combinations with concurrent
ATPG, there would be only one model left for coverage
improvement towards the end of the process. Once this
state is reached the pattern limitation can be taken off to

allow the ATPG to run till the desired coverage is reached
for that model. This will reduce run times.

50

55

60

65

70

75

80

85

90

0 10000 20000

F
a
u

lt
 C

o
v
e
r
a
g

e

Patterns
Transition pattern set chosen Bridging pattern set chosen Path delay pattern set chosen

Figure 3: Transition fault coverage when run along with dynamic
bridging and path delay fault models.

50

55

60

65

70

75

80

85

90

0 2000 4000 6000

F
a
u

lt
 C

o
v
e
ra

g
e

Patterns
Transition pattern set chosen Bridging pattern set chosen Path delay pattern set chosen

Figure 4: Bridging fault coverage when run along with transition
and path delay fault models.

0

5

10

15

20

25

30

35

40

0 3000 6000 9000

F
a
u

lt
 C

o
v
e
ra

g
e

Patterns
Transition pattern set chosen Bridging pattern set chosen Path delay pattern set chosen

Figure 5: Path delay fault coverage when run along with transition
and bridging fault models.

7. CONCLUSION

For large SOCs, structural test patterns obtained using
ATPG tools continue to dominate the test time. As the
number of fault models being targeted increases, the
number of such patterns increases too. This paper presents
a methodology for reducing the pattern count across
multiple fault models. ATPG is performed in steps and
various fault models are concurrently targeted. Pattern
sets for a given fault model are incrementally generated

289

and simulated across the other fault models. Stuck-at,
transition, path delay and bridging fault patterns have
been considered for experiments, with and without scan
compression. This approach has been applied to several
industrial designs in Texas Instruments and benefits from
21% to 68% are seen with and without compression, as
compared to the conventional approach of just adding the
patterns across all fault models. When compared to
existing optimization technique, benefits with scan
compression are in the range of 3% to 14%, whereas they
are 17% to 36% without scan compression. This method
does not require any modification to the ATPG flow.
Other ideas for further optimizations have also been
identified in the paper and will be explored in future
work.

References

[1] J. Bedsole, R. Raina, A. Crouch and M. S. Abadir, “Very Low

Cost Testers: Opportunities and Challenges,” IEEE Design and
Test of Computers, vol. 18, no. 5, pp. 60-69, 2001.

[2] S. Wei, P. K. Nag, R. D. Blanton, A. Gattiker and W. Maly, “To
DFT or not to DFT?” Proc. Intl. Test Conf., pp. 557-566, 1997.

[3] O. Sinanoglu, E. J. Marinissen, A. Sehgal, J. Fitzgerald and J.
Rearick, “Test Data Volume Comparison: Monolithic vs. Modular

SoC Testing,” IEEE Design & Test of Computers, vol. 26, no. 3,
pp. 25-37, 2009.

[4] N. A. Touba, “Survey of Test Vector Compression Techniques,”
IEEE Design & Test of Computers, vol. 23, no. 4, pp. 294-303,
2006.

[5] S. Alampally, J. Abraham, R. A. Parekhji, R. Kapur and T. W.
Williams, “Evaluation of Entropy Driven Compression Bounds on
Industrial Designs,” Proc. Asian Test Symp., pp. 13-18, 2008.

[6] T. W. Williams, “The Limits of Compression,” Proc. Intl. Test
Conf., pp. 1-2, 2008.

[7] W. Kawamura and T. Onodera, “Experimental Results of
Transition Fault Simulation with DC Scan Tests,” Proc. Asian Test
Symp., pp. 212, 2007.

[8] N. Yogi and V. D. Agrawal, “N-Model Tests for VLSI Circuits,”
Proc. Southeastern Symposium on System Theory, pp. 242-246,
2008.

[9] S. Goel and R. A. Parekhji, “Choosing the Right Mix of At-Speed
Structural Test Patterns: Comparisons in Pattern Volume
Reduction and Fault Detection Efficiency,” Proc. Asian Test
Symp., pp. 330-336, Dec. 2005.

[10] I. Park and E. J. McCluskey, “Launch-on-Shift-Capture Transition
Tests,” Proc. Intl. Test Conf., pp. 1-9, 2008.

[11] Synopsys, Inc., DFTMAX Compression User Guide, Version E-
2010.12.

[12] Synopsys, Inc., SoCBIST Deterministic Logic BIST User Guide,
version 2005.09.

[13] Synopsys, Inc., TetraMAX User Guide, Version V-2010.03, 2010.

Table 3: Pattern statistics for all the designs in non compression mode.

Design Fault model
combinations

Test
coverage %

Pattern Count % Reduction w.r.t
Unoptimized Optimized using [9] Concurrent ATPG Unoptimized [9]

A

Transition 96.91 14590 14059

22784 20.91 17.24
Dynamic Bridging 90.79 12592 11666

Path delay 37.45 1806 1806
Final Pattern Count 28808 27531

A
Transition 96.7 13919 13482

18752 28.78 27.58 Dynamic Bridging 90.79 12412 12412
Final Pattern Count 26331 25894

A

Small Delay 96.03 12896 2784

8768 67.69 46.06
Dynamic Bridging 90.79 12412 11666

Path delay 37.45 1806 1806
Final Pattern Count 27144 16256

B
Stuck-at 96.41 1535 1535

4448 45.12 36.23 Transition 91.97 6570 5441
Final Pattern Count 8105 6976

Table 4: Pattern statistics for all the designs in compression mode.

Design Fault model
combinations

Test
coverage %

Pattern Count (DFTMAX) / Intervals (DBIST) % Reduction w.r.t
Unoptimized Optimized using [9] Concurrent ATPG Unoptimized [9]

A
(DFTMAX)

Transition 96.91 25056 14048
33250 26.72 3.25 Dynamic Bridging 89.56 20320 20320

Final Pattern Count 45376 34368

B
(DBIST)

Stuck-At 96.49 326 35

1084 31.21 13.9
Transition 91.60 1214 1214

Static Bridging 70.36 17 3
Dynamic Bridging 61.84 19 7

Final Pattern Count 1576 1259

C
(DFTMAX)

Stuck-At 99.03 4706 498
11392 30.91 7.24 Transition 95.29 11784 11784

Final Pattern Count 16490 12282

290

