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1. Introduction

With increasing interest in accurate prediction of subsurface properties, subsurface characterization based on
dynamic data such as transient pressure, tracer and multiphase production response (phase fractional flow), takes
on greater importance. Uncertainties on the detailed description of subsurface porosity and permeability are large
contributors to the overall uncertainty in performance forecasting. Reducing this uncertainty can be achieved
by integrating additional data in subsurface modeling. Integration of data from different sources is a nontrivial
task because different data sources scan different length scales of heterogeneity and can have different degrees of
precision. For example, well logs can resolve heterogeneity at the scale of a few feet whereas fractional flow data,
which is the ratio of the injection fluid to the total fluid produced, usually scan the length scales comparable to the
inter-well distances. In particular, integration of dynamic data leads to an inverse problem. Such inverse problems
are computationally expensive and typically requires orders of magnitude more computation time compared to the
forward simulation of flow and transport. Several authors have proposed techniques to circumvent these problems
[Rubin and Dagan, 1987; Carrera and Neuman, 1986; Andeman and Hill, 1999].

Because flow and transport in porous media are nonlinear, it is generally difficult to calculate directly the
probability distribution for permeability fields conditioned to dynamic data. Instead, we are forced to estimate
the probability distributions from the outcomes of flow predictions for a large number of realizations. For this
method to work, it is essential that these permeability realizations adequately reflect the uncertainty in subsurface
properties. The type of the problem that we consider is one in which the permeability in a large number of grid-
cells must be determined for high resolution subsurface flow and transport calculations and predictions. Our data
sources will consist of both static data such as cores/well logs and dynamic data such as water-cut data at the
producing wells. In addition, we assume that a reasonable prior covariance of the permeability field can be derived
based on static data, and we specify full prior distribution. Markov chain Monte Carlo methods are well suited
for reconstructing the spatial distribution of permeability and quantifying the associated uncertainties, and they
are used in petroleum applications (see e.g., Baker et al. [2001]). General framework of MCMC allows one to
incorporate complicated relations between observed data (fractional flow data) and permeability field and does
not require the normalizing constant of probability distributions which is difficult to compute. On the other hand
one of the main disadvantages of MCMC is its computational cost. Each proposal of MCMC requires the solution
of the forward problem. Thus, it is important to devise MCMC algorithms which have high acceptance rate.

The goal of this paper is to employ coarse-scale models based on single-phase upscaling to increase the ac-
ceptance rate of Markov chain Monte Carlo approaches for subsurface characterization. The main idea of this
upscaling approach, is that only the absolute permeability field is upscaled, and the system of equations is solved
on the coarse-grid. The sampling of permeability field based on the water-cut data is, in general, very expensive
because each proposal requires a fine-scale simulation. Previously coarse-scale and approximate models have been
used to reduce the computational cost [Omre and Lodoen, 2004; Lodoen et al. 2004]. One of the first paper,
where the use of coarse-scale models is promoted, is Glimm and Sharp [1998]. These approaches are based on
the estimation of upscaling errors. In our paper, we do not use coarse-scale models as an approximation for
the fine-scale models. The coarse-scale computations based on single-phase upscaling are used to decide whether
to run the fine-scale simulation in order to determine the acceptance for a given proposal during MCMC. The
latter introduces two-stage MCMC approach and modifies the underlying Markov chain which has been taken
into account in an appropriate way in our paper. The proposed approach analyzed rigorously in Efendiev et

al. [2005s], where we use a different type of upscaled model. Two-stage MCMC approaches have been used
in statistical literature before (e.g., Christen and Fox, 2005). The idea of developing approaches with the aim
of increasing the acceptance rate in MCMC simulations is not new. Kitanidis, [1995] and Oliver et al. [1996,
1997] used geostatistical inverse methods for proposing permeability fields that yield high acceptance rate using
gradient based techniques. These approaches are different from the approach presented in this paper. We do
not employ gradient-based inverse methods, but rather use coarse-scale simulations to pre-determine whether
or not to do fine-scale simulations. The results of the fine-scale simulation are then used in conjunction with
Metropolis-Hasting criteria to update permeability field during subsurface characterization.

For our numerical results, we consider a five-spot problem, where the injection well is placed in the middle of
the square domain and four production wells are placed at the vertices of the square. The permeability field is
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assumed to be log-normal and known at the well locations. Using single-phase upscaling in two-stage MCMC, we
achieve several fold increase in the acceptance rate.

2. Fine- and Coarse-Scale Models

In this section we briefly introduce the coarse-scale model used in the simulations. We consider two-phase flow
in a subsurface formation (denoted by Ω) under the assumption that the displacement is dominated by viscous
effects. For clarity of exposition, we neglect the effects of gravity, compressibility, and capillary pressure, although
our proposed approach is independent of the choice of physical mechanisms. Also, porosity will be considered to
be constant. The two phases will be referred to as water and oil (or a non-aqueous phase liquid), designated by
subscripts w and o, respectively. We write Darcy’s law for each phase as follows:

vj = −
krj(S)

µj

k∇p, (1)

where vj is the phase velocity, k is the permeability tensor, krj is the relative permeability to phase j (j = o, w),
S is the water saturation (volume fraction) and p is the pressure. In this work, a single set of relative permeability
curves is used and k is taken to be a diagonal tensor. Combining Darcy’s law with a statement of conservation of
mass allows us to express the governing equations in terms of pressure and saturation equations:

∇ · (λ(S)k∇p) = Qs, (2)

∂S

∂t
+ v · ∇f(S) = 0, (3)

where λ is the total mobility, Qs is source term, f is the fractional flux of water, and v is the total velocity,
which are respectively given by:

λ(S) =
krw(S)

µw

+
kro(S)

µo

, (4)

f(S) =
krw(S)/µw

krw(S)/µw + kro(S)/µo

, (5)

v = vw + vo = −λ(S)k · ∇p. (6)

The above descriptions are referred to as the fine-scale model of the two-phase flow problem.
Next, we will briefly describe single-phase flow upscaling procedure for two-phase flow in heterogeneous porous

media. This type of approaches for upscaling are discussed by many authors; see e.g., Christie[1996]; Durlofsky

[1998]. The main idea of this approach is to upscale the absolute permeability field k on the coarse-grid (see
Figure 1), then solve the original system on the coarse-grid with upscaled permeability field. Below, we will
discuss briefly the upscaling of absolute permeability used in our simulations.

Consider the fine-scale permeability that is defined in the domain with underlying fine grid as shown in Figure
1. On the same graph we illustrate a coarse-scale partition of the domain. To calculate the upscaled permeability
field at the coarse-level, we use the solutions of local pressure equations. The main idea of the calculation of a
coarse-scale permeability is that it delivers the same average response as that of the underlying fine-scale problem
locally. For each coarse domain K, we solve the local problems

div(k(x)∇φj) = 0, (7)

with some coarse-scale boundary conditions. Here k(x) denotes the fine-scale permeability field. We will use the
boundary conditions which are given by φj = 1 and φj = 0 on the opposite sides along the direction ej and no
flow boundary conditions on all other sides. For these boundary conditions, the coarse-scale permeability tensor
is given by

(k∗(x)ej , el) =
1

|K|

∫

K

(k(x)∇φj(x), el)dx, (8)

where φj is the solution of (7) with prescribed boundary conditions. Various boundary condition can have some
influence on the accuracy of the calculations, including periodic, Dirichlet and etc. These issues have been
discussed in Wu et al. [2002]. In particular, for determining the coarse-scale permeability field one can choose
the local domains that are larger than the target coarse block, K, for (7).

Once the upscaled absolute permeability is computed, the original equation is solved on the coarse-grid, without
changing the form of relative permeability curves. This is an inexpensive calculations, since the pressure update
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involves only solving the pressure equation on the coarse-grid, and one can take larger time step for solving the
transport equation. In our numerical simulations, the fine-grid is coarsened 10 times in each direction. This
provides 100 times speed-up for each pressure update. As a result, the upscaling of two-phase flow based on
absolute permeability upscaling provides more than 100 times speed-up. For solving the saturation equation, we
employ streamline approach to avoid the numerical diffusion. Note that the upscaling of the saturation equation
does not take into account subgrid effects. These kinds of upscaling techniques in conjunction with the upscaling
of absolute permeability has been used in groundwater applications (see e.g. Durlofsky et al. [1997]).

Our goal in this paper, is to sample fine-scale permeability field based on phase fractional flow, specifically, the
fraction of water produced in relation to the total production rate. For two-phase water-oil flow, the fractional
flow or water-cut F (t) (denoted simply by F in further discussion) is defined as the fraction of water in the
produced fluid and is given by qw/qt, where qt = qo + qw, with qo and qw the flow rates of oil and water at the
production edge of the model,

F (t) =

∫

∂Ωout vnf(S)dl
∫

∂Ωout vndl
, (9)

where ∂Ωout is outflow boundaries and vn is normal velocity field. Typically, the coarse- and fine-scale water-cut
curves can be quite different. However, within the sampling approach, the strong correlation between fine- and
coarse-scale water-cut curves plays an important role.

3. Markov Chain Monte Carlo (MCMC) method using coarse-scale models

To find the permeability field given water-cut information, we assume that an observed water-cut data, F ref (t),
is given. Consequently, one can consider this problem as a sampling from the conditional distribution P (k|F ref ).
Using Bayes theorem we can write

P (k|F ref ) ∝ P (F ref |k)P (k). (10)

The normalizing constant in this expression is not important, because we use iterative updating procedure. In
(10), P (F ref |k) represents the likelihood function and requires the forward solution of flow and transport. We
will be using Metropolis-Hasting MCMC (see Robert and Casella, 1999) to sample from the posterior distribution
P (k|F ). The main idea of MCMC is to generate a Markov chain whose stationary distribution is given by
P (k|F ref ). At each iteration, a permeability field, k, is proposed using instrumental distribution q(k|kn) (where
kn is previously accepted permeability field), and then forward problem is solved to determine the acceptance
probability,

Pr(kn, k) = min

(

1,
q(kn|k)P (k|F ref )

q(k|kn)P (kn|F ref )

)

, (11)

i.e. kn+1 = k with probability Pr(kn, k), and kn+1 = kn with probability 1 − Pr(kn, k).
Since each proposal requires the fine-scale computation, direct (full) MCMC is expensive. Typically, direct

MCMC requires several thousand iterations for the convergence to a steady state, where each iteration involves
the computation of the fine-scale solution over a large time interval. One way to achieve efficiency is to propose an
algorithm that increases the acceptance rate of MCMC. This minimizes rejection of proposals after detailed flow
and transport calculations. In this paper, we use coarse-scale solutions based on single-phase upscaling to increase
the acceptance rate. The main idea of this algorithm is to compare the fractional flow curves that correspond to
the coarse-scale models to determine whether or not to run fine-scale simulations.

Algorithm (coarse-scale MCMC)
• Step 1. At kn generate k from q(k|kn).
• Step 2. Accept k for the fine-scale run with probability

G(kn, k) = min

(

1,
q(kn|k)P (k∗|F ref )

q(k|kn)P (k∗

n|F
ref )

)

, (12)

i.e. kn+1 = k (conditionally) with probability G(kn, k), and kn+1 = kn (conditionally) with probability 1 −
G(kn, k). If rejected go to step 1.

• Step 3. Accept k with probability

Pr(kn, k) = min

(

1,
Q(kn|k)P (k|F ref )

Q(k|kn)P (kn|F ref )

)

, (13)

i.e. kn+1 = k with probability Pr(kn, k), and kn+1 = kn with probability 1 − Pr(kn, k). The proposal function
Q(k|kn) satisfies

Q(k|kn) = G(kn, k)q(k|kn) +

(

1 −

∫

G(kn, k)q(k|kn)dk

)

δkn
(k). (14)
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First we note that Q is the transition distribution for the modified Markov chain, which simply indicates that
the chain moves from kn to k with probability G(kn, k)q(k|kn) and remains at kn with the probability 1−Q(k|kn).
Moreover, there is no need to compute (1−

∫

G(kn, k)q(k|kn)dk)δkn
(k) during the simulations. Indeed, if k = kn

the chain remains at the same point, otherwise k 6= kn, Q(k|kn) = G(kn, k)q(k|kn). In Efendiev et al. [2005s], we
have shown that Pr(kn, k) can be easily computed by

Pr(kn, k) = min

(

1,
P (k|F ref )P (k∗

n|F
ref )

P (kn|F ref )P (k∗|F ref )

)

. (15)

For our numerical results, we choose

P (F ref |k) ∝ exp(−(F ref − Fk)Σ(F ref − Fk)), (16)

where F ref is the reference water-cut curve, Fk is the water-cut curve that is obtained from the simulations with
permeability k, and Σ is covariance matrix representing the measurement errors. Water-cut depends on time and
measured at some time instants (i.e., F ref − Fk is a finite dimensional vector and Σ is square matrix). Since
only the ratio is involved in the acceptance criteria the normalization constant is not important. We denote the
covariance matrix for fine-scale simulations by Σf . For coarse-scale simulations, we choose the covariance matrix
to be Σc,

P (F ref |k∗) ∝ exp(−(F ref − Fk∗)Σc(F
ref − Fk∗)), (17)

In our numerical results, we take Σf = σf I and Σc = σcI, where I is identity matrix. First, we would like to note
that the Gaussian error model for the coarse-scale model is not justified, and we only use it in our second step in
MCMC to decide whether or not to run the fine-scale simulations. The choice of the parameter σc is crucial for
increasing the acceptance rate. We have tested various choices of these parameters in our simulations. Larger σc

corresponds to the full MCMC where all the proposals are tested using fine-scale simulations. Numerical results
show that the optimal σc is approximately equal to σf , and that the two-stage MCMC approach improves the
acceptance rate. This is due to the fact that the correlation between fine- and coarse-scale water-cut data is strong.
In particular, we have found that the correlation between (F ref−Fk)Σf (F ref−Fk) and (F ref−Fk∗)Σc(F

ref−Fk∗)
to be 0.9 for the numerical examples, we have studied. We have analyzed this approach rigorously in Efendiev at

al. [2005s], where we use different type of upscaling method. In particular, we showed that the modified chain is
ergodic and converges to the correct steady state distribution.

4. Numerical Results

In this section, we present a set of representative simulation results for two-phase flow. We consider two
dimensional system in a square domain Ω with unit size. The method can be naturally extended to three
dimensional case. We set the relative permeabilities of oil and water to be simple quadratic functions of their
respective saturations; i.e., krw = S2 and kro = (1 − S)2, where S is the water saturation. We set the ratio of oil
to water viscosity (M = µo/µw) to be 5. We consider five-spot problem, where the injection well is placed at the
middle of the square domain and four production wells are placed at the vertices.

The fine-scale models are of dimension 60 × 60 and the coarse-scale models, generated through a uniform
coarsening of the fine model, are 6 × 6. As for prior distribution, we assume the permeability is log-normal,
log(k(x)) = Y (x), where Y (x) has Gaussian distribution with correlation function

R(x1, z1; x2, z2) = σ2 exp
(

−
|x1 − x2|

2

2l2x
−

|z1 − z2|
2

2l2z

)

, (18)

with correlation lengths lx = lz = 0.2 and variance σ2 = 2. Using the Karhunen-Loeve expansion [Wong 1971],
the permeability field can be expanded in terms orthogonal basis φk(x, z) satisfying

∫

Ω

R(x1, z1; x2, z2)φk(x2, z2)dx2dz2 = λkφk(x1, z1), k = 1, 2, . . . , (19)

where λk = E[Y 2
k ] > 0. Consequently, the permeability field can be written as

Y (x, ω) =

∞
∑

k=1

√

λkθk(ω)φk(x). (20)

This is a well known technique and is called Karhunen-Loeve expansion. Next, we identify the dominant eigen-
values, which gives less than 5 percent errors for the solution if only dominant eigenvalues are used. For the
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permeability field considered in our numerical example, 20 eigenvalues are sufficient. Consequently, the dimen-
sion of the parameter space is 20. This is a significant dimension reduction, since originally the permeability
field has 60 × 60 = 3600 dimension. Furthermore, we assume that the values of the log-permeability at the well
locations are known. This condition is imposed by setting

20
∑

k=1

√

λkθkφk(xj) = αj , (21)

where αj (j = 1, . . . , 5) are prescribed constants, and xj are well locations. For simplicity, we set αj = 0 for all
j = 1, . . . , 5. In the simulations we propose fifteen θi and calculate the rest of θi by solving the linear system (21).

As for the proposal distribution, we choose random walk sampler, where q(x|y) = y + δ ∗ ǫ, where ǫ is Gaussian
random variable with zero mean and variance 1. In our numerical simulations, we choose δ = 0.3 and σf = 1. In
Figure 2, we plot the acceptance rate for 5 different values of σc, where we specify only the ratio between σc and σf .
Here the acceptance rate denotes the number of accepted fine-scale permeability field divided by total number of
fine-scale simulations. As we see from this figure that, the use of the coarse-scale models increases the acceptance
rate several times. In particular, if σc is larger, more proposals pass the second step, and thus the acceptance rate
of modified MCMC is reduced. In the limit of very large σc, the acceptance rate of modified MCMC approaches
to that of direct MCMC. For smaller σc, σc = 2σf , we observe 8 times increase in the acceptance rate. In the next
figure, Figure 3, we plot the cumulative water-cut errors as a function of iterations for both direct and modified
MCMC. Here, cumulative water-cut error denotes the sum of the water-cut errors of four production wells. We
observe from this figure that both methods reach the steady state within 100 iterations, i.e., after 100 proposals.
In Figure 4, water-cut curves at production wells for initial guess and one of the final sampled realizations are
shown. Each figure represent a water-cut in one of the production wells. As we see, the sampled realization,
captures correctly the observed water-cut. However, the realizations of the permeability field are not necessarily
very close to the reference permeability field, as one can see from Figure 5.

We have tested two-stage MCMC approach using other type, simpler, prior distributions. In particular, we have
considered the prior distribution to be linear combination of given permeability fields sampled from a distribution
(similar to gradual deformation method [Hu 2000]). For this type of problems, we have observed an order of
magnitude increase in the acceptance rate for both independent and random walk samplers. Moreover, for this
type of prior, we have observed very good agreement between the sampled permeability fields and the reference
permeability field. We do not present these numerical results here. Finally, we would like to discuss the CPU
savings achieved using two-stage MCMC with single-phase upscaling. In the proposed approach, the model is
coarsened 100 times (10 times in each direction). As we mentioned before, this provides 100 times speed-up
for each coarse-scale run. If we consider the case of very large σc (i.e., no increase in the acceptance rate), the
CPU time for two-stage MCMC is 1 percent higher compared to the direct MCMC. However, in general, if the
acceptance rate is increased n times by two-stage MCMC, then the speed-up is more than n-times. Consequently,,
in the numerical example studied in the paper, we have achieved 5-8 times speed-up using single-phase upscaling
in two-stage MCMC method.

5. Conclusion

In the paper we use two-stage MCMC that utilizes inexpensive coarse-scale models to screen out detailed
flow and transport simulations. The main idea of the method is to compare the proposed fields using coarse-scale
methods prior to running the fine-scale simulations. If it is accepted (conditionally), then the fine-scale simulations
are performed and it is decided using Metropolis-Hasting rule whether or not to accept the proposal. Because
the differences between fine-scale fractional flows and corresponding coarse-scale fractional flows are correlated,
we obtain several fold increase in acceptance rate.
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K

Figure 1. Schematic description of fine- and coarse-
grids. Bold lines illustrate a coarse-scale partitioning,
while thin lines show a fine-scale partitioning within
coarse-grid cells.
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Figure 2. Acceptance rate for modified and direct MCMC methods.
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Figure 3. Cumulative water-cut error as a function of iterations.
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Figure 4. Initial and the final water-cut curves at production wells compared to the observed water-cut.
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Figure 5. Realizations of the sampled permeability field.


