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Abstract

The paper presents an innovative simulation scheme

to speed-up simulations of multi-clusters multi-processors

SoCs at the TLM/T (Transaction Level Model with Time)

abstraction level. The hardware components of the SoC ar-

chitecture are written in standard SystemC. The goal is to

describe the dynamic behavior of a given software appli-

cation running on a given hardware architecture (including

the dynamic contention in the interconnect and the cache

effects), in order to provide the system designer with the

same reliable timing information as a cycle accurate sim-

ulation, with a simulation speed similar to a TLM simula-

tion. The key idea is to apply Parallel Discrete Event Simu-

lation (PDES) techniques to a collection of communicating

SystemC SC THREAD. Experimental results show a simula-

tion speedup of a factor up to 50 versus a BCA simulation

(Bus Cycle Accurate), for a timing error lower than 10−3.

1. Introduction

With the advent of more and more complex SoCs, and
GALS architectures containing dozens of processor cores,
the need for high-speed simulation is of paramount im-
portance. Unfortunately, simulation speed and accuracy are
two antagonistic goals. Up to recently, high speed sim-
ulation was synonymous to high level functional simula-
tion whereas reliable performance evaluations could only
be achieved at the BCA level. This lack for an intermediate
level is at the origin of the creation of a new abstraction level
known as TLM (Transaction Level Modeling) “which ab-
stracts the pin-level communication in the physical model to
the level of media access or individual protocol word/frame
transactions”[7].

The pure TLM abstraction level is mainly used to vali-
date the embedded (generally parallel and multi-threaded)
application software. It is basically a functional validation,
as these models do not contain any timing information. This

abstraction level allows a simulation speedup of one or two
order of magnitude versus the BCA simulation level.

In the TLM/T (TLM with Time) abstraction level, the
system designer wants to answer questions such as whether
the selected hardware architecture matches the application
real time constraint. A reliable answer to this question re-
quires taking into account the dynamic behavior of the
hardware, including accurate modeling of the dynamic con-
tention in the shared interconnect, or accurate modeling of
the cache misses.

In the paper, TLM/T modeling of SoCs implicitly refers
to a shared memory architecture, where initiators (or mas-
ters) send requests to addressable targets (or slaves), and
obtain responses (data in case of read, or acknowledge in
case of write). A transaction is actually a request/response
couple. Due to the limited bandwidth of the classical sys-
tem bus, new kinds of interconnects (Network on Chip)
have been developed, that offer scalable bandwidth. In such
micro-networks, requests and responses are generally han-
dled by two separate dual sub-networks, in order to avoid
deadlocks.

The paper demonstrates that it is possible to obtain the
same level of timing information as the “exact” timing be-
havior described by the cycle accurate BCA simulation, but
with a simulation speed similar to the speed of a TLM sim-
ulation, and a loss of accuracy less than 10−3.

The major problem in the definition of this TLM/T ab-
straction level comes from the simulation speed versus ac-
curacy trade-off: it is quite hard to distinguish a priori the
mechanisms that must absolutely be taken into account and
those that can be neglected at the first order.

As our goal is to describe the dynamic behavior of a
given hardware platform executing a given software ap-
plication, we must emphasize on the fact that the simu-
lation TLM/T simulation models describe hardware com-
ponents, not software tasks. Therefore, we must define a
TLM/T model for each hardware component in the archi-
tecture: one TLM/T model for the general purpose proces-
sor (including the caches), one TLM/T model for the dig-
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ital signal processor, one TLM/T model for the embedded
memory bank, one TLM/T model for each peripheral, and
of course, one TLM/T model for the interconnect itself. For-
tunately, most of these hardware components are generic,
reusable IP cores, and therefore the modeling effort is justi-
fied.

The paper is composed of five sections. After a brief in-
troduction, section 2 presents the relevant work in the TLM
and TLM/T modeling domains. section 3 introduces the
paradigm of the PDES applied to TLM/T modeling and de-
tails the modeling choices for the key components. section 4
presents some experimental simulation results for a generic
multi-processors platform, in terms of simulation speed and
accuracy. Finally, the section 5 comments the previous re-
sults and gives some perspective.

2. Previous work

The exact place of TLM in the simulation level landscape
is still not clear: TLM is not a single abstraction level, but
regroups a rather large set of modeling practices. Cai and
Gajski in [3] or Donlin in [6] propose a taxonomy. Cai and
Gajski represent those levels as a 2D mesh in a plane ori-
ented by the time accuracy sought for the simulation of the
communication and of the computation. Pasricha [9] also
presents some of the interests of the TLM methodology for
both embedded software development and architecture ex-
ploration.

The most significant proposal for TLM standardization
in our context is the one proposed by the Open SystemC
Initiative in [12]. Unfortunately, this proposal is limited to
TLM level and does not address timing issues at all.

[8] proposes a methodology for TLM simulations that
bears some resemblance with our proposed method, most
notably in the idea of passive components that are run only
when needed. But nothing is specified about adding timing
informations to the simulation.

The CCATB (Cycle Count Accurate at Transac-
tion Boundaries) level presented in [10] is a method to
fill the gap between functional level and BCA level. But
this level of description is still rather close to the BCA
level, and the expected speedup is limited (about a fac-
tor 2).

3. Applying PDES to TLM/T modeling

A possible approach to introduce the time in TLM, re-
lies on SC THREAD and the wait construct to add timing
into the component models, and uses the SystemC internal
clock as the SystemC clock. Our experience in the domain
of parallel algorithms led us to model the parallel behav-
iors of the components in a completely different way.

3.1. Principles

Hardware components are still represented by threads
executed in parallel but a local simulation clock is now as-
signed to each active component. These threads communi-
cate by sending ”packets” through statically defined, point
to point communication channels. It is worth saying that,
in a shared memory SoC architecture, there are only three
types of packets, because all the communications between
hardware components are related to read/write requests by
the initiators, or interrupt requests by the peripherals:

• a request packet is sent by an initiator to the intercon-
nect, that delivers the packet to the selected target ;

• a response packet is sent by a target to the intercon-
nect, that delivers the packet to the requesting initia-
tor ;

• an interrupt packet is directly sent by a peripheral
(generally a target) requesting a service to an initia-
tor component.

For a given hardware architecture, all the communica-
tion channels are statically defined.

The local simulation clocks of two communicat-
ing threads T0 and T1 are synchronized each time a packet
is transmitted from T0 to T1. Therefore, there is no global
simulation clock and the local clock of a component ad-
vances only when this component has received timing
information on each of its inputs. The inputs are actu-
ally ports connected to the communication channels.

In this paradigm, an initiator such as a general purpose
processor which wants to make a request to the memory
(due to a cache miss for example), sends a compound packet
piggy-backed with its local simulation time. When the inter-
connect component receives the packet, it exploits this tim-
ing information to compute its own new local time. Before
a given component modifies its own local time, it has to ver-
ify that every input channel is filled with at least one packet
to ensure that no event will occur with a date that belongs to
the component past. This corresponds to the standard and
well-known conservative approach described in the litera-
ture by Chandy, Misra and Bryant in [5] and [2].

To be complete, PDES also mentions optimistic algo-
rithms but this approach involves saving and restoring the
internal states of the different components. We do not use
this optimistic approach, because it consumes too much
time and memory to save and restore the complete contents
of a standard SoC RAM or cache.

From a SystemC viewpoint, the PDES approach im-
plies that at least every initiator component is modeled as
a SC THREAD that can perform read and write operations
and be stopped with a wait statement and resumed at any
time by other threads.

Furthermore, as time is propagated through packets pass-
ing between threads, the SystemC simulation clock is no



longer used. The scheduling of the different threads is per-
formed at the delta-cycle level.

The three main difficulties in this approach are the fol-
lowing:

• modeling of the on-chip interconnect, especially tak-
ing into account the dynamic contention ;

• modeling of the programmable processors, including
the cache controllers ;

• modeling of asynchronous events (interrupts).

3.2. Interconnect Modeling

Modeling the effects of the dynamic contention is
the main obvious problem. The main source of con-
tention comes from access conflicts on the targets: when
several initiators address simultaneously the same tar-
get, the requests must be sequentialized. This contention
is intrinsic, and can be observed with any intercon-
nect micro-architecture. There is, of course, other sources
for contention. In a given interconnect, such as a multi-
stage micro-network, one can observe internal contention:
two request packets sent by two different initiators address-
ing two different targets can be conflicting for an internal
switch in the multi-stage micro-network. This kind of con-
tention is very specific to each micro-network and in all ex-
isting Network on Chip, the dynamic behavior is mainly
related to the destination contention. For the sake of sim-
plicity and genericity, the internal contention effects are
neglected. With this hypothesis, it is not necessary to de-
scribe precisely the detailed protocol of a specific intercon-
nect to reproduce the dynamic contention.

As presented in figure 1 a generic hardware interconnect
has been defined. It behaves as two independent crossbars
(one for the requests and one for the responses), with out-
put FIFOs to emulate the buffering available inside the net-
work. It is possible to adjust the depth of the FIFOs to fit
rather accurately the dynamic behavior (especially the satu-
ration threshold of any specific micro-network).

Another important feature is the following: if we con-
sider separated subnetworks for requests and responses (this
is a common feature to have distinct hardware resources to
avoid deadlocks), the two sub-networks are not symmetri-
cal. As a given initiator will expect a response from a unique
target (if we consider that complex, multi-threaded proces-
sors can be modeled by several threads), there is no destina-
tion conflicts in the response sub-network.

Each sub-network is composed of two kinds of nodes.
In figure 1, circles represent simple C++ functions while
squares represent SystemC SC THREADs, with a local time
t. The first kind of node at the input corresponds to rout-

ing blocks and performs the routing of the packets to the
addressed target. There is one such block for each initia-
tor component connected to the interconnect. The arbitra-

tion blocks are responsible for arbitration in case of con-

flicts. Calling M the number of initiators and S the num-
ber of targets linked to the interconnect, an interconnect is
made of M +S routing blocks (for the request network) and
S + M arbitration blocks (for the response network). The
different blocks are linked by FIFOs that store the packets.

Initiators Targets

t

t

t

t

RSP

CMD

Multi−master multi−slave channel

S2

S1M1

M2

Arbitration blocks

Routing blocks Arbitration blocks

Routing blocks

Figure 1. Structure of the interconnect

Let’s detail the arbitration policy in the request sub-
network. As in most physical interconnects, the general ar-
bitration policy is Round-Robin, in order to avoid starva-
tion. But, to conform to the PDES algorithm, the timing
information (timestamp) associated to each request packet
must be taken into account. Every time a packet is stored in
a FIFO, the corresponding arbitration block is awaken, and
the the SELECT-FIFO() algorithm described below is exe-
cuted. If there is no packet available in a given FIFO, the ar-
bitration block asks the corresponding initiator its current
local time and pushes a “false” packet in the correspond-
ing FIFO. This is similar to “solicited null-messages”, in
the PDES general terminology, and prevents deadlocks to
occur.
SELECT-FIFO()

1 goes through the M linked FIFOs
2 Tmin = lowest packet timestamp in the FIFOs
3 Tab = arbitration block time
4 if Tmin < Tab

5 then if FIFO[Tmin] has a real packet
6 then select FIFO[Tmin]
7 if other packet(s) in the FIFOs
8 then wait for a delta-cycle
9 else wait for another packet

10 else wait for a delta-cycle
11 else if no FIFO has Ti < Tab



12 then select FIFO[Tmin]
13 if other packet(s) in the FIFOs
14 then wait for a delta-cycle
15 else wait for another packet
16 else wait for a delta-cycle

After the packet to be transmitted has been selected, its
time is updated. If the time of the packet Tmin is lower than
the time of the arbitration block Tab, it means that a con-
tention previously occurred: the time of the packet is then
updated to the time of the arbitration block. On the other
hand, if Tmin is higher than Tab, it means that the target was
idle in the recent past and therefore Tab is set to the time of
the packet. Finally, the packet is sent to the target through a
function call. In order to take into account the target intrin-
sic latency, this function call returns a latency value which
is used to update Tab. Thus, the arbitration block time rep-
resents the local time of its linked target.

3.3. Components modeling

As described in figure 1, the internal structure of the
TLM/T model depends on the role of the modeled compo-
nent: it can be an initiator, a target or both (like a DMA con-
troller that is both a target (to be configured by the host pro-
cessor), and an initiator (to access the memory)).

An initiator component is modeled as a SC THREAD and
has its own local clock while a target component is mod-
eled as a simple C++ function. Moreover, a target only re-
acts to request packets. When it receives a packet, it uses the
piggy-backed time as the starting time of its task, then per-
forms its work, sends back a response packet to the initiator
and returns the updated time to the caller.

The structure of an initiator component is depicted in
figure 2. An initiator component has a local time Tthread.
It performs its computational task, updating accordingly its
local time and generates request packets each time it must
access the memory or a peripheral.

In case of a programmable processor, the behavior is
merely described as an execution loop that keeps execut-
ing the binary code stored in the instruction cache, as an
Instruction Set Simulator. In case of blocking events, such
as instruction or data miss, or uncached read, a request
packet is sent (with the local timestamp), the correspond-
ing SC THREAD is unscheduled and waits for the response
packet.

A problem may arise if an initiator component works au-
tonomously for a very long time, without sending any re-
quest packets (for example, the cache is large enough to
contain the requested data or instructions). In this case, the
initiator SC THREAD is never unscheduled. The local clock
can progress without limitations, and prevents the other
threads (representing other initiators, or arbitration blocks)

to do so. To prevent such a problem, a single parameter,
global to the simulation has been defined: the lookahead

time. The lookahead time acts as an upper time barrier for
the initiator components and specifies how far an internal
execution loop can run without any external synchroniza-
tion. Past this upper time barrier, an initiator component un-
schedules itself.

T1

Tout = Tthread + Twork

Tn

Tthread

algorithm
thread

Figure 2. Structure of an initiator component

A master/slave component has to implement both as-
pects, and thus has a function to receive the packets which
will launch the working thread according to the received re-
quests.

3.4. Handling interrupts

The conservative scheduling of request and response
packets in the interconnect ensures that no causality viola-
tion (a packet with a timestamp smaller than the local time
arrives) may happen. But the interrupts are asynchronous
events and must be handled differently. Of course, a purely
pessimistic approach would avoid any causality problem by
preventing the component to increase its local time as long
as it is sure it cannot receive any interrupt in its past. Unfor-
tunately, that method is not applicable as it inevitably cre-
ates a deadlock in the simulation. On the other hand, a clas-
sical optimistic approach which would restore the state of
a component back to the interrupt time is much too expen-
sive to be actually implemented.

The proposed answer is to handle an interrupt by polling.
The interrupt packet is registered when it arrives (with its
timestamp), and taken into account by the processor as soon
as the processor time is larger or equal than the interrupt
time. A pending interrupt request is polled at each turn of
the initiator execution loop. The resulting inaccuracy re-
mains an inherent drawback of the method but can be min-
imized by the lookahead parameter which limits the maxi-
mum time leap of each component.

4. Experimental results

To validate this simulation paradigm, we defined a
generic multi-processors architecture, and executed the



same software application on two different simulation plat-
forms (BCA & TLM/T) describing the same hardware
architecture.

As shown in figure 3, the simulated hardware contains
a generic, VCI/OCP [1] compliant interconnect, a vari-
able number of processors (including data and instruction
caches), two embedded memory banks (containing respec-
tively the code and the data), a parameterized timer that can
generate N independent interrupts, and a variable number of
TTY terminals that can display messages produced by the
embedded software by means of printf-like calls. Each
processor is connected to its private interrupt line coming
from the timer.

We developed two simulation environments for this ar-
chitecture:

• The reference BCA simulation platform is build with
the cycle-accurate, bit-accurate simulation models pro-
vided by the SoCLib project [13] ;

• The TLM/T simulation platform has been build by in-
terconnecting the corresponding TLM/T components
as described above.

All processors run the same software task: it waits for
an interrupt, and displays a message on the TTY, indicating
the IRQ index and date. The timer period is initialized by
the embedded software, with a different value for each pro-
cessor (depending on the processor identifier). In both cases
the embedded software binary code is loaded in the embed-
ded ROM before starting the simulation.

TTY 0 TTY n RAM0 RAM1 TIMER

Interconnect

CACHE 0

PROC 0

CACHE n

PROC n

Figure 3. The generic platform

The comparison of the results is made on two points:
• the simulation speed
• the accuracy of the results

All the measurements were performed on a Linux work-
station equipped with a Pentium IV processor running at 2.6
GHz with a L2 cache of 512 kb and 256 Mb of SDRAM.

The SystemC version is the 2.1 beta 11. Each simulation
has run at least one million cycles.

The table 1 gives the simulation speed for several archi-
tectures, from 9 to 39 processors. As can be seen on figure
4 the speedup factor of the TLM/T is comprised between 10
and 60, and increases with the size of the system.

9 procs 15 procs 25 procs 39 procs
BCA 11600 4400 2100 1150

TLM/T 163000 101000 91000 74000

Table 1. Simulation speed for both platforms
in cycle/s
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Figure 4. Speedup factor against the number
of processors

Using the same method as presented in [4], the accuracy
of the TLM/T simulation is defined as the maximum timing
error between the two timestamps of the same identifiable
event in both BCA and TLM/T simulations. In this plat-
form, the interrupt times generated by the timer are good
candidates for such events. To evaluate the loss of timing
accuracy introduced by the TLM/T modeling we compared
the interrupt service time (as the value displayed on the
TTY), for both simulation and measured the maximal dis-
crepancy (in number of cycles) for the same event in both
simulations. The figure 5 shows the evolution of the max-
imal timing error against the number of processors in the
platform. The value is always less than 800 cycles for a to-
tal duration of 1 000 000 cycles.

The promising results obtained so far can be explained
by three factors. The first is directly linked to the fact that
the TLM/T components are intrinsically lighter than their
BCA counterpart. The access to a target is done through In-
terface Method Call which is much faster than the corre-
sponding method in BCA. In TLMT, data movements are
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Figure 5. Timing error against the number of
processors

represented by calls to functions like memcpy and pointer
assignments while in BCA and traditional SystemC simula-
tion, it requires the use of a discrete event simulation kernel:
event list, delayed assignment of signals and re-triggering of
sensitive processes.

The second factor is linked to the granularity of the data
transfers. In the TLM/T simulation, the flow control is per-
formed at the packet level (one slot in the interconnect FI-
FOs is exactly one packet), while the flow-control in the
BCA simulation is at the word/cell level. In case of a cache
line miss, a single request or response packet contains 8
words. This coarse grain flow control modeling introduces
an acceptable timing inaccuracy, but improves the simula-
tion speed.

Finally, because each initiator runs autonomously with
its own local time, there is no need for a global synchro-
nization scheme at each system cycle. Processors progress
by leaps of several instructions, read complete cache lines
atomically and therefore participate in the simulation only
when they have to do so.

5. Conclusion

We demonstrated in this paper that the TLM/T model-
ing approach is able to provide the system designer with
the same reliable timing information as a BCA simulation,
with a loss of accuracy which is lower than 10−3, at a simu-
lation speed similar to the TLM functional simulation. This
is a very promising result, as the system level simulation re-
mains the main tool used to perform design space explo-
ration.

Of course, systematic performance evaluation have still
to be done on other multi-processors architectures, running
more realistic software applications, but we are currently in-
vestigating the introduction of this simulation scheme into

existing design methodologies and components through a
collaboration with STMicroelectronics.

An open question is the modeling of multi-threaded pro-
cessors, when the processor can issue several requests with-
out waiting for response (i) before issuing request (i+1). Fi-
nally, we are working on a multi-level simulation tool that
can dynamically switch between TLM/T and BCA simula-
tion modes (”logical zoom”).

Another interesting research direction would be to apply
the presented methodology to a new SystemC kernel such
as [11].
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