
Ann. Data. Sci. (2015) 2(4):489–504

DOI 10.1007/s40745-015-0061-9

An Efficient Variable Selection Method for Predictive

Discriminant Analysis

A. Iduseri1 · J. E. Osemwenkhae1

Received: 24 September 2015 / Revised: 8 December 2015 / Accepted: 9 December 2015 /

Published online: 19 December 2015

© Springer-Verlag Berlin Heidelberg 2015

Abstract Seeking a subset of relevant predictor variables for use in predictive model

construction in order to simplify the model, obtain shorter training time, as well as

enhance generalization by reducing overfitting is a common preprocessing step prior

to training a predictive model. In predictive discriminant analysis, the use of classic

variable selection methods as a preprocessing step, may lead to “good” overall cor-

rect classification within the confusion matrix. However, in most cases, the obtained

best subset of predictor variables are not superior (both in terms of the number and

combination of the predictor variables, as well as the hit rate obtained when used

as training sample) to all other subsets from the same historical sample. Hence the

obtained maximum hit rate of the obtained predictive discriminant function is often

not optimal even for the training sample that gave birth to it. This paper proposes an

efficient variable selection method for obtaining a subset of predictors that will be

superior to all other subsets from the same historical sample. In application to real

life datasets, the obtained predictive function using our proposed method achieved an

actual hit rate that was essentially equal to that of the all-possible-subset method, with

a significantly less computational expense.
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1 Introduction

Predictive discriminant analysis (PDA) is used in many situations where prior designa-

tion of groups exists: such as migration/non-migration status, employed/unemployed,

which customers are likely to buy a product or not buy, whether a person is a credit

risk or not, e.t.c. The aim of PDA is to classify an observation, or several observa-

tions, into these known groups. To reduce modeling bias, it is common to start with

more predictor variables than are actually believed to be required. This may necessi-

tate a substantial search to determine which predictor variables are most important to

include in the prediction model. Researchers often gather data on features or predic-

tor variables, which they believe are good discriminators. This may well be the case,

for example, when researchers conduct a preliminary investigation trying to discover

useful predictor variables. Thus, they might ask themselves questions such as (1) are

all predictor variables really necessary for effective discrimination and (2) which pre-

dictor variables are the best predictors? This will in no doubt help determine a rule

that will yield a high degree of classification precision as well as predictive accuracy”

[1].

In many applications, only a subset of the predictor variables in PDA contain any

group membership information, and including predictor variables which have no group

information increases the complexity of the analysis, potentially degrading the classi-

fication performance [2] . There can be many reasons for selecting only a subset of the

predictor variables instead of the whole set of candidate variables [3]: (1) It is cheaper

to measure only a reduced set of predictor variables, (2) Prediction accuracy may be

improved through exclusion of redundant and irrelevant predictor variables, (3) The

predictor to be built is usually simpler and potentially faster when fewer input predic-

tor variables are used and (4) Knowing which predictor variables are relevant can give

insight into the nature of the prediction problem and allows a better understanding

of the final classification model. Therefore, there is a need for including predictor

variable selection as part of any PDA procedure.

Research in variable selection started in the early 1960s [4]. Over the past four

decades, extensive research into feature selection has been conducted. Much of the

work is related to medicine and biology [5–8]. Besides the classical methods such as

the stepwise and all possible subset methods, a range of other approaches to variable or

subset selection in classification context include the genetic search algorithms wrapped

around Fisher discriminant analysis by [9]. We also have a number of different search

algorithms (proposed as alternatives to backward/forward/stepwise search) wrapped

around different discriminant functions compared by [10], variable selection for kernel

Fisher discriminant analysis [11], DALASS approach of [12] and sequential stepwise

analysis method [13]. A good review of methods involving support vector machines

(SVMS) along side with a proposed criterion for exhaustive variable or subset selection

is given by [14]. Another approach to variable selection is the shrinkage method.

Notable variants off the shrinkage method are the least absolute selection and shrinkage

operator (LASSO) [15] and ridge regression (RR) [16]. As with RR, the LASSO

shrinks the coefficient estimates towards zero. As a result, models generated from the

LASSO are generally much easier to interpret than those produced by RR. A third

approach to variable selection is the dimension reduction method. A popular approach

123



Ann. Data. Sci. (2015) 2(4):489–504 491

of this method which is used for deriving a low-dimensional set of features from a large

set of variables is the principal components analysis (PCA) [16,17]. Lastly we have

some recent representative methods which are based on dictionary learning (DL) for

classification. The representative approach can conveniently be categorized as Track

I and Track II [18]. Track I includes Meta-face learning [19] and DL with structured

incoherence [20], while Track II includes supervised DL [21], discriminative K-SVD

[22], label consistence K-SVD [23] and Fisher discrimination DL [24].

The classical variable selection strategy such as stepwise methods hold out the

promise of assisting researchers with such important task as variable selection prior to

training of the PDF in order to maximize hit rate. However, the promise of maximizing

the hit rate is almost always unfulfilled [1,25,26]. The all-possible subset method

which is a notable classic variable selection strategy developed to address the problems

inherent with the stepwise methods also suffers from computational limitations [27].

Also, other approaches to variable selection in a classification context majorly suffer

from computational limitations [28]. Most of the variable selection methods that have

been developed to assist the researcher in deciding which predictors to prune and the

ones to keep, simply involve selection of best subset of variables under some criterion,

such as the smallest R2
ad j , mean square error (MSE), Mallows’ CK, Bayes’ information

criterion (BIC), Akaike’s information criterion (AIC), e.tc. These methods search for

subset of variables that can carry out this classification task in an optimum way, with

the hope of reducing computational time such that the predictive function solution (or

hit rate) is optimal. In the context of PDA, best subset is the subset with highest hit

rate. However, a better variable selection method may be obtained if its “best” subset

with the highest hit rate is superior to all other subsets from the same historical sample.

This work proposes an efficient variable selection method for obtaining a best

subset of predictor variables that is superior (in terms of having a higher hit rate when

compared to any other subsets with the same number of predictor variables) to all

other subsets of predictors from the same historical sample with less computational

expense.

2 Classical Variable Selection Methods Used in Predictive discriminant
Analysis

The task of improving the performance (or maximizing hit rate) of the predictive dis-

criminant function (PDF) usually begins with the researcher making choices about

the variables that will be involved in the analysis. This may necessitate a substantial

search to determine which variables are most important to include in the predictive

model. Although there are many references in the literature regarding selecting vari-

ables for their use in classification, there are very few key references on the selection

of variables for their use in PDA. In PDA, the most commonly used variable selec-

tion strategy is either the stepwise methods [29,30] or the all possible subset method

[26,31] proposed to address problems inherent with stepwise methods [26]. These

classical variable selection procedures are readily available via common statistical

computer packages/programmes such as SPSS, SAS, R, e.t.c. We give a brief review

of these two notable classic variable selection methods.
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2.1 Stepwise Methods

Several variants of stepwise methods that are readily available via common statis-

tical computer packages include the forward variable selection, backward variable

selection, and stepwise variable selection. The Forward method (or forward selection)

begins by selecting the most discriminating variable according to some criterion. It

continues by selecting the second most discriminating variable and so on. The algo-

rithm stops when none of the non-selected variables discriminates in a significant

way or when the increase in the coefficient of determination (R2) is no longer sta-

tistically significant. The backward method (or backward elimination) works in the

opposite way. When using the backward selection process, all the variables are ini-

tially included in the model. As the analysis progresses, any predictor variable that

does not contribute to the model is deleted. The algorithm stops when all the remaining

variables discriminate significantly.

The stepwise variable selection uses a combination of the two previous algorithms:

at each step variables are introduced or eliminated depending on how significant their

discriminating capacity is. It also allows for the possibility of changing decisions

taken in previous steps, by eliminating from the selected set a variable introduced in

a previous step of the algorithm or by selecting a previously eliminated variable. The

basic difference between the forward selection process and the stepwise process is

that the stepwise process, before entering a new predictor variable, checks to see if all

the predictors already in the model remain significant. Thus, if a previously selected

predictor is no longer useful, the procedure will drop that predictor variable. On the

hand, using the forward selection method, once a predictor enters the model, it remains

there. Stepwise procedures need a mechanism for controlling the entry or removal of

predictor variables from the PDF. Notable methods for controlling the entry or removal

of predictor variables from the PDF are (a) lambda, (b) mahalanobis distance, (c)

smallest F ratio, (d) Rao’s V, and (e) sum of unexplained variance. Klecka [32] pointed

out that “the end result will often be the same regardless of the criterion used, but it

is not always the case”. However, for the stepwise methods, if the independents are

correlated (or have shared discriminating power), an important predictor may not be

selected, because it’s unique contributions are not as great as those of other variables.

Since the stepwise procedure is a logical way to seek the best combination of predictor

variables, it cannot guarantee that the end product is indeed superior to all others [33].

2.2 All-Possible Subset Approach

The all-possible subset approach, as the name implies, analyzes the data one-predictor

at a time, two-predictor at a time, and so on. Thus, as the number of predictors increases,

so does the number of analyses. In fact, for p predictors, a total of 2p − 1 predictor

subsets would be assessed. For example, when there are four predictors there would

be 24 −1 = 15 predictor subsets to be assessed. Hence, the all-possible subset method

becomes computationally infeasible for values of predictors greater than around 40;

even with extremely fast modern computers [27]. Also, If there are two (or more)

subsets of a given size that yields the same hit rates, the subset of choice is either based

123



Ann. Data. Sci. (2015) 2(4):489–504 493

on researcher’s judgment or a second information criterion is used. However, the all

possible subsets approach has remained a popular alternative to stepwise procedure.

For this reason, the all possible subset procedure will be used for the purpose of

comparative analysis.

3 Developing the Predictive Discriminant Function for Future Use

In PDF, having obtained a best subset of predictor variables using any of the notable

variable selection methods the next step is to train the PDF. However, linear model

users are often disappointed when the model that predicts group membership well for

the original data set becomes at best marginal when applied to fresh data drawn from

the same population or historical sample. This is often the case because the predictive

models do capitalize on chance and therefore lead to situations where the function

may predict group membership of the initial data set far better than any other data set

or sample that could be drawn. Clearly, testing the PDF on the data that gave birth to

it is almost certain to overestimate performance [26]. For the optimizing process that

chose it from among many possible PDFS will have made the greatest use possible of

any and all idiosyncracies of those particular data.

Thus using the classical variable selection methods or any other notable approach

to obtain a best subset of predictor variables, that is superior to all other subsets of

predictors from the same historical sample in order to obtain an optimal PDF solution

is not a guarantee that it will be able to generalize to new measurements. That is why

we sometimes say that optimization capitalizes on chance [34]. Optimization based

on chance creates a degree of fit, but in the case of the predictive analysis, this fit may

be upward biased and not representative of real world situations [35]. The general

solution is to evaluate the PDF by testing it on new data sets distinct from the training

sample that gave birth to it using validation and/or cross-validation (CV) procedures.

Generally, CV is a way to predict the fit of a model to a hypothetical validation set when

an explicit validation set (i.e., a validation set that is completely drawn separately but

from the same population) is not available. In PDA, CV is mostly used in estimation of

actual hit rate or true error rate [36,37]. Notable classical variants of CV procedures

due to different splitting strategies are the Leave-one-out cross validation [38–40]

and K-fold cross validation [40] methods. We also have the percentage-N-fold cross

validation rule [41] proposed to address the choice of k.

3.1 Leave-One-Out Cross-Validation Method

Leave-one-out CV is the most classical exhaustive CV procedure originally designed

to estimate the actual hit rate, P(a). It involves using a single observation from the

original sample as the validation data, and the remaining observations as the training

data. This process is repeated N times such that each observation in the historical

sample is used once as the validation data, and the proportions of deleted units (test

samples) correctly classified are used to estimate the hit-rate. If d j is defined as
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d j =

{

1 if Ẑ
− j

j = Z j

0 otherwise

where Ẑ
− j

j is the predicted response for the jth observation computed with the jth

observation removed from the historical sample, Z j is the value of jth observation

in the historical sample. Mathematically, the LOOCV estimate of the actual hit-rate,

P(a) is given by

P̂
(a)
L O OCV =

1

N

⎛

⎝

N
∑

j=1

d j

⎞

⎠ × 100 (3.1)

where N is the total number of cases over all groups (or size of historical sample)

3.2 K-Fold Cross-Validation Method

K-fold cross-validation (KFCV) was introduced as an alternative to the computation-

ally expensive LOOCV [42]. Breiman and Spector [43] found 10-fold and 5-fold CV

to work better than LOOCV. Generally, in literature a value of 10 for K is popular for

estimating the error rate or hit rate. If we denote P(a) as the hit rate for each of the K

sub-samples, and let

d j =

{

1 if Ẑ
−k( j)
j = Z j

0 otherwise

where Ẑ
−k( j)
j is the predicted response for the jth observation computed with the k(j)th

part of the data removed, Z j is the value of jth observation in the historical sample,

k ( j) is the fold containing observation j. Then the hit rate for the K sub-sample is

define as

P
(a)
k =

1

nv

⎛

⎝

nv
∑

j=1

d j

⎞

⎠ × 100 (3.2a)

and nv is the number of cases in the validation sample. Therefore, the KFCV estimate

of the actual hit rate is given as

P̂
(a)
KFCV =

1

K

K
∑

k=1

P
(a)
k (3.2b)

3.3 Percentage-N-Fold Cross-Validation Rule

The percentage-N-fold CV rule can be seen as an alternative to the K-fold CV method.

It has been effectively used in estimation of actual hit rate or the true error rate in

discriminant analysis [44].
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The outline of the percentage–N-fold CV (NFCV−P) procedure is given as follows:

Step1: Obtain a training set, I (t) as a percentage of the historical sample, DN

Step2: For each training sample, D
(t)
N obtained in step1, compute Z = η

(

D
(t)
N

)

and obtain it’s P(a) on the Historical sample, DN

Step3: Repeat steps 1-2 using percentage values of 60, 70, 80 and 90 respectively.

If we denote P̂
(a)

(n)
as the estimate of P(a) for each of the N sub-samples, and let

d j =

{

1 if Ẑ
−n( j)
j = Z j

0 otherwise

where Ẑ
−n( j)
j is the predicted response for the jth observation computed with the

(j)th part of the data removed from the historical sample, Z j is the value of jth

observation in the historical sample, n(j) is the fold containing observation j. Then

the estimate, P̂
(a)

(n)
is defined as

P̂
(a)

(n)
=

1

nv

⎛

⎝

nv
∑

j=1

d j

⎞

⎠ × 100 (3.3a)

where nv is the number of cases in the validation sample. The percentage-N-fold

CV (NFCV−P) estimate of the actual hit rate, p̂(a) is given as

P̂
(a)
N FCV−P

=
1

N−P

N−P
∑

n=1

p̂
(a)

(n)
(3.3b)

where N−P is the total number of folds based on percentage values of 60, 70, 80,

and 90 respectively.

4 The Proposed Variable Selection Method

The new variable selection method which is a modification of the Leave-one-out cross-

validation (LOOCV) method [38–40] is proposed to address the problems inherent

with the all-possible subset approach. This is aimed at obtaining a subset of predictor

variables that is superior both in terms of the number and combination of the predictor

variables, as well as the hit rate obtained when used as training sample with less com-

putational expense. This proposed variable selection method helps obtain a superior

subset of predictors from the list of already identified potential predictor variables.

The outline of the proposed variable selection method is described as follows:

Suppose we are given a data set (or a historical sample, DN ) that consists of

N samples {(xi , yi )}
N
i=1, where xi ∈ ℜP are the corresponding predictor vari-

able vectors and yi ∈ {1, 2, . . . , K } is the group label for the ith sample. Let

DN = [x1, x2, . . . , xN ] ∈ ℜP×N be the historical sample data matrix.

123



496 Ann. Data. Sci. (2015) 2(4):489–504

1. Using DN , we build a PDF and obtain its hit rate. The obtained hit rate otherwise

known as cutoff hit rate, P
(a)
C for this study will serve as an information criterion.

If we let

d j =

{

1 if Ẑ j = Z j

0 otherwise

Where Ẑ j is the predicted response for the jth observation in the historical sample,

DN , Z j is the value of the jth observation in the historical sample, DN . The cutoff

hit rate which serves as an information criterion to determine which variable will

be dropped and which variable will be retained is given as

P
(a)
C =

1

N

⎛

⎝

N
∑

j=1

d j

⎞

⎠ × 100 (4.1)

where N is the total number of cases over all groups.

2. Next, we removed the first predictor variable, X1 and obtain its associated hit rate

on the remaining variables before replacing it. The obtained hit rate which serves

as estimate of variable X1 individual or unique contribution is denoted by P
(a)
1 . If

we let

d j =

{

1 if Ẑ
−X1

j = Z j

0 otherwise

where Ẑ
−X1

j is the predicted response for the jth observation computed with the

first variable removed from the historical sample, DN , Z j is the value of the jth

observation in the training sample, D
(t)
N . Variable X1 associated hit rate, P

(a)
1 is

given as

P
(a)
1 =

1

N

⎛

⎝

N
∑

j=1

d j

⎞

⎠ × 100 (4.2)

where N is the total number of cases over all groups

3. This process is repeated for the remaining variables in the historical sample, DN to

obtain a list of associated hit rates, P
(a)
1 , …, P

(a)
P corresponding to the unique con-

tributions of the variable list X1, . . . , Xp in the historical sample, DN . Therefore,

a total of P + 1 subsets of predictors or PDFS hit rates need be assessed.

4. If any of the obtained associated hit rates P
(a)
1 , …, P

(a)
P is equal or greater than

the cutoff hit rate, P
(a)
C , the variable associated with that hit rate will be dropped

from the analysis, otherwise it is retained. The set of retained variables whose

associated hit rates are lower than the cutoff hit rate becomes the best set of

predictor variables with significant independent and combined contribution. This
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unique set of predictors will now be chosen as the superior subset of predictors (or

training sample) from the historical sample, the superior subset is given as

Dn =
[

x∗
1 , x∗

2 , . . . , x∗
P

]

(4.3)

where x∗
i are the variables whose associated hit rates is strictly less than the cutoff

hit rate

5 Computational Results

To investigate the performance of the proposed variable selection method, two real

world data sets were used. These computational examples consist of comparing our

proposed method with that of the all-possible subset approach. All the analysis was

done using SPSS 16.

5.1 Case1-a Data Sample Regarding Japanese Banks

Historical sample 1 (HS1) consist of fifty observations for each group. HS1 is from a

well-known financial journal among Japanese business leaders which may correspond

to Economist, Financial Times, and Business Week in Europe and the United States

of America. It involves 100 Japanese financial institutions, along with seven index

measures [45]. Each bank is evaluated by the following seven performance indexes:

(1) return on total assets (=total profits/average total assets),

(2) labour profitability (=total profits/total employees),

(3) equity to total assets (=total equity/average total assets),

(4) total net working capital

(5) return on equity (=earnings available for common/average equity),

(6) cost-profit ratio (=total operating expenditures/total profits), and

(7) bad loan ratio (=total bad loans/total loans).

For this data set, we begin the preprocessing step with the all-possible subset

method. This approach involves conducting an all possible subsets of each size in

order to determine the best subset of predictor variables of any given size, prior to

building of the discriminant function in order to maximize hit rate. At the end of the

2P − 1 analysis, a subset of five predictor variables was chosen as the best subset. The

summary of hit rates for variable subsets from the 2-group Japanese bank data, using

the all-possible subset method are presented in Table 1.

In Table 1, the sets of values in column 1 represent the subsets size or number of

variables, while the values in column 2 represent the number of all possible subsets for

each subset size. The 2P − 1 analysis resulted in assessing one hundred and twenty-

seven (127) subsets of predictor variables (i.e., the sum of the set of values in column

2). From columns 3 and 4, it appears that the total-group hit rate increases as one, two

and three variables (from 78 to 90) are supplemented to the subset of X3 and X6. But,

as the fourth (X5) and fifth (X1) variables are added, the hit rate decreases (from 90 to

87). Going “strictly by numbers”, it may be concluded that the subset to be retained is
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Table 1 Summary of hit rates for variable subsets

Subset size Possible subsets Best subset Hit rate (%)

2 (21) X3 X6 78

3 (35) X1 X6 X7 86

X2 X6 X7 86

4 (35) X2 X3 X6 X7 88

5 (21) X2 X3 X4 X6 X7 90∗

6 (7) X2 X3 X4 X5 X6 X7 89

7 (1) X1 X2 X3 X4 X5 X6 X7 87

Best subset: X2 X3 X4 X6 X7

∗ Best subset with the highest hit rate

Table 2 Summary of predictor variables associated hit rates

Variables Associated hit rates Cutoff hit rate (%)

Return on total assets (X1) 89.0 87

Labour profitability (X2) 84.0∗

Equity to total assets (X3) 85.0∗

Total net working capital (X4) 87.0

Return on equity (X5) 87.0

Cost-profit ratio (X6) 85.0∗

Bad loan ratio (X7) 84.0∗

Best subset: X2 X3 X6 X7

∗ Variables with significant independent contributions

that excluding X5 and X1. Hence, the subset of five variables with asterisked hit rate

is the “best subset” to be retained.

A cursory look at Table 1 shows that two subsets of size three yielded the same hit

rates. Assuming the subset of size three gave the highest hit rate, the subset of choice

may be based on predictor set collection- a researcher judgment call [26].

For the same data set, using our proposed rule as a preprocessing step, the P + 1

analysis resulted in assessing seven (7) subsets of predictor variables. The summary

of the seven predictor variables associated hit rates (or individual contributions) and

their combined contribution (or cutoff hit rate) are presented in Table 2.

From the results in column 2 of Table 2, four predictor variables with asterisked

associated hit rates out of the seven predictor variables were less than the cutoff hit

rate, P
(a)
C value of 87 %. These four predictor variables that gave the best significant

independent and combined contribution becomes the “superior subset” to be retained.

5.2 Case2- a Data Sample Regarding University Demonstration Secondary

School (UDSS) Students’ Academic Records, University of Benin, Nigeria

Beside the Japanese banks data, we also used a second real data set or historical sample

2 to serve as validation for the first result. Historical sample 2 involves students’
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Table 3 Summary of hit rates for variable subsets

Subset size Possible subsets Best subset Hit rate (%)

2 55 X2 X5 81.7

3 165 X4 X5 X9 85.0

X5 X8 X9 85.0

X5 X9 X10 85.0

X5 X10 X11 85.0

4 330 X3 X5 X8 X9 86.7

X4 X5 X7 X10 86.7

5 462 X1 X3 X5 X10 X11 88.3

X4 X5 X7 X8 X10 88.3

6 462 X1 X4 X5 X7 X10 X11 91.7

7 330 X1 X2 X4 X5 X7 X10 X11 93.3∗

8 165 X1 X2 X4 X5 X6 X7 X10 X11 93.3

X1 X2 X4 X5 X7 X9 X10 X11 93.3

9 55 X1 X2 X4 X5 X7 X8 X9 X10 X11 91.7

10 11 X1 X2 X4 X5 X6 X7 X8 X9 X10 X11 91.7

11 1 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 90.0

Best subset: X1 X2 X4 X5 X7 X10 X11

academic records for junior secondary school (JSS) 2, in University Demonstration

Secondary School (UDSS), University of Benin, Nigeria [28]. The data set involves

average scores for the three terms obtained for eleven (11) subjects which include:

(1) English Language (X1),

(2) Mathematics (X2),

(3) Integrated Science (X3),

(4) Social Studies (X4)

(5) Introductory Technology (X5),

(6) Business Studies (X6)

(7) Home Economics (X7),

(8) Agricultural Science (X8),

(9) Fine Art (X9),

(10) Physical and Health Education (X10), and

(11) Computer Studies (X11).

For this data set, the all possible subset approach gave a best subset of seven

variables. The summary of hit rates for all possible variable subsets from the 2-group

students’ academic records, are presented in Table 3.

In Table 3, the 2P − 1 analysis resulted in assessing two thousand and forty-seven

(2047) subsets of predictor variables. The result in Table 3 shows that three subsets

yielded the same highest hit rates. As a rule of thumb, the subset with the smallest num-

ber of predictor variables was chosen. Hence, the subset of seven predictor variables

with asterisk hit rate is therefore the best subset.
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Table 4 Summary of predictor variables associated hit rates

Variables Associated hit rates Cutoff hit rate (%)

English language (X1) 83.3∗ 90.0

Mathematics (X2) 83.3∗

Integrated science (X3) 91.7

Social studies (X4) 83.3∗

Introductory technology (X5) 81.7∗

Business studies (X6) 91.7

Home economics (X7) 88.3∗

Agricultural science (X8) 90.0

Fine art (X9) 90.0

Physical and Health education (X10) 81.7∗

Computer studies (X11) 83.3∗

Best Subset: X1 X2 X4 X5 X7 X10 X11

∗ Variables with significant independent contributions

Using our proposed method as a preprocessing step, at the end of the P + 1 analysis,

seven predictor variables associated hit rates were less than the cutoff hit rate, P
(a)
C

value of 90 %. The summary of the seven predictor variables associated hit rates

(or individual contributions) and their combined contribution (or cutoff hit rate) are

presented in Table 4.

In Table 4, the P + 1 analysis resulted in assessing twelve (12) subsets of predictor

variables. The seven predictor variables with asterisked hit rates becomes the superior

subset of predictor variables that gave the best significant independent and combined

contribution.

6 Estimation of Actual Hit Rate Based on Historical Sample 1 and 2

The major aim of seeking the subset of best predictors is to maximize hit rate. In

PDA assessing the degree of classification accuracy, amounts to estimating a true hit

rate [26]. The hit rate obtained by internal classification analysis or simply internal

analysis can be expected to be positively biased or spuriously high [26]. The true hit

rate estimation process involve seeking answers to two questions: (1) how accurate

can a classification rule based on population information be expected to perform? (2)

How accurate can a rule based on a given sample be expected to classify individual

units in future samples? Consequently, there are essentially two probabilities of correct

classification (or two population hit rates). The first is the optimal hit rate, denoted by

P(o). This is the hit rate obtained when a classification rule based on known parameters

is applied to the population. The second hit rate which is the most widely used is the

actual hit rate, denoted by P(a). This is the hit rate obtained by applying a rule based

on a particular sample to future samples taken from the same population.
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Table 5 Weight estimates and classification accuracy using historical sample 1

Methods function 1 All possible subset

method Z1

Proposed variable

selection method Z2

(Constant) −6.738 −6.887

Labour profitability (X2) 0.005 0.002

Equity to total asset (X3) 0.004 0.005

Total net working capital (X4) −0.002

Cost-profit ratio (X6) 0.004 0.005

Bad loan ratio (X7) 0.003 0.003

Prediction accuracy: LOOCV 85.0 % 86.0 %

KFCV 85.0 % 83.0 %

NFCV-−P 82.7 % 81.1 %

Unstandardized weights

Table 6 Weight estimates and classification accuracy using historical sample 2

Methods function 1 All possible subset

method Z1

Proposed variable

selection method Z2

(Constant) −3.681 −3.681

English language (X1) −0.043 −0.043

Mathematics (X2) 0.022 0.022

Social studies (X4) −0.043 −0.043

Introductory technology (X5) 0.130 0.130

Home economics (X7) 0.038 0.038

Physical and health educ. (X10) −0.084 −0.084

Computer science (X11) 0.061 0.061

Prediction accuracy: LOOCV 80.0 % 80.0 %

KFCV 83.0 % 83.0 %

NFCV−P 81.1 % 81.1 %

Unstandardized weights

To evaluate the performance of our proposed variable selection method which serves

as a preprocessing step prior to building the PDF, an estimate of the actual hit rate

was obtained. In order to obtain this estimate, the leave one out CV which is the most

classical exhaustive CV procedure, as well as the K-fold CV and percentage-N-fold CV

procedures were used. Tables 5 and 6 below shows the SPSS output for discriminant

weights obtained for the PDFS that was built using our method as a preprocessing

step, together with that of the all possible subset approach, as well as estimates of the

actual hit rate (prediction accuracy) obtained from the leave-one-out cross validation,

K-fold CV and percentage-N-fold CV methods
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7 Summary and Conclusion

This work approaches the problem of variable selection as a preprocessing step prior

to building a PDF in order to maximize hit rate. For historical sample 1 with 7 predictor

variables, using the all-possible subset method or the 2P − 1 analysis, a total of 127

subsets of predictors (or PDFS hit rates) were assessed in order to obtain the best subset

of predictor variables. For the same historical sample 1 with 7 predictor variables,

using our proposed method or the P + 1 analysis, a total of 8 subsets of predictors were

assessed in order to obtain the best subset of predictor variables. Also, for historical

2 with 11 predictor variables, a total of 2P − 1 (or 2047) subsets of predictors or

PDFS hit rates were assessed using the all-possible subset method. While for the same

historical sample 2, a total of P + 1 or 12 subsets of predictors were assessed using our

proposed method. The significant reductions in the number of subsets of predictor or

PDFS hit rates that need be assessed suggest that our proposed rule seems to show

some reasonable performance in terms of computational expense.

A cursory look at Table 1 shows that two subsets of size three yielded the same

highest hit rates. Also, the result in Table 3 shows that three subsets also yielded the

same highest hit rates. For the latter, in order to obtain the subset of choice, the subset

with minimum number of predictor variable was chosen. Assuming the three subsets

that yielded the same hit rate has the same number of predictor variables, additional

information criterion would have been needed to obtain the subset of choice, which

will amount to additional computational expense. Alternatively, the subset of choice

may be based on predictor set collection- a researcher judgment call [26]. However,

using the proposed method, the problem associated with having two or more best

subsets (i.e., not having a superior subset) of a given size that yields the same hit rate

common with all-possible subset method was completely avoided.

In Tables 5, we observed that the LOOCV estimate of PDF’s hit rate obtained using

our proposed rule was slightly higher than that of the all possible subset method. In

Table 6, we also observed that both methods had the same predictive performance in

terms of their actual hit rates. Among the three CV methods that was used in obtaining

estimates of the actual hit rate, the LOOCV method is known to be approximately

unbiased, and is often used in assessing the performance of classifiers [46,47]. Since

our rule was able to achieve this feat with significantly less computation expense, truly

shows that our propose rule seems to perform better. Therefore, using our proposed

rule, we need just P + 1 subset of predictors that must be considered irrespective of the

number of predictor variables.

Although the results support the applicability and the merit of the proposed rule,

however, it is true that this verification is limited to the scope of the data sets used.

Therefore, this article believes that more experimental results are still called for in

order to make a final conclusion on the superiority of the proposed rule over a variety

of known classical alternatives. That is another future research task. Finally, it is hoped

that this research makes a small contribution to research works on variable selection

as a preprocessing step in PDA.
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