
An efficient unstructured MUSCL scheme for solving the 2D shallow

water equations

Jingming Hou a, Qiuhua Liang a, *, Hongbin Zhang a, Reinhard Hinkelmann b

a School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
b Department of Civil Engineering, Technische Universit€at Berlin, TIB 1-B14, Gustav-Meyer-Allee 25, 13355, Berlin, Germany

a r t i c l e i n f o

Article history:

Received 25 September 2014

Received in revised form

8 December 2014

Accepted 9 December 2014

Available online 23 January 2015

Keywords:

MUSCL scheme

Shallow water equations

Unstructured grids

Finite volume method

Godunov-type model

a b s t r a c t

The aim of this paper is to present a novel monotone upstream scheme for conservation law (MUSCL) on

unstructured grids. The novel edge-based MUSCL scheme is devised to construct the required values at

the midpoint of cell edges in a more straightforward and effective way compared to other conventional

approaches, by making better use of the geometrical property of the triangular grids. The scheme is

incorporated into a two-dimensional (2D) cell-centered Godunov-type finite volume model as proposed

in Hou et al. (2013a,c) to solve the shallow water equations (SWEs). The MUSCL scheme renders the

model to preserve the well-balanced property and achieve high accuracy and efficiency for shallow flow

simulations over uneven terrains. Furthermore, the scheme is directly applicable to all triangular grids.

Application to several numerical experiments verifies the efficiency and robustness of the current new

MUSCL scheme.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Two-dimensional (2D) shallow water models based on hydro-

static pressure assumption have been used to simulate awide range

of surface environmental flows including dam- or dike-break

induced flood events (Viero et al., 2013; Wang et al., 2011), urban

flood inundations (Hunter et al., 2007; Liang, 2010), rainfall-runoff

processes (Esteves et al., 2000; Simons et al., 2014), tidal hydro-

dynamics and ocean tsunami hazards (Sugawara and Goto, 2012;

Pelling et al., 2013), water quality and fluvial morphology (Kneis

et al., 2009; Cao et al., 2006), hurricane induced storm surges

(Akbar and Aliabadi, 2013), and even gravity currents (La Rocca

et al., 2008), among many others. These applications may involve

numerical calculation of very complex flow hydrodynamics such as

shock-type flow discontinuities, transcritical flows, wetting and

drying over irregular topography. A robust numerical scheme is

required in order to produce accurate and stable numerical solu-

tions for these applications.

Allowing automatic shock-capturing when computing all of the

aforementioned complex flow hydrodynamics, Godunov-type

finite volume schemes have been widely used to solve the

shallow water equations (SWEs) over the last two to three decades

(Anastasiou and Chan, 1997; Chippada et al., 1998; Yoon and Kang,

2004; Liang and Borthwick, 2009; Liang and Marche, 2009; Liang,

2010; Wang et al., 2011; Bradford and Sanders, 2002, 2005;

Begnudelli and Sanders, 2006, 2007; Begnudelli et al., 2008;

Sanders et al., 2010; Song et al., 2011b,a; Simons et al., 2011; Delis

et al., 2008, 2011; Delis and Nikolos, 2013; Gallardo et al., 2007;

George, 2010; Loukili and Soulaimani, 2007; Murillo et al., 2007;

Skoula et al., 2006; Toro, 2009; Zhou et al., 2001, 2004; Murillo

et al., 2006, 2008, 2009; Murillo and Garcia-Navarro, 2011; Benk-

haldoun et al., 2010b,a; Zokagoa and Soulaimani, 2010; Hou et al.,

2013a,c,b). For most of the applications, first-order finite volume

schemes may give rise to unacceptable numerical diffusion and

hence poor numerical solutions, especially for flows containing

discontinuities, e.g. tsunami and dam-break waves. It is therefore

necessary to develop second- or higher-order schemes to predict

more accurately the shallow flows. As an effective second-order

scheme, the monotone upstream scheme for conservation law

(MUSCL) (van Leer, 1979) has been widely recognized and applied

in solving the SWEs within the framework of finite volume

Godunov-type schemes (Benkhaldoun et al., 2007; Barth and

Jespersen, 1989; Hubbard, 1999; Begnudelli and Sanders, 2006,

2007; Begnudelli et al., 2008; Song et al., 2011b,a; Jawahar and

Kamath, 2000; Yoon and Kang, 2004; Sim~oes, 2011; Canestrelli

et al., 2012; Hou et al., 2013c,b,a). This technique is able to sub-

stantially reduce numerical diffusion without causing unphysical
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oscillations, by means of linearly reconstructing the values of flow

variables within a cell or at cell interfaces. The MUSCL scheme was

originally developed by van Leer (1979) for uniform grids, but

substantial research effort has been devoted to extend its applica-

tion on unstructured grids to allow better representation of com-

plex domain geometries for real-world applications.

Two-dimensional unstructured MUSCL schemes may be gener-

ally classified into two categories according to the way the values of

flow variables are reconstructed within a cell, i.e. cell-based and

edge-based MUSCL schemes, which are also referred to as mono-

slope and multislope MUSCL schemes, respectively (Buffard and

Clain, 2010). The cell-based MUSCL schemes use unique limited

gradients of variables to reconstruct the required values at edges. A

number of cell-based MUSCL schemes have been derived for un-

structured grids. Being themost efficient cell-basedMUSCL scheme,

the limited central difference scheme (LCD) has been widely re-

ported for solving the SWEs on unstructured grids (Hubbard, 1999;

Begnudelli and Sanders, 2006, 2007; Begnudelli et al., 2008; Song

et al., 2011b,a). However, this scheme is known to suffer from

excessive numerical diffusion (Hubbard, 1999). A more accurate

scheme was developed by Barth and Jespersen (1989), which

satisfied monotonicity and was adopted by Anastasiou and Chan

(1997) in their shallow water flow model. As the limiting function

of Barth and Jespersen (1989) is not differentiable and likely to cause

numerical instabilities near to the solution regions with constant

variables, the scheme fails to provide converged solution to steady

state (Venkatakrishnan, 1995; Jawahar and Kamath, 2000;

Venkatakrishnan et al., 2003). To resolve the convergence prob-

lem, Venkatakrishnan (1995) devised a modified limiter which was

applied by Sim~oes (2011) to simulate shallow water flows. The

schemes of Barth and Jespersen (1989) and Venkatakrishnan (1995)

were incorporated into the multi-dimensional limiting process

(MLP) by Park et al. (2010) to achieve a higher accuracy. The MLP

based on Barth and Jespersen's limiting scheme was adopted in

Canestrelli et al. (2012) to solve the SWEs. In spite of the increased

accuracy, MLP requires a much wider stencil of cells and a more

complicated solution procedure and hence is computationallymore

demanding. It should be noted that the above list of references

covers only a small number of cell-based MUSCL schemes reported

in literature and it is by no means exhaustive.

Unlike the cell-based MUSCL schemes that provide piecewise

linear gradients at a cell, the edge-based MUSCL schemes compute

the edge values by limiting 1D slopes at each edge of a cell (Buffard

and Clain, 2010; Delis and Nikolos, 2013). They may not give linear

functions at each cell to preserve the mean values in the cell under

consideration (Buffard and Clain, 2010; Delis and Nikolos, 2013).

However, it does not affect the accuracy of finite volume method

because its kernel lies in computing the fluxes at the cell edges

instead of the shape of the reconstructed functions at the cells

(Buffard and Clain, 2010). The limiting procedure for edge-based

MUSCL schemes is carried out in the same loop of computing the

fluxes over all edges of a cell. This eliminates the need of an addi-

tional loop as required for cell-based MUSCL schemes for selecting

the best limiter of all faces. Hence the number of times that the

limiter is invoked is largely reduced (Aftosmis et al.,1994,1995; Delis

and Nikolos, 2013; Hou et al., 2013a). Therefore, the edge-based

MUSCL schemes are computationally more efficient and have been

employed broadly by model developers for solving the SWEs on

unstructured grids (Audusse and Bristeau, 2005; Benkhaldoun et al.,

2007, 2010b; Nikolos and Delis, 2009; Delis et al., 2011; Delis and

Nikolos, 2013; Hou et al., 2013a,c; Simons et al., 2014). As a simple

edge-based MUSCL approach, the minmod scheme that essentially

selects the smaller slope between the two alternatives has been

widely implemented in unstructured SWE models due to its simple

formulation and superior numerical stability (Skoula et al., 2006;

Benkhaldoun et al., 2007). However, it may sometimes lead to un-

acceptable numerical diffusion and gives the lowest order of accu-

racy among all MUSCL schemes. Delis et al. (2011) developed amore

accurate scheme to compute thevalues at pointD (the intersectionof

the edge under consideration and the line connecting two adjacent

cell centroids, see Fig. 1). Another recent technique to evaluate flow

information atDwaspresented inKonget al. (2013). SinceDdoes not

always coincide with the midpoint M of the edge where fluxes are

evaluated (Fig. 1), this type of techniques may result in a loss of ac-

curacy on poorly connected grids (Buffard and Clain, 2010; Delis

et al., 2011; Delis and Nikolos, 2013).

The reduced solution accuracy may be largely avoided by using

extrapolated flow values at M to calculate the fluxes and the slope

source terms (Delis et al., 2011; Buffard and Clain, 2010). The

technique proposed in Buffard and Clain (2010) calculates the

values at M by constructing the slopes from the cell center to point

M based on those from the cell center to point D. But this may affect

the computational efficiency of the overall edge-based MUSCL

scheme, as a result of a more complex reconstruction procedure.

Delis et al. (2011) used unlimited gradients to compute the required

values at M and so the monotonicity is not rigorously guaranteed.

To increase numerical stability, a new approach was reported by

Delis and Nikolos (2013) to limit the slope along DM (Fig. 1). This

technique prevents the potential numerical oscillations but may

also lead to increased computational cost due to the necessity of

involving a much wider stencil of cells on calculation. Based on the

technique of Delis et al. (2011), Hou et al. (2013a) proposed a more

efficient method to prevent possible local extreme when extrapo-

lating flow variables from D to M. As demonstrated by Hou et al.

(2013a), this improved scheme provides satisfactory numerical

solutions for complex flows involving wetting and dying over

complex terrains. However, the method is still not entirely

straightforward since two steps are required to compute the values

atM (firstly the values at D are computed and then they are used to

extrapolate the values at M).

Fig. 1. Evaluating edge values (T denotes cells, E represents edges and N depicts nodes).

Fig. 2. Evaluating nodal values.
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In thiswork, a novel 2D edge-basedMUSCL scheme for triangular

grids is presented to extrapolate the required values at M directly

from the cell center. This scheme is devised to be more efficient but

maintains the same or slightly higher numerical accuracy as the one

reported in Hou et al. (2013a). The improved scheme is incorporated

into a 2D Godunov-type cell-centered finite volume model to solve

the SWEs in this work. The reconstructed values at the midpoints of

the cell edges are modified by a non-negative water depth recon-

struction (Hou et al., 2013c) that preserves the well-balanced solu-

tion or so-called conservationproperty (C-property) (Greenberg and

Leroux, 1996). These reconstructed values are then employed to

compute the fluxes using the Harten, Lax and van Leer approximate

Riemann solver with the contact wave restored (HLLC) and to eval-

uate the slope source terms. The splitting point-implicit method

proposed inBussingandMurmant (1988) is adopted todiscretize the

friction source terms. To update the flow variables to a new time

level, the two-stage explicit RungeeKutta approach is applied

(Hubbard, 1999; Song et al., 2011a). Implemented with the new

MUSCL scheme, the current model is able to achieve second-order

accuracy, converge to steady state and predict complex flow hydro-

dynamics that involves moving wet-dry fronts over uneven topog-

raphy in an efficient way.

The remainder of the paper is organized as follows: Section 2

introduces the governing equations; Section 3 presents the novel

2D edge-based MUSCL scheme and the overall shallow flow model;

Section 4 validates the model by applying it to simulate several

benchmark tests; andfinallybrief conclusions aredrawn inSection5.

2. Governing equations

The SWEs are derived from the conservation of mass and mo-

mentum by assuming hydrostatic pressure distribution. In a vector

form, the conservation law of the 2D SWEs can be written as,

vq

vt
þ vf

vx
þ vg

vy
¼ S; (1)

q ¼

2

6

4

h

qx

qy

3

7

5
; f ¼

2

6

4

qx

uqx þ gh2
.

2

uqy

3

7

5
; g ¼

2

6

4

qy

vqx

vqy þ gh2
.

2

3

7

5
;

S ¼ Sb þ Sf ¼

2

6

4

0

�ghvzb=vx

�ghvzb=vy

3

7

5
þ

2

6

4

0

�Cf u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v
2

q

�Cf v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v
2

q

3

7

5
;

(2)

where t represents the time; x and y are the Cartesian coordinates;

q denotes the vector of conserved flow variables consisting of h,

qx ¼ uh and qy ¼ vh, i.e. the water depth, unit-width discharges in

the x- and y-direction, respectively; u and v are the depth-averaged

velocity components in the x- and y-direction; f and g are the flux

vectors in the two Cartesian directions; S is the source vector that

may be further subdivided into the slope source terms Sb and

friction source terms Sf; zb represents the bed elevation; Cf is the

bed roughness coefficient that is generally computed by gn2/h1/3

with n being the Manning coefficient. Moreover, the water level

h¼hþ zb is also used in the numerical scheme adopted in this work.

3. Numerical methods

This section describes the numerical model for solving the SWEs

within the framework of an unstructured cell-centered Godunov-

type finite volume scheme. The SWEs are discretized into algebraic

equations by the finite volume method. The fluxes of mass and mo-

mentum are computed by the HLLC approximate Riemann solver

(Toro et al., 1994). The slope source terms are evaluated by the slope

flux method as proposed in Hou et al. (2013c). The friction source

Fig. 3. Upstream and downstream slopes used for slope-limiting at the first edge of the

cell under consideration (Fig. 1).

Fig. 4. Notation of variables at a triangular boundary cell.

Fig. 5. Steady flow over uneven bed: analytical water level and bed.
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terms are calculated by the splitting point-implicit method as pre-

sented in Liang and Marche (2009). The two-stage explicit Run-

geeKutta approach is applied to update the flow variables to a new

time level. When computing the fluxes and the slope source terms,

thevalues at themidpoints of the cell edges are required. Thesevalues

are evaluated by a novel 2D edge-based MUSCL scheme which is the

main focus of this work and is presented in detail in Subsection 3.3.

3.1. Finite volume method on unstructured grids

The SWEs (1) can be integrated over a cell as

Z

U

vq

vt
dUþ

Z

U

�

vf

vx
þ vg

vy

�

dU ¼
Z

U

SdU; (3)

where U denotes the volume of the cell i. Using the divergence

theorem, Equation (3) may be transformed into

Z

U

vq

vt
dUþ

I

G

FðqÞ$ndG ¼
Z

U

�

Sb þ Sf

�

dU; (4)

herein, G is the boundary of the cell under consideration; n¼ (nx,

ny)
T represents the unit outward vector normal to the boundary

being considered; the outward flux F(q)$n at the boundary is

defined as

FðqÞ$n ¼
�

fnx þ gny
�

¼

2

6

4

qxnx þ qyny
�

uqx þ gh2
.

2
�

nx þ vqxny

uqynx þ
�

vqy þ gh2
.

2
�

ny

3

7

5
: (5)

For a triangular cell, the circular integral for F(q)$n over the

boundary can be rewritten as

I

G

FðqÞ$ndG ¼
X

3

k¼1

FkðqÞ$nklk; (6)

where k and l are the index and length of the edges of cell i.

3.2. Time updating

The two-stage explicit Runge-Kutta time-integration scheme

(Hubbard, 1999; Liang and Borthwick, 2009; Liang and Marche,

Fig. 6. Common triangular grids: (a) Delaunay grid (type A), (b) Scottish grid (type B), (c) diagonal grid (type C), (d) distorted grid (type D) (Buffard and Clain, 2010; Hou et al.,

2013c).
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2009; Song et al., 2011b; Liang, 2010; Wang et al., 2011; Song et al.,

2011a) is adopted to compute the flow variables at the new time

level. At cell Ti that is under consideration, the flow variables at the

new time level are obtained by

qnþ1
Ti

¼ 1

2

h

�

qn
Ti þ qn*

Ti

�

þ K
�

qn*
Ti

�i

; (7)

where

qn*
Ti

¼ qn
Ti
þ K

�

qn
Ti

�

; (8)

and Kðqn
Ti
Þ is given by

K
�

qn
Ti

�

¼ Dtn

U

2

4

Z

U

SðqnÞdU�
X

3

k¼1

FkðqnÞ$nklk

3

5: (9)

Since the explicit scheme is used, the CouranteFriedrichseLewy

(CFL) condition must be satisfied to ensure solution stability. In this

work, the CFL condition as proposed in Delis et al. (2011) and Delis

and Nikolos (2013) is employed to estimate the time step on

triangular grids:

Dt ¼ CFL min

0

B

@

RTi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2Ti þ v
2
Ti

q

þ
ffiffiffiffiffiffiffiffiffi

ghTi
p

1

C

A
; (10)

where RTi is the minimum distance from the centroid to the edges

of the ith triangle, CFL denotes the Courant number and CFL¼ 0.5 is

adopted in this work for all of the simulations.

3.3. Novel MUSCL scheme to evaluate the values of flow variables at

the midpoints of cell edges

To compute the fluxes and the slope source terms, the values of

the flow variables at the midpoints of the cell edges are required.

However, as mentioned in the Introduction, the existing techniques

to compute these values are relatively complicated on unstructured

grids. For example, the technique in Hou et al. (2013a) extrapolates

the values at D and then extrapolates them again from D to M. In

this regard, a straightforward MUSCL scheme is highly desired to

extrapolate the required values directly to the edge midpoints. This

work devises such aMUSCL schemewhich is incorporated into a 2D

cell-centered Godunov-type finite volume model as proposed in

Hou et al. (2013a,c) to solve the SWEs on unstructured grids. Using

Fig. 7. Steady flow over uneven bed: relative root mean square errors for h on different

grids: (a) type A, (b) type B, (c) type C, (d) type D.

Fig. 8. Steady flow over uneven bed: water depth contours computed by the new

MUSCL scheme on the Delaunay grid (m).
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Fig. 9. Steady flow over uneven bed: flow field on the Delaunay grid: (a) exact solu-

tion; (b) computed result by the new MUSCL scheme.

Table 1

Steady flow over uneven bed: RRMSE at t ¼ 25 s and relative computational cost on

different grids.

Schemes Grids RRMSE

(h)[%]

RRMSE

(qx)[%]

RRMSE

(qy)[%]

Relative

computational

time

New MUSCL scheme Type A 0.4333 3.5311 4.0076 1.000

MUSCL scheme

in Hou et al. (2013a)

Type A 0.4406 3.4813 4.4460 1.065

New MUSCL scheme Type B 0.4209 3.5526 3.7058 1.174

MUSCL scheme

in Hou et al. (2013a)

Type B 0.4230 3.7574 3.9242 1.234

New MUSCL scheme Type C 0.4437 3.8283 3.5450 1.145

MUSCL scheme

in Hou et al. (2013a)

Type C 0.4468 3.7849 3.6527 1.204

New MUSCL scheme Type D 0.5177 4.0291 5.6376 1.108

MUSCL scheme

in Hou et al. (2013a)

Type D 0.5246 4.1230 5.5567 1.179

Fig. 10. Steady flow over frictional uneven bed: relative root mean square errors for h

on different grids: (a) type A, (b) type B, (c) type C, (d) type D.
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the MUSCL scheme as proposed herein, the required values can be

sought in two steps: 1) values at the cell nodes are evaluated; and

2) these nodal values are used to construct the slopes which are

then limited to extrapolate the values atmidpoints of the cell edges.

3.3.1. Evaluating nodal values

In a cell-centered finite volume method, since the flow infor-

mation is stored at the cell centroids, the nodal values can be

evaluated from those at the centroids of the surrounding cells using

the weighted average method. Based on inverse distance interpo-

lation (Frink, 1991; Park et al., 2010), the values at the ith node Ni

are calculated by

qNi
¼
Pnc

k¼1

�

qTi

	



rNi;Tk







�

Pnc

k¼1

�

1
	



rNi;Tk







� ; (11)

where qNi
contains the nodal values at node Ni, qTi consists of the

values at the centroid of cell Ti, rNi; Tk denotes the distance between

the centroid of the kth neighboring cell and node Ni (see Fig. 2), nc is

the total number of neighboring cells of node Ni.

3.3.2. Constructing slopes

To implement the MUSCL scheme, two sets of slopes are intro-

duced. They are respectively defined as the upstream and down-

stream slopes. In this subsection, the procedure to construct the

slopes for the first edge E1 of cell Ti is demonstrated and those for

other edges can be sought in a similar way (Fig. 3). The downstream

slopes are built from the values at the midpoint of the edge and

those at the cell centroid.

ðVqÞdown
L ¼

qL
M � qTi




rT1;M






; (12)

where qL
M contains the unlimited values at the left hand side of E1

and is computed by the available values of the two adjacent nodes

at this edge as

qL
M ¼

qN2
þ qN3

2
; (13)

In triangular cells, since the line connecting the cell centroid and

the midpoint E1 also passes through node N1, the upstream slopes

for this edge can be easily constructed from the values at the cell

centroid and those at node N1 that is opposite to E1

ðVqÞupL ¼
qTi � qN1




rN1;Ti







: (14)

3.3.3. Calculating values at the midpoint

Once the upstream and downstream slopes are available, the

values at themidpoint of a cell edge can be obtained using a classical

MUSCL scheme, in which the slopes are limited to give rise to

oscillation-free solutions. Again taking midpoint M at edge E1 as an

example, the extrapolated values at the left hand side ofM are given

by

Fig. 11. Steady flow over frictional uneven bed: exact water level contours and those

computed by the new MUSCL scheme on the Delaunay grid [m].

Fig. 12. Steady flow over frictional uneven bed: flow field of: (a) exact solution; (b)

computed result by the new MUSCL scheme on the Delaunay grid.
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qL
M ¼ qTi þ rTi;Mj

h

ðVqÞdown
L ; ðVqÞupL

i

; (15)

where j(a, b) is the limiting function with two arguments a and b.

Van Albada limiter (van Albada et al., 1982) is chosen in this work

due to its advantages in maintaining higher-order accuracy for

smooth solution and ensuring convergence to steady-state, which

may be expressed as

jða; bÞ ¼

8

>

<

>

:

�

a2 þ e
�

bþ
�

b2 þ e
�

a

a2 þ b2 þ 2e
; if ab>0;

0; if ab � 0;

(16)

where e is introduced to prevent division by zero and e¼ 10�16 is

adopted (Nikolos and Delis, 2009; Delis et al., 2011; Delis and

Nikolos, 2013; Hou et al., 2013a). Using the same approach, the

values at the right hand side of M can be obtained by,

qR
M ¼ qTj þ rTj;Mj

h

ðVqÞdown
R ; ðVqÞupR

i

; (17)

inwhich qTj represents the values at the centroid of cell Tj, ðVqÞdown
R

and ðVqÞupR can be calculated using Equations (12) and (14) and the

nodal values of cell Tj.

Table 2

Steady flow over frictional uneven bed: RRMSE at t¼ 20 s and relative computational

cost on different grids.

Schemes Grids RRMSE

(h)[%]

RRMSE

(qx)[%]

RRMSE

(qy)[%]

Relative

computational

time

New MUSCL scheme Type A 0.0538 0.6023 0.6664 1.000

MUSCL scheme in

Hou et al. (2013a)

Type A 0.0871 0.6531 0.6558 1.071

New MUSCL scheme Type B 0.0372 0.3461 0.3237 1.102

MUSCL scheme in

Hou et al. (2013a)

Type B 0.0837 0.4124 0.4345 1.181

New MUSCL scheme Type C 0.0503 0.6127 0.6881 1.022

MUSCL scheme in

Hou et al. (2013a)

Type C 0.0838 0.6335 0.6824 1.064

New MUSCL scheme Type D 0.0577 0.4739 0.4265 1.113

MUSCL scheme in

Hou et al. (2013a)

Type D 0.1054 0.5362 0.4753 1.169

Fig. 13. Circular dam-break problem: 3D view of water level computed by the new

MUSCL scheme at: (a) t ¼ 1.0 s, (b) t ¼ 2.5 s.

Fig. 14. Circular dam-break problem: sectional view of the computed water level on

the Delaunay grid at: (a) t ¼ 1.0 s, (b) t ¼ 2.5 s.

Table 3

Circular dam break: RRMSE and relative computational cost on different grids.

Schemes Grids RRMSE(h) at

t ¼ 1.0 s [%]

RRMSE(h) at

t ¼ 2.5 s [%]

Relative

computational

time

New MUSCL scheme Type A 4.2094 2.9985 1.000

MUSCL scheme in

Hou et al. (2013a)

Type A 4.2123 3.0028 1.058

New MUSCL scheme Type B 3.6655 2.0092 1.115

MUSCL scheme in

Hou et al. (2013a)

Type B 3.6697 2.0124 1.185

New MUSCL scheme Type C 3.7937 1.9512 1.107

MUSCL scheme in

Hou et al. (2013a)

Type C 3.7954 1.9556 1.179

New MUSCL scheme Type D 4.6435 2.4540 1.241

MUSCL scheme in

Hou et al. (2013a)

Type D 4.6493 2.4606 1.294

Note: the 1D reference solution is used as ~qTi in Equation (34) to compute RRMSE(h).
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Whist the new MUSCL scheme is developed on the basis of the

1D MUSCL scheme which is surely capable of preserving mono-

tonicity for 1D problems, it is not easy to prove that the extrapo-

lated values at the edge midpoints are not local extrema in multi-

dimensional problems, due to the complex geometry and topol-

ogy. The appearance of local extrema is generally recognized as

violating the monotonicity. Liu (1993) proposed a local maximum

principle to avoid overshoot and undershoot when constructing

slopes for multi-dimensional problems. That is, the extrapolated

values at edge midpoints or cell nodes must not be higher than the

local maximum values and lower than the local minimum values,

for example in Hubbard (1999) and Park et al. (2010). According to

this idea, the extrapolated values by the new MUSCL scheme are

constrained by,

min
�

qTi
;qTj

;qN2
;qN3

�

⩽qL
M⩽max

�

qTi
;qTj

;qN2
;qN3

�

;

min
�

qTi
;qTj

;qN2
;qN3

�

⩽qR
M⩽max

�

qTi
;qTj

;qN2
;qN3

�

;
(18)

where qTi ;qTj ;qN2
;qN3

are the values at the cell centers and the

nodes adjacent to the midpoint under consideration, see Fig. 1. As

qN2
and qN3

are obtained from inverse distance interpolation, they

are absolutely not new local extrema. Using this constraint, the

possible new local extrema caused by Equations (15) and (17) are

completely avoided in a simple way.

Comparing with the prevailing 2D edge-based MUSCL schemes,

for example in Delis et al. (2011), Buffard and Clain (2010), Delis and

Nikolos (2013) and Hou et al. (2013a), the current MUSCL scheme

provides a direct and simple way for calculating the required values

at the midpoints of the cell edges. To be more specific, the new

scheme demands less storage since it involves directly nodal values

while other schemes commonly use the gradients at cells; the

number of nodes is typically much less than the number of cells (1/

2 in general). Moreover, the new scheme takes the advantage of the

geometry of the triangular cells, i.e. slopes are constructed along the line passing through the midpoint of the edge under consid-

eration, the cell centroid and a node where the values are easy to

obtain or already available. This therefore represents a more effi-

cient scheme. In addition, the new scheme is straightforward to

extend to solve 3D problems by utilising tetrahedron grids. In a

tetrahedron cell, the required values at face centers can be

extrapolated from the cell center in a similar way, using nodal

values computed from Equation (11) to construct the upstream and

downstream slopes. Obviously, the current MUSCL scheme is

developed in a general way and thus is not restricted to solve only

the SWEs. It can also be applied to solve other hyperbolic equations

Fig. 15. Circular dam-break problem: sectional view of the computed water level on

the Delaunay grid at t ¼ 2.5 s.

Table 4

2D Riemann problem: initial flow conditions.

Region Coordinates [m] h [m] u [ms�1] v [ms�1]

1 x � 100, y � 100 1.0 10.0 10.0

2 x > 100, y � 100 1.0 0.0 10.0

3 x � 100, y > 100 1.0 10.0 0.0

4 x > 100, y > 100 10.0 0.0 0.0

Fig. 16. 2D Riemann problem: computed flow patterns in 3D view by the new MUSCL

scheme on Delaunay grid at: (a) t ¼ 1 s, (a) t ¼ 3 s and (c) t ¼ 5 s.
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that are widely used in environmental modeling, e.g. the advec-

tionediffusion equations (Rubio et al., 2008; Ani et al., 2009;

Gomez and Tchijov, 2010; Liang et al., 2010; Kong et al., 2013;

Kourakos and Harter, 2014).

3.3.4. Midpoint values of flow variables for SWEs

To preserve the C-property, only h, h, qx and qy are extrapolated

by Equations (15) and (17) to themidpoint of interest to give hLM , hRM ,

hLM , hRM , qLxM , qRxM , qLyM and qRyM , respectively, following Audusse et al.,

2004, Audusse and Bristeau, 2005, Liang and Borthwick, 2009,

Liang and Marche, 2009, Liang, 2010, Wang et al., 2011 and Hou

et al., 2013a,c. The bed elevations zL
bM

and zR
bM

are redefined as

zLbM ¼ hLM � hLM; zRbM ¼ hRM � hRM: (19)

Accordingly, the corresponding velocities atM can be calculated

by,

uLM ¼ qLxM

.

hLM; v
L
M ¼ qLyM

.

hLM; uRM ¼ qRxM

.

hRM; v
R
M ¼ qRyM

.

hRM:

(20)

The above qL
M and qR

M are then employed to evaluate the fluxes

and the slope source terms in the following subsections. It should

be noted that spurious velocities with local extreme values is likely

Fig. 17. 2D Riemann problem: computed vectors of unit-width discharge and contours

of water depth on the Delaunay grid at t ¼ 5 s by: (a) the MUSCL scheme in Hou et al.

(2013a), (b) the new MUSCL scheme. Equidistance of Contour lines 0.25 m.

Fig. 18. 2D Riemann problem: computed velocities on the Delaunay grid at t ¼ 5 s by:

(a) the MUSCL scheme in Hou et al. (2013a), (b) the new MUSCL scheme.
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to be calculated with the MUSCL schemewhen using the conserved

flow variables for a case involves rapidly changing small water

depth over rough terrains (Hou et al., 2013b). Those problematic

cells are normally located near the wet-dry fronts. In order to

prevent the potential numerical instabilities, the MUSCL scheme is

disabled at these cells and first-order scheme is used instead. That

is, the values at the midpoint of the edges are assumed the same as

those at the cell centroid. The problematic cells are identified ac-

cording to the criteria as presented in Hou et al. (2013b). In addi-

tion, first-order scheme is also imposed at those dry cells that are

adjacent to a wet cell. Other dry cells away from the wet-dry front

are not taken into account during the computation. As a summary,

the second-order MUSCL scheme is switched to first-order locally

in a cell satisfying the following conditions

hLM⩽min
�






zLbM � zbTi








;0:25hTi

�

or hTi⩽εwd; (21)

where hLM and zL
bM

are the values of the flow variables computed by

the MUSCL scheme and εwd is the depth tolerance used to distin-

guish wet and dry cells and εwd¼ 1�10�6 m is generally adopted

(Brufau et al., 2004; Begnudelli and Sanders, 2006, 2007; Zokagoa

and Soulaimani, 2010; Hou et al., 2013a,c).

3.4. Non-negative depth reconstruction

To preserve non-negative water depth and C-property, the non-

negative water depth reconstruction as proposed by Audusse et al.

(2004) is adopted in this work. Using this reconstruction, the water

depths at the midpoint of the edge under consideration are

reconstructed by,

hLM ¼ max
�

0; hLM � zbM

�

; hRM ¼ max
�

0;hRM � zbM

�

; (22)

where

zbM ¼ max
�

zLbM; zRbM

�

: (23)

Accordingly, the unit-width discharges at M are recomputed by

the reconstructed water depths in Equation (22).

Fig. 19. 2D Riemann problem: computed water level on the Delaunay grid: (a) across

the diagonal section at t ¼ 5 s, (b) local zoomed-in view of (a).

Fig. 20. Thacker's planar solution: grid convergence of the present model in terms of

RMSE on Delaunay grids at t¼ 4T: (a) h, (b) qx, (c) qy.
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qLxM ¼ hLMuLM; qLyM ¼ hLMv
L
M; qRxM ¼ hRMuRM; qRyM ¼ hRMv

R
M; (24)

where uLM , vLM , uRM and v
R
M are evaluated from Equation (20). These

reconstructed edge values of the flow variables are then employed

to compute the interface fluxes and the slope source terms.

3.5. Calculating fluxes and source terms

The HLLC approximate Riemann solver developed by Toro et al.

(1994) is applied in this work to compute the interface fluxes

(Fk(q)$nk in Equation (6)), which can be directly apply to shallow

water flows with shocks and wet-dry interfaces (Liang and Marche,

2009; Liang and Borthwick, 2009; Liang, 2010; Song et al., 2011b,a;

Wang et al., 2011; Hou et al., 2013a,c,b). The detailed

implementation of the HLLC approximate Riemann solver on un-

structured grids can be found in (Song et al., 2011a; Hou et al.,

2013c).

The slope flux method presented in (Hou et al., 2013c), suitable

for unstructured grids, is adopted to evaluate the slope source

terms Sb. The slope source terms in the cell under consideration

(the left cell in this work) are transformed into fluxes through the

edges of this cell, i.e.,

H

U

SbdU ¼
H

G

FSkðqÞdG;

¼
P

3

k¼1

½FSkðqÞlk�:
(25)

The slope flux vector FSk(q
n) at the midpoint of the edge being

considered is given by,

Fig. 21. Thacker's planar solution: grid convergence of the present model in terms of

RMSE on Scottish grids at t¼ 4T: (a) h, (b) qx, (c) qy.

Fig. 22. Thacker's planar solution: grid convergence of the present model in terms of

RMSE on diagonal grids at t¼ 4T: (a) h, (b) qx, (c) qy.
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FSMðqÞ ¼

2

6

4

0
�nMxg

�

hLM þ hTi

�

�

zbM � z
bTi

�

.

2

�nMyg
�

hLM þ hTi

�

�

zbM � z
bTi

�

.

2

3

7

5
; (26)

in which the modified bed elevation at the edge is used and,

zbM)min
�

zbM; hLM

�

; (27)

and (nMx, nMy)
T is the outward normal vector of the edge of interest.

With respect to the friction source terms, a prevalent method

known as splitting point-implicit method proposed in Bussing and

Murmant (1988) is adopted. Moreover, in order to prevent the

reverse flow direction caused by unrealistic friction, a limiting step

introduced by Liang and Marche (2009) is taken into account. The

more complete description of this method for 2D schemes can be

found in Hou et al. (2013c, b).

3.6. Boundary conditions

The theory of characteristics is considered to be adequate to

estimate the unknown variables at boundaries when solving the

SWEs. Based on the flow variables at the boundaries, the interface

fluxes through cell edges defining the physical boundaries can be

directly computed. In this work, the detailed boundary treatment is

demonstrated at a boundary edge e as shown in Fig. 4. At first, the

Fig. 23. Thacker's planar solution: grid convergence of the present model in terms of

RMSE on distorted grids at t¼ 4T: (a) h, (b) qx, (c) qy.
Fig. 24. Thacker's planar solution: computed results using the new MUSCL scheme at

t¼ 2.11T: (a) h, (b) u, (c) v.
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values of flow variables on the inner side of the midpoint M are

computed from those at the two adjacent nodes N2 and N3 as,

qL
M ¼

qN2
þ qN3

2
; (28)

where the nodal values qN2
and qN3

are obtained from Equation (11)

by using the inverse distance interpolation. The bed elevations on

the left and right sides of a boundary are assumed to be the same.

Therefore, zbM (equation (23)) used in the computation of flux and

slope source terms is equal to zL
bM

. Next, the fluxes through the

boundaries are calculated as in Hou et al. (2013c). For open and

solid boundaries, the fluxes are computed respectively by the Rie-

mann solver and directly by Equation (5).

3.6.1. Open boundary conditions

At open boundary, the fluxes are evaluated by the Riemann

solver. Since the inner values qL
M are available, the outer values of

flow variables qR
M are required by the Riemann solver. As in Hou

et al. (2013c), qR
M are calculated in different ways according to

different flow conditions as listed below.

3.6.1.1. Subcritical flow. When hRM is given, the velocity normal to

the boundary u⊥RM can be computed from the theory of character-

istics as

u⊥RM ¼ u⊥LM þ 2

ffiffiffiffiffiffiffiffiffi

ghLM

q

� 2

ffiffiffiffiffiffiffiffiffi

ghRM

q

: (29)

If u⊥RM is specified, the unknown hRM can be evaluated by,

hRM ¼

�

u⊥LM þ 2

ffiffiffiffiffiffiffiffiffi

ghLM

q

� u⊥RM

�2

4g
; (30)

In the case of a given q⊥RM , hRM and u⊥RM can be computed from the

relationship of q⊥RM ¼ hRMu⊥RM and the theory of characteristics, by

means of NewtoneRaphson iterative method.

Once hRM and u⊥RM are obtained, uRM and v
R
M can be calculated by

uRM ¼ u⊥RM nx � u
kR
M ny;

v
R
M ¼ u

kR
M nx þ u⊥RM ny;

(31)

where u
kR
M is the tangential velocity to the boundary and is assumed

to be the same as u
kL
M (Song et al., 2011a). Finally, we obtain

qRxM ¼ hRMuRM and qRyM ¼ hRMv
R
M .

3.6.1.2. Supercritical flow. For a supercritical flow, hRM , qRxM and qRyM
either need to be prescribed at the inflow boundary or are equal to

hLM , qLxM and qLyM at the outflow boundary.

Fig. 25. Thacker's planar solution: RMSE history of the computed water depth on the

Delaunay grid.

Fig. 26. Dam-break over a bump: experimental setup and initial conditions (Soares-

Fraz~ao, 2007) [m].

Fig. 27. Dam-break over a bump: water level changes with time at: (a) gauge 1, (b)

gauge 2, (c) gauge 3.
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3.6.2. Solid boundary conditions

As in Kuiry et al. (2008), Liang and Borthwick (2009), Song et al.

(2011a) and Hou et al. (2013c), the normal flux at a solid boundary

is computed by,

FðqÞ$n ¼

2

6

6

4

0

g
�

hRM

�2
nx

�

2

g
�

hRM

�2
ny

�

2

3

7

7

5

; (32)

where hRM ¼ hLM .

4. Test cases

In this section, seven test cases are simulated to evaluate the

performance of the novel MUSCL scheme that has been

incorporated into a 2D shallow flow model, roughly following a

general evaluation procedure as suggested by Bennett et al. (2013).

The first step is to have a clear idea of the aim and scale of the new

scheme. The aim is essentially to improve the performance of the

shallowwater flowmodel in converging to the general steady state,

capturing shocks, maintaining higher-order solution accuracy and

handling complex flows with wet-dry fronts over uneven beds on

triangular grids. With regard to the scale, the model is valid for the

shallow water problems in a wide range of scales, as long as they

satisfy the long wave assumption (Hinkelmann, 2005). The second

step of the performance evaluation is to check the data. The test

cases selected in this work have sufficient data to carry out the

performance evaluation. Since the model is physically based, the

only empirical parameter as required is the Manning coefficient

which is either given or assumed according to the bedmaterials; no

calibration is necessary for all of the test cases as considered in this

work. The next two steps are to assess the model performance

through visual analysis that applies to all of the test cases and so-

lution accuracy assessment that is only considered in those test

cases with analytical solutions or measurements. In this work, the

root mean square error is selected as the performance criteria to

investigate the accuracy of the model. On unstructured grids, the

volume weighted root mean square error (RMSE) (Sun and

Takayama, 2003) and volume weighted relative root mean square

error (RRMSE) are used, which are respectively formulated as,

Fig. 28. Dam-break over a bump: computed and measured water levels near the bump

at: (a) t ¼ 1.8 s, (b) t ¼ 3.0 s, (c) t ¼ 8.4 s.

Fig. 29. Dam-break over a bump: computed water levels near the bump at t ¼ 1.8 s

using different Manning coefficient.

Fig. 30. Tsunami runup onto a complex beach: a photo view of the model around

pocket beach in the Criepi flume (Matsuyama and Tanaka, 2001).
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RMSEðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

NT

I

h

UTi

�

qTi � ~qTi

�2
i

P

NT

I

UTi

v

u

u

u

u

u

u

t

; (33)

RRMSEðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

NT

I

"

UTi

 

qTi
�~qTi

~qTi

!2#

P

NT

I

UTi

v

u

u

u

u

u

u

u

t

; (34)

where UTi denotes the volume of the ith cell; NT represents the

number of cells; qTi and ~qTi are the numerical and analytical solu-

tions or measured data at the cell centroid, respectively. For steady

cases, convergence of the numerical solution is indicated by a

volume weighted global relative error as proposed by Hou et al.

(2013c) for unstructured grids,

RðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

NT

I

"

UTi

 

qn
Ti
�qn�1

Ti

qn
Ti

!2#

P

NT

I

UTi

v

u

u

u

u

u

u

u

t

: (35)

If the performance of the model is not satisfactory for a test case,

a refinement step will be invoked to prescribe new Manning co-

efficients according to the flow patterns. By this means, the per-

formance of the new MUSCL scheme based 2D shallow flow model

is intensively evaluated through the following test cases.

4.1. Steady flow over uneven bed

Theoretically, a well-balanced scheme is defined to be able to

preserve a general moving steady state (Greenberg and Leroux,

1996; Vazquez-Cendon, 1999; Par�es and Castro, 2004; Gallardo

et al., 2007). But it is common to consider a numerical scheme to be

well-balanced even if it only satisfies the C-property of Bermudez

and Vazquez (1994), i.e. when the quiescent steady states are

preserved (Rebollo et al., 2003; Audusse and Bristeau, 2005;

Audusse et al., 2004; Ern et al., 2008; Kim et al., 2008; Delis et al.,

2008; Delis and Nikolos, 2013; Nikolos and Delis, 2009; Delis

et al., 2011; Liang and Marche, 2009; Liang, 2010; Song et al.,

2011b,a; Benkhaldoun et al., 2007, 2010b; Zhou et al., 2001; Xing

et al., 2010; Xing and Shu, 2011; Canestrelli et al., 2012, 2010; Pu

et al., 2012; Caleffi and Valiani, 2009; Caleffi, 2011). In order to

confirm the capability of the present model to converge to a non-

stationary steady state (steady flow with non-zero velocities), the

steady test case presented in Ricchiuto et al. (2007) and used in

Delis et al. (2011) and Delis and Nikolos (2013) is considered in this

work.

In this test case, Ricchiuto et al. (2007) consider a solution in

which the velocity field is divergence-free and obtained from the

harmonic function j¼ (x� x0) (y� y0) as:

uðx; yÞ ¼ vj

vx
¼ x� x0; vðx; yÞ ¼

vj

vy
¼ �yþ y0; (36)

Fig. 31. Tsunami runup onto a complex beach: the domain and bathymetry for the

laboratory experiment [m].

Fig. 32. Tsunami runup onto a complex beach: computed water level history at: (a) G5,

(b) G7, (c) G9.
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where [x0, y0]¼ [1, 1] denotes the coordinates of the domain center.

The bed elevation is given on a 2 m� 2 m domain with four open

boundaries by

Fig. 33. Tsunami runup onto a complex beach: 3D view of the numerical solution at:

(a) t ¼ 10 s, (b) t ¼ 14 s, (c) t ¼ 18 s.
Fig. 34. Tsunami runup onto a complex beach: computed and recorded runup at (a)

t ¼ 15.9 s, (b) t ¼ 16.9 s, (c) t ¼ 17.9 s. Computed and recorded wet-dry interfaces are

represented by dashed line and dotted line, respectively [m].

J. Hou et al. / Environmental Modelling & Software 66 (2015) 131e152 147



zbðx; yÞ ¼
1

g

"

30�








j










2

2

#

� j� a

¼ 1

g

"

30� ðx� x0Þ2 þ ðy� y0Þ2
2

#

� ðx� x0Þðy� y0Þ � a;

(37)

where a¼1.5 m and the gravity acceleration g¼ 10.0 ms�2 are used.

The analytical steady water depth as derived in Ricchiuto et al.

(2007) is given by,

hðx; yÞ ¼ jþ a ¼ ðx� x0Þðy� y0Þ þ a; (38)

where the water surface and bed profile are illustrated in Fig. 5.

The current model and the one reported in (Hou et al., 2013a)

are run with Dt¼ 0.005 s for 6000 iterations on the four different

types of commonly used triangular grids with respectively 4066,

5000, 5000 and 4316 cells. These grids are known as the Delaunay

grid (type A), Scottish grid (type B), diagonal grid (type C) and

distorted grid (type D), respectively (Buffard and Clain, 2010)

(Fig. 6). The trend of convergence is reflected by a global relative

error R(h) evaluated by Equation (35). The steady state is assumed

to be reached when R(h)< 1�10�8. As shown in Fig. 7, the new

MUSCL scheme can achieve the steady state as defined on all grids

and its converging rate is faster than that of the MUSCL scheme of

Hou et al. (2013a). In contrast, the previous MUSCL scheme fails to

converge on the Scottish grid and the distorted grid, as it is likely to

extrapolate improper values at edge midpoints for such a steady

case on the grids with distortions and special arrangements of the

triangles.

The contours of computed water depth and velocity field on

Delaunay grid at t¼ 25 s are respectively presented in Figs. 8 and 9,

which are shown to agree closely with the exact solutions. Table 1

compares the relative computational time (with the computational

time induced by the new MUSCL scheme on type A grid used as a

reference) and the RRMSE of the water depth and unit width dis-

charges computed by the two MUSCL schemes on the four grids.

The new MUSCL scheme consistently produces favorable results

and is able to save around 5% of computational time comparing

with the Hou et al. (2013a) scheme.

4.2. Steady flow over frictional uneven bed

This analytical problem was used as a 2D frictional steady state

test case in Murillo et al. (2007) and Delis et al. (2011). It is revisited

herein to demonstrate the capability of the new MUSCL scheme

converging to a steady state with friction effect. When qx and qy are

given, the analytical solutions of steady-state water depth and bed

topography are provided as follows:

hðx; yÞ ¼ 0:5þ xqx þ yqy; (39)

zbðx; yÞ ¼ � 1

2g

�

q2x þ q2y

�

þ 2gh3

h2
þ 3

7

n2qx
ffiffiffi

2
p

h7=3
: (40)

In this work, a 10 m� 10 m computational domain with the

origin defined at the bottom left corner is adopted and the four

lateral boundaries are open. Constant qx and qy of 0.1 m2 s�1 are

specified over the whole domain. A high Manning coefficient

n¼ 0.3m�1/3 s is used to account for the friction effect. As inMurillo

et al. (2007) and Delis et al. (2011), the initial conditions are set to

be a flow at rest with water level h ¼ 0.0 m. The current MUSCL

scheme and the one proposed in Hou et al. (2013a) are run with

Dt¼ 0.002 s for 10,000 iterations on the four types of commonly

used triangular grids with respectively 4024, 5000, 5000 and 4403

cells. The steady state is assumed to be achieved if R(h)< 1�10�8.

Fig. 10 compares the behaviors of the two schemes in terms of

convergence rate. The comparison confirms the similar conclusions

as in last test case, i.e. the new MUSCL scheme has a higher

convergence rate than the MUSCL scheme of Hou et al. (2013a) and

is able to reach the defined steady state on all types of grids. The

MUSCL scheme of Hou et al. (2013a) is unable to converge on the

Scottish grid and the distorted grid, since the scheme fails to

extrapolate the right values at the edge midpoints on such grids

with distortions and special arrangements of the triangles. In

another words, the MUSCL scheme of Hou et al. (2013a) does not

meet the generalized well-balanced conditions on the Scottish grid

and distorted grid for this test case and this disadvantage is over-

come by the new MUSCL scheme.

Figs. 11 and 12 respectively compare the water level and ve-

locities computed at t¼ 20 s by the new MUSCL scheme on the

Delaunay grid with exact solutions. Good agreement between the

numerical and analytical solutions is observed. Table 2 compares

the RRMSE computed for thewater depth and unit width discharges

by the two MUSCL schemes on different grids and demonstrates

that the new MUSCL scheme can generally produce better results

on all grids. Meanwhile, the new MUSCL scheme is again about 5%

more efficient than the original approach as concluded by exam-

ining the computational times.

4.3. Circular dam break

As proposed in (Canestrelli et al., 2010), a cylindrical tank of

20m in diameter is located in the center of the 50m� 50mdomain

with four open boundaries. The tank and the remaining domain are

initially filled with 2 m and 0.5 m of still water, respectively. The

tank wall is assumed to be removed instantaneously to produce a

2D circular dam-break wave. This process is simulated herein to

test the automatic shock-capturing capability of the current model.

Again simulations are carried out using the current model and the

one presented in Hou et al. (2013a) on four different grids, i.e. the

Delaunay grid, Scottish grid, diagonal grid and distorted grid, with

respectively 16,024, 16,000, 16,000 and 16,384 cells. Since this is a

symmetric test, the 1D solution obtained by the 1D PRICE-C scheme

in (Canestrelli et al., 2009) is adopted as a reference to be compared

with the 2D numerical solutions.

Fig.13 shows the 3D viewof the computedwater level at t¼ 1.0 s

and t¼ 2.5 s on the Delaunay grid. Fig. 14 plots the corresponding

water levels along the radial direction of y¼ 20 m at t¼ 1.0 s and

t¼ 2.5 s. It is apparent that the newMUSCL scheme produces more

accurate numerical solution than the first-order upwind scheme

(FOU) without inducing spurious oscillations. The new 2D results

agree satisfactorily with the 1D reference solutions, demonstrating

the capability of the model in resolving 2D shocks. The current

numerical solutions also compared well with those presented by

Canestrelli et al. (2009) where a 2D unstructured high-order

scheme is used and those obtained using the MUSCL scheme as

reported in Hou et al. (2013a). A quantitative comparison between

the two MUSCL schemes is carried out in Table 3 where low RRMSE

is observed for the two MUSCL schemes. It indicates that the two

schemes actually perform equally well in resolving shocks. How-

ever, slight lower RRMSE is observed for the new MUSCL scheme

especially on the grids of type B and type D. In terms of computa-

tional efficiency, the new MUSCL scheme requires approximately

5% less runtime on all grids, comparing with the MUSCL scheme of

Hou et al. (2013a).

Numerical diffusion can still be observed for these MUSCL

schemes near the shocks as the solution accuracy is locally
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switched to become first order to preserve monotonicity (Hirsch,

2007). The shocks can be captured more precisely by refining the

grid as shown in Fig. 15, where a Delaunay grid with 49,726 cells is

used.

4.4. 2D Riemann problem

Guinot (2003) presented a test case involving a 2D Riemann

problem that has been subsequently adopted by other researchers,

for example Delis and Nikolos (2013), to test their model's capa-

bility in solving complex 2D Riemann problems on unstructured

grids. This test case has a 200m� 200m frictionless computational

domain with [0, 0] defined at the bottom left corner. The Riemann

problem is created by imposing discontinuous initial flow condi-

tions as listed in Table 4. The existing (Hou et al., 2013a) and the

new MUSCL scheme based models are used to reproduce the

complex 2D flowpattern on the aforementioned unstructured girds

with 68,712, 80,000, 80,000 and 78,622 cells, respectively. For

further comparison, a FOU model is also used in the simulations.

Fig. 16 illustrates the propagation of waves computed by the

new MUSCL scheme on the Delaunay grid. The shock wave fronts

are well captured by the new MUSCL scheme. The water depth

contours and vector fields of the flow velocities on the Delaunay

grid are compared respectively in Figs. 17 and 18. Fig. 19 plots the

predicted water level across a diagonal section through [0, 0] and

[200, 200]. The figures show the computed results of the new

MUSCL scheme and that of Hou et al. (2013a) are less diffusive than

those obtained from the FOU on different grids. The results of the

MUSCL scheme are also observed to be consistent with those re-

ported in Guinot (2003) and Delis and Nikolos (2013). As analytical

solution is not available for this test case, further quantitative

analysis is not carried out. However, as shown in Fig.19, particularly

in the zoom-in views, the new MUSCL scheme is found to perform

slightly better in capturing steeper rarefaction waves. Rarefaction

waves are likely to be dampened by low-order schemes, according

to the theoretic and numerical analysis reported in Trangenstein

(2009) and Toro (2009). From this point of view, the new MUSCL

scheme is preferable in modeling shock problems on unstructured

grids. The same behavior can also be found on the other three grids.

In addition, the new MUSCL scheme could be 4.7%, 5.6%, 5.3% and

6.1% computationally more efficient than the scheme of Hou et al.

(2013a) on the four unstructured girds, respectively, further indi-

cating the superiority of the new MUSCL scheme.

4.5. Thacker's planar rotation

The theoretical test case developed in Thacker (1981) is applied

herein to demonstrate the accuracy of the present model and its

capability in tracking unsteady wet-dry fronts over uneven bed.

The planar motion is oscillatory with a small enough amplitude

that satisfies the long wave assumption. As the bottom friction is

not taken into account, no energy dissipation is involved. This test

case has been adopted by many researchers to validate their

shallow flow models, for example in Marche et al. (2007), Delis

et al. (2008), Ricchiutoa and Bollermann (2009), Song et al.

(2011a), Delis and Nikolos (2013) and Hou et al. (2013c). The 2D

frictionless parabolic bed topography is defined by

zbðx; yÞ ¼ �h0

"

1� ðx� x0Þ2 þ ðy� y0Þ2
a2

#

; (41)

where [x0, y0] is the center of the parabolic bowl; h0 is the water

depth at the domain center; a is the distance from the center to the

shoreline of zero elevation. The analytical solution to this test case

is given by

hðx; y; tÞ ¼ sh0
a2

½2ðx� x0ÞcosðutÞ þ 2ðy� y0ÞsinðutÞ � s�; (42)

uðtÞ ¼ �ussinðutÞ; vðtÞ ¼ uscosðutÞ; (43)

in which s is a constant and u ¼
ffiffiffiffiffiffiffiffiffiffiffi

2gh0
p

=a is the frequency of the

rotation.

In this work, we assume that h0¼ 0.1 m, a¼ 1.0 m and s¼ 0.5 m.

A 4 m� 4 m computational domain with [0, 0] at the left bottom

corner is applied with four solid boundaries. The aforementioned

triangular grids of different resolution are again used to test the

performance of the new MUSCL scheme (Fig. 6). Simulations are

also undertaken using the Hou et al. (2013a) MUSCL scheme for

comparison. All of the simulations are run for four rotation periods

(4T).

The RMSE that indicates grid convergence is plotted in

Figs. 20e23 for t¼ 4T, where the Dx represents the average cell

length for triangular grids and is computed by Dx ¼
ffiffiffi

S
p

and S is the

averaged cell area. The results demonstrate that the grid conver-

gence rate (order of accuracy) of the newMUSCL scheme is slightly

higher than that the existing MUSCL scheme (Hou et al., 2013a),

especially on the Scottish grids and the distorted grids. On average,

the order of accuracy of the new MUSCL scheme is a range of

1.7e1.75 while that of the existing scheme (Hou et al., 2013a) is

between 1.65 and 1.7 for this test. A similar order of accuracy in

terms of L1 errors is also obtained but not presented herein to save

space. As expected, the order of accuracy is predicted to be close to

but slightly lower than second-order due to the first-order treat-

ment at the wet-dry front; this is a common numerical phenome-

non also reported by many other researchers (Bunya et al., 2009;

Ricchiuto and A.Bollermann, 2009; Nikolos and Delis, 2009; Delis

et al., 2011; Delis and Nikolos, 2013; Hou et al., 2013c). Neverthe-

less, the solution accuracy is satisfactory for this problem as shown

in Fig. 24, which plots thewater level and velocities along the cross-

section of y ¼ 2.0 m at t ¼ 2.11Twhen the water sloshes at the right

hand side, predicted by the present model on the Delaunay grid

with 16,000 cells. Good agreement with the analytical water level is

observed and the wet-dry fronts are well captured without pre-

senting any numerical instability such as negativewater depths. For

the velocities, only small discrepancies are detected near the wet-

dry fronts where the water depth becomes very small. The

similar velocity pattern can also be found for example in Delis et al.

(2011). During the simulation, this perturbation does not increase

with time and does not affect the predictions of the wet-dry fronts.

In addition, the time history of RMSE of the computed water

depth on the Delaunay grid is illustrated in Fig. 25. It indicates again

that the new MUSCL scheme performs more favorably against the

existing scheme proposed by Hou et al. (2013a). In terms of

computational efficiency, the new scheme also consistently per-

forms better and is around 5%e7% more efficient than the existing

scheme in all simulations.

4.6. Dam-break flow over a bump

This laboratory test consists of an upstream reservoir filled

with 0.111 m of still water and a bump located downstream of the

dam (Fig. 26). It is a benchmark test recommended by the EU

IMPACT project (IMPACT, 2004) for validating shallow water

models in simulating flows with moving wet-dry interface over

uneven bed (Hou et al., 2013c, b). The detailed experimental setup

and measured data are available in (Soares-Fraz~ao, 2007). In this

work, a Delaunay grid with 3960 triangular cells is generated on
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the 5.6 m � 0.5 m computational domain with four closed

boundaries. Manning coefficient is chosen to be 0.011 m�1/3 s as

suggested by Soares-Fraz~ao (2007). The simulation is run until

t¼ 45 s.

Fig. 27 plots the computed time histories of water level recor-

ded at the three gauges situated along the centerline of the

domain at x¼ 5.575 m, x¼ 4.925 m and x¼ 3.935 m (Fig. 26).

Fig. 28 shows the computed and measured water levels around the

bump. The numerical predictions agree well with the measured

data and no numerical instability is detected throughout the

simulation. To quantitatively assess the performance of the model,

the RRMSE of the water level evolution at the three gauges is

computed and the values are 5.494%, 8.467% and 7.623%, respec-

tively. For the water level near the bump, the RRMSE(h) is evalu-

ated to be 16.813%, 10.146% and 8.842% at t¼ 1.8 s, t¼ 3.0 s and

t¼ 8.4 s, respectively. It is verified that the present model with the

new MUSCL scheme is acceptable in simulating shallow flows over

uneven dry beds on unstructured grids. It should be noted that the

computed water level on the right hand side of the bump at

t¼ 1.8 s does not fit well with the measurement (Fig. 28a) and the

RRMSE(h) is about 16.813%. The reason might be because the fully

3D flow features induced by dam-break wave overtopping the

bump cannot be accurately captured by a depth-averaged model

assuming hydrostatic pressure. Similar predictions can also be

found for example in (Hou et al., 2013b). The phenomenon may be

also sensitive to bed friction. This is confirmed by the better re-

sults, as shown in Fig. 29 and the RRMSE(h) of 8.875%, obtained

from a further simulation with a reduced Manning coefficient of

0.009 m�1/3 s to allow more water overtopping the bump.

4.7. Tsunami runup onto a complex beach

Okushiri island, Japan, was attacked by an earthquake generated

tsunami in the Japan Sea in 1993, with a maximum runup of more

than 30 m observed at Monai. Following this tsunami event, the

Research Institute for Electric Power Industry (CRIEPI) in Abiko,

Japan constructed a 1: 400 laboratory model of the area around

Monai valley at Okushiri island (Fig. 30) and performed experi-

ments to reproduce the event (Matsuyama and Tanaka, 2001; Liu

et al., 2008). This experimental test is considered in this work to

verify the capability of the present model with the new MUSCL

scheme of simulating longwave propagation onto a complex beach.

The domain and the associated bathymetry used in the experi-

ment are sketched in Fig. 31. The incident tsunami wave created by

wave paddles entered the domain with still water through the left

open boundary. The full dataset of this test can be downloaded

from the website of the NOAA Center for Tsunami Research

(Benchmark Methods for Tsunami Model Validation and

Verification, 2007). A Delaunay grid consisting of 34,409 trian-

gular cells is used to discretize the problem domain and a constant

Manning coefficient of 0.001 m�1/3 s is assumed as suggested by

other researchers (Popinet, 2011; Funke et al., 2011). Since the

measured data for the incoming wave only last for 22.5 s, the

simulation is therefore run for t¼ 25 s.

Fig. 33 plots the 3D view of the computed tsunami wave at

t ¼ 10 s, 14 s and18 s to show the resulting wave propagation. The

computed water levels at three gauges (G5, G6 and G7), located

at [4.521 m, 1.196 m], [4.521 m, 1.696 m] and [4.521 m, 2.196 m],

are compared with the measured data in Fig. 32. In the first 10 s,

the water levels cannot be accurately modeled due to existence

of initial water disturbances in the wave tank (Zhang and

Baptista, 2008; Delis et al., 2008; Nicolsky et al., 2011). Never-

theless, the present model is observed to satisfactorily predict

the amplitude and phase of the first wave at all gauges. RRMSE(h)

is evaluated at the three gauges and the values are 15.991%,

13.715% and 12.951%, respectively. The current numerical results

also compare favorably with those reproduced by other un-

structured grid based finite volume models, for example in Zhang

and Baptista (2008), Cui et al. (2010) and Funke et al. (2011),

although a coarser grid is used in the current work. The predicted

moving wet-dry interface is also compared with the video re-

cords produced by an overhead camera at the frame of 25, 55 and

85 (around t ¼ 15.9 s, 16.9 s and17.9 s), as shown in Fig. 34.

Generally good agreement is observed. Furthermore, the

maximum runup height is computed to be about 0.083 m, as

shown in Fig. 34b at the model scale, which corresponds to

33.2 m at the prototype scale and so agrees well with the field

observation.

5. Conclusions

In this paper, a new 2D edge-based MUSCL scheme has been

developed on triangular grids to reconstruct the required values at

the midpoints of the cell edges in a direct and easy way, by con-

structing the slopes of variables along the medians of a triangular

cell. The new scheme was incorporated into a Godunov-type cell-

centered finite volume model as proposed in Hou et al. (2013a,c,b)

for solving the SWEs.

Extensive numerical experiments suggest that the SWE model

implemented with the novel MUSCL scheme is able to converge to

steady state, capture shocks and handle complex shallow flows

involving wetting and drying over complex beds. Comparing with

the existing approach recently reported in Hou et al. (2013a), the

current MUSCL scheme has a slightly higher accuracy for general

shallow flow solutions, and offers a better well-balanced property

indicated by a faster convergent rate to steady solutions on

different triangular girds. Furthermore, the novel MUSCL scheme

is able to save around 5% of the computational time comparing

with the previous model presented by Hou et al. (2013a). The new

scheme is also flexible and easy to be implemented on all trian-

gular grids. As a summary, due to its better solution accuracy,

higher computational efficiency and simplicity, the proposed

MUSCL scheme provides a favorable alternative to the existing

approaches for solving the SWEs. It can also be directly extended

to solve other hyperbolic equations, e.g. the advectionediffusion

equation which is widely used in environmental flow simulations.

In addition, the scheme, presented here for the 2D triangular grids,

can be easily generalized into 3D tetrahedron grids for solving the

3D problems.
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