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Abstract Boolean networks provide a simple and intuitive model for gene regulatory net-

works, but a critical defect is the time required to learn the networks. In recent years, efficient

network search algorithms have been developed for a noise-free case and for a limited function

class. In general, the conventional algorithm has the high time complexity of O(22k
mnk+1)

where m is the number of measurements, n is the number of nodes (genes), and k is the

number of input parents. Here, we suggest a simple and new approach to Boolean networks,

and provide a randomized network search algorithm with average time complexity O(mnk+1/

(log m)(k−1)). We show the efficiency of our algorithm via computational experiments, and

present optimal parameters. Additionally, we provide tests for yeast expression data.

Keywords Boolean network · Data consistency · Random superset selection · Core search ·
Coupon collection problem

1. Introduction

DNA microarray technologies provide information on genome-wide expression under var-

ious genetic, chemical, and environmental perturbations. In the past decade, a number of
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computational algorithms have been developed to better understand expression data. The

widely used clustering analyses have provided useful biological information by identifying

genes with similar expression patterns. However, gene expression is determined by com-

plex and combinatorial activities of genes, proteins, and metabolites, and such ‘causal’ or

directional regulatory relationships may not be simply described by similarity measures. The

first attempt to model such regulatory relationships among genes was the Boolean network

model (Kauffman et al., 1967). This model quantizes gene expression values into two discrete

levels ‘on’ and ‘off’, and aims to describe deterministic logical regulatory relationships of

gene expression. Other studies (Liang et al., 1998; Akutsu et al., 1999), show how Boolean

regulatory networks can be learned from large scale expression data. Subsequently, Bayesian

networks (Friedman et al., 2000) and Probabilistic Boolean networks (Shmulevich et al.,

2002) were suggested to model the probabilistic gene regulations.

Although Boolean networks provide a simple and intuitive model for regulatory networks,

the time required to learn the networks is limiting. The conventional exhaustive search al-

gorithm Akutsu et al. (1999a) has the high time complexity of O(22k
mnk+1) where m is the

number of measurements, n is the number of genes, and k is the number of input parents.

An efficient O(22k
mnk) algorithm was suggested using trie structure for the noise-free case

in Akutsu et al. (1999b), and an even more efficient greedy algorithm was developed for

AND-OR function classes in previous studies (Akutsu et al., 2003; Fukagawa and Akutsu,

2003). However, real data contain much noise and AND-OR functions may not be sufficient

to represent the genetic information. For noisy data and the whole function class, an important

gain of 22k
was obtained in Lähdesmäki et al. (2003).

We propose a fast, randomized algorithm with average time complexity O(mnk+1/

(log m)(k−1)). The key idea was derived from the fact that if some input variables have a

consistent functional relationship with an output variable, any superset of the input vari-

ables will have a consistent functional relationship with the output variable. Because the

average-case time complexities of the previous algorithms are the same as the worst-case

time complexities for noisy data, the proposed algorithm provides a substantial improvement.

The performance of the algorithm presented here can be more or less worse than the test

results presented in this article if the parameters, e.g. the superset size (see Section 3), are

not chosen optimally. However, we can estimate appropriate parameter values by comparing

the computing times for sampled nodes before learning the Boolean networks of all nodes.

In Section 2, we show a simplified approach to Boolean networks and formulate the

best-fit extension problem (Boros et al., 1998). We show that the gain of 22k
can be simply

obtained by our approach. Hence, the algorithm suggested in Section 2 is equivalent to that of

Lähdesmäki et al. (2003). In Section 3, we describe and analyze the proposed algorithm ‘top-

down search algorithm (TDSA)’ and show that TDSA has the additional gain of (log m)(k−1).

In Section 4, we give computational experiments showing that TDSA is by and large from

dozens to hundreds times faster than a recent algorithm given by Lähdesmäki et al. (2003)

for relatively low level of noise (5% ∼ 10% inconsistent mapping). Lastly, we test TDSA for

yeast expression data where the ‘inconsistent’ mapping ratio reached ∼ 20%. Even in this

highly noisy data, TDSA found multiple parent tuples for each gene quickly and accurately

for given thresholds of mapping consistency.

2. A simplified approach to Boolean networks

In this article, we only consider two expression levels ‘0’ and ‘1’ for simplicity. The data we

use are the quantized expression profiles, an n × m matrix.
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Table 1 Inconsistent data

Input gi1 1 0 1 0 0 1 0 1 0 1 0

gi2 1 1 1 0 1 0 0 1 1 0 1

Output gi 0 0 0 1 0 1 1 0 0 1 1

Fig. 1 A tower shape diagram

2.1. Noise-free Boolean networks

The task of constructing Boolean networks from data is to find the parent nodes (genes)

for each node that give ‘consistent’ mapping rules through the m experiments between the

expression profiles of candidate parents (input) and each gene’s profile (output). We call the

tuple of input values and the output value 〈gi1
( j), . . . , gik ( j); gi ( j)〉 an example for each

j = 1, 2, . . . , m.

To illustrate the ‘consistent’ mapping, we assume k = 2 for gene gi and assume (gi1
, gi2

)

is one candidate parent tuple for gi . Suppose we have the following expression profiles for

(gi1
, gi2

) and gi as in Table 1. These data can be graphically represented by tower shapes as

in Fig. 1. The output values are accumulated vertically on each possible tuple of input values.

The former three output values for the input value (0,1) were 0, but in the 11th example,

the output value is 1 for the same input value, where the consistency is broken: the boxed

number in Fig. 1. The number of towers will be doubled whenever one more input parent is

added. If the output values are the same for each possible input value, we say the parent tuple

(gi1
, . . . , gik ) is consistent with gi and we call 〈(gi1

, . . . , gik ); gi 〉 a consistent pair. In Akutsu

et al. (1999a, 2000a, 2000b), the concept of consistency is defined a little differently. For each

set of candidate parents, they check the consistency for each specific Boolean function. We call

this function consistency (f-consistency for short) as distinguished from the data consistency
(d-consistency for short) described above. If the data themselves are inconsistent as in Table

1, every Boolean function will fail to be consistent with them and we need not search for the

Boolean functions for such cases any more. This point brings an important improvement in

the efficiency i.e., it is much more efficient to search for the d-consistent parents first and then

find the corresponding Boolean functions only for those parents. In this way, we can simply

remove the super-exponential term 22k
which is over 4 × 109 when k = 5. This ‘data-first’

approach still can be applied to the trie structure algorithm (Atkutsu et al., 1999b) and we

can also remove the super-exponential term there. The same improvement was obtained in

Lähdesmäki et al. (2003), but we believe our presentation to be simpler and more intuitive.

The d-consistency is actually equivalent to the f-consistency in the sense that a k-tuple of

parents is d-consistent with gi if and only if there exists a boolean function f with k-inputs

such that f is f-consistent with gi .

2.2. Time complexities

The simple exhaustive search algorithm checks the consistency for every possible tuple of

candidate parents. We assume the number of consistent tuples is bounded by an unspecified
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Fig. 2 A tower shape diagram for noisy data. wj ’s are positive weights assigned to each measurement. To
assign the best-fit mapping rule, we examine the towers one by one. The first tower, for example, has three 1’s
with total weight w(0,0)(1) = w1 + w5 + w18 and one 0 with weight w(0,0)(0) = w16, then for the input value
(gi1 , gi2 ) = (0, 0), we assign 0 or 1 as the output value that has the larger total weight. When all the output
values are assigned in this way, the best-fit Boolean function is determined

value K ≥ 1 for each gene. K may or may not depend on other variables depending on

the network properties. For k-input parents, we examine
(n

k

)
candidate parents through the m

examples for each gene gi , i = 1, 2, . . . , n and hence, the worst-case complexity is O(mnk+1).

However, in the average case, most candidate parents will quickly turn out to be inconsistent

and we need not examine such profiles to the last mth data. We need to examine all the

m examples only for consistent parent tuple(s) (≤ K ). The expected number of examples

required to break the consistency for the uniformly distributed random input and output data

is evaluated in Lemma 1 in Appendix. Hence, when we are searching for all the consistent

parents for all genes, the average-case complexity is O(nk+1 + K mn).

2.3. Boolean networks for noisy data and the best fit extension problem

Real microarray data contain much noise—biological variation and the experimental mea-

surement noise. Hence, we may not find even a single consistent tuple for a gene when

the number of measurements is large. Hence, we allow some portion of inconsistent map-

pings. Here, we briefly formulate the so-called best-fit extension problem (Boros et al. 1998),

(Lähdesmäki et al., 2003) in the data-first approach when the input number of parents are

limited to k. We assign positive weights w j > 0, i = 1, 2 . . . , m for each measurement as

in Lähdesmäki et al. (2003). Let w = ∑m
j=1 w j and w(u1,...,uk )(0) := sum of all the weights

whose input value is (u1, . . . , uk) ∈ {0, 1}k and the output value is 0. w(u1,...,uk )(1) is defined

similarly when the output value is 1. See Fig. 2 for an illustration. The inconsistency ratio
(= noise ratio) IR is defined as

IR(i1, . . . , ik ; i) := w−1
∑

(u1,...,uk )∈{0,1}k

min[w(u1,...,uk )(0), w(u1,...,uk )(1)],

for the pair 〈(gi1
, . . . , gik ); gi 〉. We say the pair 〈(gi1

, . . . , gik ); gi 〉 is consistent with noise-
ratio nr ∈ (0, 0.5) if IR(i1, . . . , ik ; i) ≤ nr . For noisy data, we should examine the consis-

tency of each candidate parents to the last mth example to estimate IR exactly. Hence, the

time complexity is O(mnk+1). We say a Boolean function is the best-fit extension for the pair
〈(gi1

, . . . , gik ); gi 〉 if it matches the observed mapping with the smallest IR. If an input state

is missing in examples, the corresponding tower in Fig. 2 will be missing and the number of

best-fit extensions will be doubled per missing of a tower.

Since assessing the weight of each measurement is actually impractical, we assume the

uniform weight 1 for each measurement in this article.
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3. Description of the top-down search algorithm

In this Section, we describe our main algorithm TDSA and derive an additional gain of

(log m)(k−1). We first evaluate the exact time complexity in the noise-free case. Keeping

noisy data in mind, we consider the complexity of the average-case analysis for n, but of the

worst-case analysis for m, because we should exploit all the m data to exactly estimate the

inconsistency ratios. TDSA is applicable for searching for multiple tuples of parents for each

node, but we assume K = 1 in this Section to simplify our analysis.

3.1. Algorithm

(a) Superset selection : Observe that if a candidate tuple Gi = (gi1
, . . . , gik ) is consistent

with gi then, any superset of Gi , G̃i = (gi1
, . . . , gik , g′

i1
, . . . , g′

ih
), h = 1, 2, . . . is still

consistent with gi . We repeat the random selection until we have a consistent tuple of the

cover size cov = k + h, and examine whether or not we can choose k consistent subset

within the consistent superset in the next step.

(b) Core search : For the consistent tuple G̃i j = (g̃ij(1), . . . , g̃ij(cov)), i = 1, 2, . . . , n, j =
1, 2, . . . , obtained in (a), we delete one gene in G̃ij in turn and check if each respective

deleted tuple of size cov − 1 is consistent with gi or not. We make the core vector Cij of

size cov such that

Cij(l) =
{

1, if G̃ij\{g̃ij(l)} is not consistent with gi

0, otherwise,

for l = 1, 2, . . . , cov. Cij(l) = 1 means the lth element in G̃ij is indispensible to make

the cover G̃ij consistent with gi . We call g̃ij(l) a core element of G̃ij if Cij(l) = 1 and let

n(Cij) be the number of the core elements in the selection G̃ij. If n(Cij) > k, G̃ij is not a

superset of the k parents and we need not examine such cases any more. Otherwise, we

exhaustively choose k − n(Cij) elements from the non-core elements and check if each

choice added with the respective core elements constitute the consistent k parents.

(c) Repeat (a) and (b) until we choose a consistent superset that contains the exact k consistent

subtuple. We take it as the k-parents for the gene gi .

(d) We repeat (a), (b), and (c) for each i = 1, 2, . . . , n.

3.2. Analysis

For one consistent parent tuple, the probability that a random selection of size cov(> k)

contains all the k parents is

p =
(

n − k

cov − k

)/(
n

cov

)

and the expected number of repetitions is

Erep := 1 − p

p
= n(n − 1) · · · (n − k + 1)

cov(cov − 1) · · · (cov − k + 1)
− 1. (1)
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We let N := 2cov in this article. For a random superset of size cov, the probability that it firstly

becomes inconsistent at lth example is evaluated in Lemma 1 in Appendix as

pN (l) :=
N∑

r=1

(
N − 1

r − 1

)
2r−1S(l − 1, r ) r !

(
1

2N

)l−1

and hence, the probability of a candidate tuple of size cov to be consistent for m examples is

pconsis := pconsis(cov, m) :=
∞∑

l=m+1

pN (l). (2)

Hence, on average, pconsis portion of Erep will exhibit consistent tuples. For each such consis-

tent cov-tuple, we take step (b) to examine if we can extract exact k parents in the cov-tuple.

The additional cost for constructing the core vectors is

pconsis · Erep · cov(cov − 1) (3)

where cov is the number of search for each deleted tuple and (cov − 1) is the cost for

the tuple size. If we directly search for k-subtuple instead of step (b), the cost (3) will be

pconsis · Erep · (cov
k

)
. It is (cov − 2)!/k!(cov − k)! (k ≥ 2) times more costly then (3). If the

number of measurements are not sufficiently large, pconsis will not be small and this difference

becomes important. The cost for the sub-exhaustive search described in the latter part of

(b) is

pconsis · Erep · k
k∑

i=0

(
cov

i

)
qi (1 − q)cov−i

(
cov − i

k − i

)
(4)

= pconsis · k
k∑

i=0

1

i!(k − i)!
qi (1 − q)cov−i · O(nk).

where k is the tuple size cost and q = q(cov, m) is the probability that Cij(l) is a core element

i.e. a deleted tuple is not consistent with gi while the original tuple is consistent with gi . q is

also evaluated in Lemma 3 in Appendix. Hence, summing up all the three costs (1), (3), and

(4), the coefficient of n(n − 1) · · · (n − k + 1) for the overall computational cost is

cov(cov − k)!

cov!
+ pconsis ·

{
cov(cov − 1)(cov − k)!

cov!
+ k

k∑
i=0

qi (1 − q)cov−i

i!(k − i)!

}
. (5)

which depends on cov, m, and k. Let us choose the cover size cov = 
log(m/2)�, then pconsis

in (2) still exponentially decreases to 0 and 1 − q approximates to 2−N ≈ (1/
√

2)m when m
increases, which are shown in Lemma 2 and Lemma 3 respectively. Hence, the second and

third terms become negligible and the above coefficient is O(1/(log m)(k−1)). Consequently,

the overall average-case complexity for all the n nodes is O(nk+1/(log m)(k−1)) for the noise-

free case.
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3.3. Application of the algorithm in noisy setting

In noisy setting, we first determine the noise ratio nr from data. For a cover size cov, we

regard candidate parents of size cov > k are consistent with gi if IR< nr1. Subsequently,

we perform the core search and evaluate the core vector as in step (b). We regard g̃ij(l) is a

core element if IR for G̃ij\{g̃ij(l)} is smaller than nr2. And then, we perform a sub-exhaustive

search for the exact k parents and for the noise ratio nr . If the number of measurements m
is not sufficiently large, we recommend taking the noise ratios such that nr ≤ nr2 ≤ nr1 by

small increments, because the estimation of noise ratios can be less accurate for candidate

parents with large cover size.

To show that the proposed algorithm has the same gain in complexity for noisy data, we

need to show that pconsis in (5) still exponentially decreases to 0 if we choose cov = O(log m).

Here, we turn to the f-consistency temporarilly. For a specific Boolean function with k inputs,

the probability that it is consistent with nr is P(B ≤ nr · m) for a binomial random variable

B = B(m, 1/2) where 1/2 is the probability that an example is f-consistent. Hence, by Markov

inequality we have

P(a superset tuple is d-consistent with gi )

= P(one of 22cov
Boolean function is consistent with gi )

≤ 22cov · P(a Boolean function is consistent with g1)

= 22cov · P(B ≤ nr · m)

= 22cov · P(B ≥ (1 − nr )m)

≤ 22cov ·
[
(nr · e + 1 − nr )e−(1−nr )

]m
.

Since (nr · e + 1 − nr )e−(1−nr ) < 1 for 0 < nr < 0.4, the above probability still exponen-

tially decreases to 0 if we choose 2cov ≈ a
√

m, a > 1, i.e. cov = O(log m). In this noisy case,

the average time complexity is O(mnk+1/(log m)(k−1)).

4. Computational experiments

In this Section, we tested our main algorithm for the new gain of (log m)(k−1). We named

the improved algorithm given in Section 2 d-naive algorithm. We compared the CPUTIMEs

taken by d-naive algorithm and TDSA given in Section 3 using their ratios of CPUTIMEs

for several cov, m, and k. Because d-naive algorithm has the same time complexity as the

algorithm of Lähdesmäki et al. (2003), tests in this Section will address the comparison

with the best previous method (Lähdesmäki et al., 2003). Other efficient algorithms (Akutsu

et al, 2003; Fukagawa and Akutsu, 2003) are applicable only for some subclass of Boolean

functions, while TDSA is applicable to the whole function class. Moreover, while the greedy

algorithm (Akutsu et al., 2003) was incomparably fast with linear time complexity for n, the

accuracy was far from satisfactory. In the tests for m = 100, and k = 3 and 4, the greedy

algorithm showed very poor accuracy of 83% and 2% for the noise free case (Akutsu et al.,

2003). However, TDSA showed 100% (80/80) and 98.75% (79/80) accuracy even with 5%

IR. For other measurements (m ≥ 200), TDSA found the underlying Boolean relationships

with 100% accuracy.
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Because learning Boolean networks can be done independently gene by gene, we consider

learning Boolean relationships for individual genes in our test. We fix n = 50 and test the

following seven logical functions for k = 1, 2, 3, and 4 that determine the expression levels

of g1 ∼ g7 respectively.

g1 = g15 ∧ g20

g2 = g18 ∨ g22

g3 = (g25 ∧ g33)∨̄g40

g4 = ¬(g30 ∧ g41) ∧ g45

g5 = (g17 ∧ g24)∨̄(g24 ∧ g38)∨̄(g38 ∧ g42)∨̄(g17 ∧ g42)

g6 = ¬(g14 ∧ g27) ∧ (g29 ∨ g46)

g7 = g12.

We generated other expression levels of g8 ∼ g50 uniformly at random. Because TDSA

is a randomized algorithm, we repeated each computation 40 times and took the average

CPUTIMEs. For the CPUTIME of d-naive algorithm, we halved the worst-case CPUTIME

taken for the exhaustive
(n

k

)
search to obtain the average cost for n. For noise, we altered

5% of the output signals. Computation results for g4 (k = 3 and m = 200) are shown in

Fig. 3. The minimal cost was obtained when cov = 10 and nr1 = 0.1. If a smaller cover

size is taken, the probability of the superset to include the true parents decreases, and the

expected number of superset selection is increased. Conversely, if the larger cover size is

taken, the probability increases, but more false positive supersets that do not contain the k
parents should be examined. This caused the U-shape costs in Fig. 3. The choice of nr1 was

also important for the performance of TDSA. Figure 3 suggests TDSA gives robust and good

performance for the wide range of the choices of cover size and nr .

7 8 9 10 11 12

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Cover size

C
P

U
T

IM
E

nr=0.07
nr=0.08
nr=0.09
nr=0.1

Fig. 3 Cost plots of the case k = 3 and m = 200 for various cover sizes and nr1’s
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Fig. 4 Efficiency comparison for Boolean functions

To compare the performances, We define

Efficiency := 0.5 · worst-case CPUTIME of d-naive algorithm

CPUTIME of TDSA
. (6)

In Fig. 4, the Efficiencies are depicted for g1 ∼ g6. They get larger if m and k are increased

and TDSA was from dozens to hundreds times faster than d-naive algorithm. Note that since

the Efficiency is O((log m)(k−1)), it exponentially grows with k while it grows by log scale

for m. The test result for g7 (k = 1) is shown in Fig. 5. In this case, TDSA was on average

1.6 ∼ 1.7 times faster, but the Efficiency was not increased with the increase of m as we

expected. For k = 1, the gain O((log m)(k−1)) is O(1) and this test confirms again that our

new gain is exact. Because the cover size is taken for O(log m), the optimal cover size slowly

increased with the increase of m except for the case of k = 1 (Fig. 6).

The comparison of the cases n = 50 and n = 100 is shown for g2 and g4 in Fig. 7. The

optimal cover sizes for g2 and g4 ranged from 7 to 12 and 8 to 13, respectively both for n = 50

and n = 100 cases implying that the optimal cover size is not affected by n. Therefore, we

can quickly estimate the optimal cover sizes for small number of sampled nodes before we

learn the Boolean networks of all nodes.

We also tested the case of IR = 0.1 for g2 and g4. For higher noise ratio, more false-

positive supersets can be consistent for target genes without true parent nodes. This made

the Efficiencies a little reduced compared to the cases of IR = 0.05 (Fig. 8).

Lastly, we measured the success rates of TDSA. When we chose the optimal cover size and

nr1’s, TDSA precisely found the parent nodes of the seven target nodes in all 40 independent

trials for all the numbers of measurements tested, except for the one case of g6 (k = 4) and

m = 100 where 39 trials correctly found the four parent nodes. Since TDSA checks the

consistency of k candidate parents at the final step, it gives no false-positive predictions. The
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Fig. 6 Optimal cover sizes. For each measurement, the cover sizes that yielded the optimal costs (e.g. cov = 10,
nr1 = 0.1 in Fig. 3) were shown. The optimal cover size clearly increased with m for k = 2, 3 and 4 while no
pattern was observed for k = 1

success rate is generally increased if the cover size is decreased and vice versa. In Fig. 9, the

success rates averaged on different nr1’s are shown for g1 (k = 2).

The test results suggest that the parameters (cover size and nr1) chosen to maximize

efficiency also provide accurate results. With a large number of measurements a large cover

size can be used to obtain fast and accurate results, while smaller cover size should be used

with a small number of measurements to obtain accurate results at the cost of efficiency.
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5. Learning Boolean networks from real expression data

In the previous section, we tested TDSA for relatively small IRs and K = 1 to investigate the

various aspects of the new algorithm. However, real microarray data contain much higher rate

of noise, and a number of multiple tuples of parents are detected for given IRs. Additionally,

the quantized expression data are not uniformly distributed. Using yeast expression data, we

tested TDSA for this composite situation. For the case of multiple tuples, we repeated TDSA

until all the consistent parent tuples for given IR were caught.
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We combined three microarray data sets from Spellman et al. (1998), (Gasch et al., 2000),

and (Gasch et al., 2001) for total 302 measurements, and quantized the data at 0. We chose

seven genes, Clb2, Cdc20, Cln1, Cln2, Bud4, Bud9, and Rax2 (Table 2) involved in cell cycle

control or budding, and examined how these genes are predicted by the expression levels

of the 111 transcription factors (TF’s) chosen from Lee et al. (2002) that have expression

profiles in the three data sets). For most cases, higher IR’s of ∼20% and multiple tuples of

parents were detected.

We tested how fast TDSA finds all the true parent tuples without loss of accuracy. In this

highly noisy data, the optimal cover sizes were smaller (cover size = 5 and 6, for k = 2 and

k = 3 respectively) than the small noise cases (5∼10% IR) and noise ratio nr1 = IR gave

the optimal performance. These parameter choices gave 100% accuracy. The test results are

summarized in Table 2. We compared the CUPTIME’s taken for exhaustive search by d-naive

algorithm and TDSA. We generalize the definition of Efficiency (6) for multiple tuples of

parents as follows:

Efficiency(r) :=
r

r+1
· worst-case CPUTIME of d-naive algorithm

CPUTIME of TDSA for all the r tuples

for r tuples of parents. We evaluated Efficiencies for less than 100 parent tuples for each gene.

The Efficiencies were 3.6 ∼ 4.8 for k = 2, and 6.8 ∼ 12.6 for k = 3. Note that the Efficiencies

for 5% IR and m =∼ 300 were 13 ∼ 14 for k = 2, and ∼50 for k = 3. The Efficiency for

Clb2 for parent tuple number ≤ 1000 is depicted in Fig. 10, where the Efficiency decreased

with the increase of the tuple number. Hence, before applying TDSA, we need to control

IR such that we may not have too many parent tuples. In short, TDSA is more efficient for

smaller rate of noise and smaller number of parent tuples.
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Table 2 Test results for seven genes. The numbers of parent tuples that are consistent for given IR’s are shown.
In parentheses, corresponding CPUTIMEs taken for finding all the parent tuple(s) by TDSA are shown. The
parentheses in Indegree column denote the CUPTIMEs for d-naive algorithm

Indegree Gene\ IR 0.18 0.19 0.20 0.21 0.22 0.23

k = 2 Clb2 0 0 0 0 38 109

(23.34) (6.33) (11.05)

Cdc20 0 0 0 3 18 105

(3.61) (4.18) (8.45)

Cln1 0 0 0 0 0 0

Cln2 0 0 0 0 0 0

Bud4 0 0 0 0 0 0

Bud9 0 0 0 0 21 110

(4.73) (8.65)

Rax2 0 0 0 0 2 86

(4.93) (9.67)

k = 3 Clb2 7 38 228 748 2966 6208

(863.55) (69.99) (79.44)

Cdc20 0 1 88 423 1986 5658

(63.55) (79.26)

Cln1 0 0 0 0 1 5

(44.32) (73.29)

Cln2 0 0 2 5 20 78

(70.34) (62.25) (92.97) (135.60)

Bud4 0 23 564 5092 5996 6002

(69.26)

Bud9 0 0 8 142 2305 5834

(61.12)

Rax2 1 7 42 140 738 4576

(59.60) (69.75) (90.78)
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Fig. 10 Efficiencies for learning
multiple parent tuples of Clb2
(k = 3)
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6. Conclusion

We proposed two independent ways to improve network search efficiencies, and our total

gain was 22k
(log m)(k−1). For optimal implementation of our algorithm, the cover size cov

and the noise ratio nr was chosen appropriately for each number of measurements and input

parents. These can be estimated from tests for sampled nodes.

Boolean networks of gene expression represent consistent logical relationships among

expression profiles. Therefore, they may not necessarily reflect known biological interac-

tions such as transcriptions or protein interactions that occur in different stages of biological

processes. Such gene expression networks may be interpreted as remote, but tightly orga-

nized, biological relationships that are determined by complex activities of many biological

objects.

Among many biological interactions, transcription networks may most resemble the gene

expression networks. In our test, however, only one of the seven genes (Bud9) had high scoring

Boolean relationships enriched in location analysis data. Although previous pilot studies have

been done by Lähdesmäki et al. (2003), there are still difficulties in mapping gene expression

networks to gene regulatory networks. As shown in section 5, microarray expression data con-

tain higher rate of noise, and a number of multiple tuples of consistent parents are detected for

given IR’s. Two other difficulties stem from the limitation of the mathematical model: (1) data

quantization causes information loss, and (2) only a limited number of parents should be con-

sidered due to computational and experimental reasons. The latter provides another source of

noise: the activity of hidden regulators. Despite these challenges, the innate simplicity and in-

tuitiveness of the model make Boolean networks strong candidate methods for learning regu-

latory networks, as heterogeneous sources of information for proteins and metabolites become

available.

Appendix: Some discrete probability calculations

Let us consider the Fig. 1. Suppose the slots are N people and 0 and 1 represent two different

coupons. Both probabilities for each coupon are equally 1/2 and the coupons are distributed

uniformly randomly to N people one by one. The process stops when a person firstly collect

both the coupons 0 and 1. Then, the probability that the process stops at mth coupon and its

expectation are given in the following Lemma.

Lemma 1. (Two-coupon collection problem for N people). Let M be the random variable

of the number of coupons distributed when the process explained above stops, then the

probability distribution of M is given as

PN (M = m) :=
N∑

r=1

(
N − 1

r − 1

)
2r−1S(m − 1, r ) r !

(
1

2N

)m−1

, m ≥ 2,

where S(n, k) is the Stirling number of the second kind, and its expectation is

EN =
N∑

r=1

(
N − 1

r − 1

)
2r−1r !

(2N − r − 1)!

(2N − 1)!

r∑
l=0

2N

2N − l
.
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Proof: We give a combinatorial proof here. The meanings of each term are� We suppose the coupon distribution stopped at mth example with coupon ‘1’ at the N th

slot.� r represents the number of slots occupied when the process stoped.� Except for the slot where the process ended, we should choose r − 1 slots occupied among

the N − 1 slots :
(N−1

r−1

)
.� The r − 1 slots chosen have two choices 0 or 1 : 2r−1.� We partition the former m − 1 coupons into r groups and distribute each group to the r

slots : S(m − 1, r ) r !.� All possible choices except for the last coupon : (1/2N )m−1.

Hence, using the generating function for S(·, k),

∑
n

S(n, k) xn = xk

(1 − x)(1 − 2x) · · · (1 − kx)
, k ≥ 0

(see Wilf, 1992), the expected number of coupons required is evaluated as

EN =
∑
m≥2

m · PN (M = m)

=
N∑

r=1

(
N − 1

r − 1

)
2r−1r !

∑
m≥2

m · S(m − 1, r )

(
1

2N

)m−1

=
N∑

r=1

(
N − 1

r − 1

)
2r−1r !

(2N − r − 1)!

(2N − 1)!

r∑
l=0

2N

2N − l
.

�

Lemma 2. pconsis in (2) exponentially decreases to 0 when m ↑ ∞. pconsis still exponentially

decreases to 0 if we choose N = 
m/2� i.e. cov = O(log m).

Proof: The Stirling number S(n, k) in (2) is expressed as

S(n, k) k! =
k∑

i=0

(
k

i

)
(−1)i (k − i)n,

which represents the number of onto functions from n elements to k elements (see Stanley,

1997). Hence, asymptotically we have

lim
n→∞ S(n, k)/kn = 1/k!, (7)

and using this fact, we have

pconsis ≈
N∑

r=1

(
N − 1

r − 1

)
2r−1 2N

2N − r

( r

2N

)m
,
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and its upper bound as

≤
(

1

2

)m N∑
r=1

(
N − 1

r − 1

)
2r−1

= (1/2)m · 3N−1.

Hence, pconsis exponentially decreases to 0 if we choose N = 
m/2� when m ↑ ∞. �

Lemma 3. For q in (5), 1 − q approximates to 2−N when m ↑ ∞.

Proof: q in (4) and (5) is the probability that a deleted (cov − 1)-tuple is inconsistent with

a gene gi conditioned that the original cov-tuple is consistent with gi . Let us consider the

following problem first. Under the condition that we chose i slots among 2N ≥ i slots, the

probability that we have chosen d pairs of slots of the form ( j, N + j), 1 ≤ j ≤ N is given

as

pN,i(d) =
(

2N

i

)−1(N

d

)(
N − d

i − 2d

)
2i−2d , 1 ≤ d ≤ �i/2�,

where the respective terms mean in sequence the inverse of the total number of possible

cases, possible number of pair choices, the number of choices among i selections which does

not form pairs, and the possible choices of the positions for the third term between the two

j th and (N + j)th slots.

The second problem to consider is as follows: Suppose the m examples were consistent

for 2N slots. Then, the probability that the number of occupied slots is i is given by Bayes

rule as

pN (i |m) = P(i slots are occupied | m examples are consistent on 2N slots)

=
(

2N

i

)
S(m, i) i! 2i

/ 2N∑
j=1

(
2N

j

)
S(m, j) j! 2 j , 1 ≤ i ≤ 2N .

Hence, the probability for the number of pairs when the m examples are consistent is

pN (d) =
N+d∑
i=2d

pN ,i (d) · pN (i |m)

and the deleted tuple is consistent with probability

pN =
N∑

d=1

2−d · pN (d).

Hence,

q = 1 − pN .

Springer



Mach Learn (2006) 65:229–245 245

Using the fact (7), we can show pN (2N | m) → 1 as m ↑ ∞, and hence pN (N ) → 1 while

pN (d) → 0 for all d < N , and we have

1 − q = pN → 2−N .

�
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