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Abstract – Variance component (VC) approaches based on restricted maximum likelihood
(REML) have been used as an attractive method for positioning of quantitative trait loci (QTL).
Linkage disequilibrium (LD) information can be easily implemented in the covariance struc-
ture among QTL effects (e.g. genotype relationship matrix) and mapping resolution appears to
be high. Because of the use of LD information, the covariance structure becomes much richer
and denser compared to the use of linkage information alone. This makes an average informa-
tion (AI) REML algorithm based on mixed model equations and sparse matrix techniques less
useful. In addition, (near-) singularity problems often occur with high marker densities, which
is common in fine-mapping, causing numerical problems in AIREML based on mixed model
equations. The present study investigates the direct use of the variance covariance matrix of all
observations in AIREML for LD mapping with a general complex pedigree. The method pre-
sented is more efficient than the usual approach based on mixed model equations and robust to
numerical problems caused by near-singularity due to closely linked markers. It is also feasi-
ble to fit multiple QTL simultaneously in the proposed method whereas this would drastically
increase computing time when using mixed model equation-based methods.

quantitative trait loci / fine-mapping / linkage disequilibrium / average information /
genotype relationships matrix

1. INTRODUCTION

Variance component (VC) approaches have been widely used to de-
tect the existence of variation associated with quantitative trait loci
(QTL) [1, 3, 10, 13, 15, 38]. The idea behind the approaches is to obtain iden-
tity by descent (IBD) coefficients between relatives for the QTL, based on
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marker and pedigree data, and maximize the likelihood of phenotypic data
given these IBD coefficients at each putative QTL position. QTL position can
be estimated with maximum likelihood (ML) or restricted maximum likeli-
hood (REML) at the location with the highest likelihood value across the
chromosome. This idea has been extended to a fine-mapping method using
linkage disequilibrium (LD) generated from closely linked markers [27, 28].
In the fine-mapping method, IBD coefficients between unrelated founders in
a recorded pedigree are estimated based on haplotype similarity using the
genedropping method [26] or the coalescence method. This allows utilizing
unknown relationships beyond the recorded pedigree as well as known rela-
tionships, possibly allowing to estimate QTL position within a smaller region,
e.g. within a few cM [30].

Data sets used for fine-mapping are typically not very large (a few hun-
dred genotyped animals with records) because many marker loci with denser
spacing are required. However, there is much richer information in the (co)
variance structure (more non-zero elements in the variance covariance ma-
trix). Such a complex and dense (co) variance structure makes a sparse ma-
trix technique less useful. Therefore, the usual and efficient REML algorithm
based on the mixed model equations (MME) using sparse matrix techniques
(e.g. [12, 19]) may be less suitable for fine-mapping of QTL. Moreover, the
complicated and subtle process to maximize computational efficiency in the
MME-based REML, i.e. by avoiding the inverse of the variance covariance ma-
trix of the observations, is prone to have numerical problems since the matrix
of covariance coefficients between haplotypes based on closely linked mark-
ers can reach near-singularity. Direct use of the variance covariance matrix of
the observations (V) and its inverse would be robust to such problems because
the V is an aggregate of (co) variance matrices of all components, which is
more guaranteed to be positive definite. The dimension of the V is usually
smaller than that of the MME, especially when there are many ancestors with-
out records. Another advantage in using the V is to easily fit multiple QTL
simultaneously since the dimension of the matrix is not changed. By contrast,
the dimension of the MME rapidly increases with the number of QTL fitted.

The aim of this study was to investigate the efficiency of a REML algorithm
with the direct use of the V compared to the usual REML algorithm based
on MME when the combined LD and linkage (LDL) mapping is used with a
general complex pedigree.
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2. MATERIALS AND METHODS

2.1. Mixed linear model

The genetic model that is used in the VC approach with combined LD and
linkage mapping is relatively general. A vector of phenotypic observations is
written as a linear function of the effects of QTL, a polygenic term representing
the sum of other unidentified genetic effects, fixed effects and residuals. The
model can be expressed as,

y = Xβ + Zu +
NQ∑
i=1

Zqi + e (1)

where y is a vector of N observations on the trait of interest, β is a vector of
fixed effects, u is a vector of n random polygenic effects for each animal, NQ is
the number of QTL, qi is a vector of n random effects due to ith putative QTL
and e are residuals. The random effects (u, qi and e) are assumed to be normally
distributed with mean zero and variance Aσ2

u, Giσ
2
qi

and R, where A is the
numerator relationship matrix based on additive genetic relationships based on
recorded pedigree, Gi is the genotype relationship matrix whose elements are
IBD probabilities at ith QTL, and R is the covariance matrix among residual
effects, assumed diagonal in this study. X and Z are incidence matrices for the
effects β and u and qi, respectively. It is assumed that there is no correlation
between u and qi, u and e, and qi and e, and no correlation among q1 ∼ qNQ.
The associated variance covariance matrix of all observations (V) given the
observed pedigree and marker genotypes is modeled as

V = ZAZ′σ2
u +

∑
ZGiZ′σ2

qi
+ R. (2)

The mixed model equations (MME) pertaining to (1) are


X′R−1X X′R−1Z X′R−1Z · · · X′R−1Z

Z′R−1X Z′R−1Z+
(
Aσ2

u

)−1
Z′R−1Z · · · Z′R−1Z

Z′R−1X Z′R−1Z Z′R−1Z +
(
G1σ

2
q1

)−1· · · Z′R−1Z
...

...
...

. . .
...

Z′R−1X Z′R−1Z Z′R−1Z · · · Z′R−1Z+
(
GNQσ

2
qNQ

)−1



×



b̂
û
q̂1
...

q̂NQ


=



X′R−1y
Z′R−1y
Z′R−1y
...

Z′R−1y


(3)
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2.2. Estimation of IBD probabilities

2.2.1. Finding inheritance states and haplotype construction

IBD coefficients are estimated based on the pattern of possible inheritance
states and associated haplotype configurations [17,34,36]. To derive such pat-
terns, two kinds of approaches can be used. One is to find an optimal haplotype
configuration with the highest likelihood given observed data using maximum
likelihood approaches. IBD coefficients are then estimated based on the most
likely haplotypes. The other is to apply a Markov chain Monte Carlo (MCMC)
algorithm to surface all possible inheritance states and haplotype configu-
rations. IBD probabilities are estimated every MCMC cycle. Averaged IBD
probabilities over all cycles would provide estimates based on the posterior
distribution given the observed data [24].

2.2.2. LD information

IBD coefficients are based on similarity of haplotypes unrelated through
known pedigree. These patterns of similarity can be derived by using a gene-
dropping method [26] or the coalescence method introduced by Meuwissen
and Goddard [27, 28]. An assumption of a mutation age of 100 generations
and a past effective size of 100 can be used to estimate IBD coefficients since
they are usually unknown. Results have been shown to be robust against such
assumptions by exploring a range of values for effective size and mutation age
as well as for populations that have a decreasing effective size [22, 23, 27].
Therefore, IBD coefficients between unrelated founder haplotypes in recorded
pedigrees can be approximated and these are non-zero values.

2.2.3. Combined LD and linkage information

Using the IBD probabilities between unrelated haplotypes, IBD probabili-
ties between related haplotypes in the following generations can be recursively
estimated using known pedigree information [32,39,40]. Therefore, IBD prob-
abilities between all haplotypes can be estimated based on joint information
from LD and linkage. Note that all resulting coefficients have a non-zero value.

2.3. Genotype relationship matrix

The number of variance covariance coefficients between all haplotypes at
each position is 2n × 2n (n is the number of animals). From a computational
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perspective, it is useful to transform the coefficients between all haplotypes to
a covariance between individual genotypes without loss of information [32].
Therefore, the number of IBD coefficients are reduced to n × n. The following
equation is used [37],

G = 0.5 KHK′ with K = In ⊗ [1, 1].

Where G is the genotype relationship matrix, H is the haplotype (gametic)
relationship matrix, In is an identity matrix with rank n, ⊗ is the Kronecker
product of two matrices and [1, 1] is a 1 by 2 vector.

2.4. G and the position of the QTL

For a given data set, the similarity of marker haplotypes changes with the
position of the QTL. Therefore, a different G exists for each putative QTL
position on a tested chromosomal region. For each G, the maximum value of
the log likelihood and the variance components are estimated for the corre-
sponding position on a chromosome. Therefore, each position has a maximum
value for the log likelihood for model parameters at the given QTL position.
The most likely QTL position can be estimated as the position with the highest
maximum likelihood value across all positions.

2.5. REML estimates using an average information algorithm

2.5.1. Calculation of log likelihood

By assuming multivariate normality of the data with mean vector Xb and
variance covariance matrix V, the resulting likelihood can be written and some
numerical procedure can be used to estimate the variance components. The
log likelihood for the model in (1) can be obtained using the following equa-
tion [16].

ln L = −1
2

[
ln |V| + ln |X′V−1X| + y′Py

]
(4)

where ln is a natural log, and | | refers to the determinant of the associated
matrices. Note that X is a full rank incidence matrix. The P matrix is defined as,

P = V−1 − V−1X
(
X′V−1X

)−1
X′V−1. (5)
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Alternatively, avoiding the inverse of the V matrix, the following equation can
be used [31],

ln L = −1
2

[ (
Nr − Nβ − Nu − Nq

)
ln σ̂2

e + ln |C|
+ ln |A| + ln |G| + n ln σ̂2

u + n ln σ̂2
q + y′Py

]
(6)

where Nr,Nβ, Nu and Nq is the number of records, fixed effects, polygenic
effects and QTL effects and C is the coefficient matrix in the MME.

2.5.2. Average information REML

As a method to obtain REML estimates, the average information algorithm
(AIREML [11, 19]) is used. The average information coefficients are the av-
erage of the observed and expected information matrices from the Newton-
Raphson and Fisher scoring method (see App. A). The equation for the iterative
algorithm is,

Θ(k+1) = Θ(k) +
(
AI(k)

)−1 ∂L
∂Θ

∣∣∣Θ(k) (7)

where Θ is a column vector of variance components (σ2
e , σ2

u and σ2
q), and k is

the iteration round. AI is the average of the observed and expected information
matrices which consists of the second derivatives of the log likelihood function
with respect to the variance components, which can be written as,

AI =
1
2



y′PPPy y′PA∗PPy y′PG∗PPy

y′PA∗PPy y′PA∗PA∗Py y′PA∗PG∗Py

y′PG∗PPy y′PA∗PG∗Py y′PG∗PG∗Py


(8)

where A∗ = ZAZ′ and G∗ = ZGZ′.
∂L
∂Θ is a column vector with first derivatives of the log likelihood function

with respect to each variance component, which is,

∂L

∂σ2
i

= −1
2

tr

P
∂V

∂σ2
i

 + 1
2

y′P
∂V

∂σ2
i

Py.
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The first derivatives for each of the three VC of the QTL model are,

∂L

∂σ2
u
= −1

2
(tr(PA∗) − y′PA∗Py) (9a)

∂L

∂σ2
q
= −1

2
(tr(PG∗) − y′PG∗Py) (9b)

∂L

∂σ2
e
= −1

2
(tr(P) − y′PPy). (9c)

In general cases, the use of the MME (3) is very efficient to obtain AI coeffi-
cients and the first derivatives because one can avoid inverting matrix V (see
App. B and C). However, in fine-mapping, the QTL part in the MME becomes
dense, substantially reducing the computational efficiency of this procedure.

2.6. Comparison of the direct and MME method

The AI matrix (8) and the first derivatives (9) can be obtained in two differ-
ent ways. One is to directly compute the inverse of the V matrix, and then the
P matrix (direct method). The other is to solve MME equations and use matrix
products (MME-based methods, see App. B). In the direct method, the main
part of the computations is to invert V, needed for matrix P for each REML it-
eration round (6). The dimension of the V matrix is Nr ·Nr and matrix inversion
requires order (Nr)3 computations. However, the partial inverse of the coeffi-
cient matrix corresponding to polygenic and QTL effects is necessary in the
MME-based methods. The dimension of the coefficient matrix corresponding
to polygenic and QTL effects is (Nu + Nq).(Nu + Nq) and partial inversion re-
quires computations slightly more than order (Nu)3 + (Nq)3. In a fine-mapping
model where G is a dense matrix, the direct method is expected to be more
computationally efficient unless the number of records is far greater than the
number of animals. Note that the number of animals is often much larger than
the number of records with genotypic data. For example, in a pedigree span-
ning several generations, often only the last one or two generations would be
phenotyped and genotyped for mapping studies. Another advantage in the di-
rect method is to easily fit multiple QTL simultaneously. This is because the
dimension of V (2) is not changed by increasing the number of QTL. In con-
trast, the dimension in the MME (3) rapidly increases with the number of QTL,

i.e.

(
Nu +

NQ∑
i=1

Nqi

)
·
(
Nu +

NQ∑
i=1

Nqi

)
.
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2.7. Simulation study

One hundred generations of a population with an effective size of 100 was
simulated for 11 markers and a QTL. In each generation, the number of male
and female parents was 50 and their alleles were transmitted to descendents
based on Mendelian segregation using the genedropping method [26]. Parents
were randomly mated with a total of 2 offspring for each of 50 mating pairs.
For the QTL, one of the base alleles surviving with a frequency of more than
0.1 and less than 0.9 was randomly chosen and treated as favourable with effect
α compared to other QTL alleles in generation 100. The number of base alleles
in each marker locus was 4 and starting allele frequencies were all at 0.25. The
marker alleles were mutated at a rate of 4×10−4 per generation [5,7,41]. There-
fore, this historical population would have an equilibrium distribution of alleles
in all marker loci and LD between the QTL and closely flanking markers. Note
that pedigree information is available only from generation 101 onwards.

The computational efficiency of the direct method and the MME-based
method was investigated. Analyses were carried out for a pedigree spanning
two generations (generation 100 ∼ 101), 5 generations (100 ∼ 104) and
10 generations (100 ∼ 109). By default, random selection and mating was
carried out, resulting in many marriage loops and inbreeding loops, therefore a
complex pedigree. Note that even with a pedigree of two generations, complex
marriage loops heavily affect the covariance structure (i.e. reducing sparsity
of the inverse of the covariance matrix). For a simple pedigree with each par-
ent having one mate only, marriage and inbreeding loops do not exist. We
generated 50 unrelated full sib families each with two progeny and compared
with a complex pedigree. For a fair comparison between results, marker geno-
types and phenotypic values were only available for animals in the last two
generations. Phenotypic values were simulated as yi = µ + αi + ui + ei. The
mean of population (µ) was 100, values for ui were drawn from N(0, Aσ2

u) with
σ2

u = 25, and values for ei were from N(0, σ2
e) with σ2

e = 50. The favorable
QTL allele had an additive value of 7 (α0 = 0 and α1 = 7), therefore, QTL
variance ranged from 8.8 to 24.5 with VQT L = 2p(1− p)α2 [8]. To evaluate the
effects of marker densities on computational stability and efficiency, eleven
markers were positioned at 10, 1 or 0.1 cM intervals.

3. RESULTS

3.1. Computational efficiency for the MME and direct method

Table I shows the computing time averaged over 10 replicates per REML
iteration for each method with a general complex pedigree spanning 2,
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Table I. Computational statistics averaged over replicates for each method with com-
plex pedigrees.

Data set 2 generationsa 5 generationsa 10 generationsa

Inbreeding coefficient in the last generation

0 0.014 0.039

No. of non-zero elements in MMEb

LDL mapping 42800 254887 1091920

Linkage mapping 32951 240620 1063153

No. of non-zero elements in inverse of G
LDL mapping 40000 250000 1000000

Linkage mapping 30152 235732 971233

No. of non-zero elements in inverse of NRMc

796 2883 89916

Comp. time (s) per iteration with the direct methodd

0.09 (< 0.001)e 0.09 (< 0.001) 0.15 (< 0.001)

Comp. time (s) per iteration with the MME method

LDL mapping 0.19 (< 0.001) 4.8 (0.02) 43 (0.5)

Linkage mapping 0.13 (0.004) 4.5 (0.02) 41 (0.3)

a Genotypes and phenotypes are only available for the last two generations (100 ani-
mals per generation).
b Total number of elements in MME ∼

(
Nu + Nq

)2
.

c Elements in the inverse of NRM are the same for LDL mapping and linkage
mapping.
d Computing time with the direct method is the same for LDL mapping and linkage
mapping.
e Standard error over 10 replicates in the bracket.

5 or 10 generations. The results show that the computational effort per iter-
ation round of the direct method is lower in all cases than that of the MME
method. When the number of animals and the number of records are the same
(e.g. Nr = Nu = Nq = 200), the computing time of the direct method is around
1.5 ∼ 2 times lower than that of the MME method. With a pedigree spanning
5 generations where Nr = 200 and Nu = Nq = 500, the direct method is about
50 times faster than the MME method. With a pedigree of 10 generations with
Nr = 200 and Nu = Nq = 1000, the direct method is around 270 times faster
than the MME method. As expected, the direct method performed at a simi-
lar computational speed regardless of the number of non-zero elements in the
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Table II. Computational statistics averaged over replicates for each method with com-
plex or simple pedigree.

Data set Complex pedigreea 50 full sib familiesb

Proportion of non-zero elements in MME

LDL mapping 42800 42704

Linkage mapping 32951 3499

No. of non-zero elements in inverse of G
LDL mapping 40000 40000

Linkage mapping 30152 795

No. of non-zero elements in inverse of NRM

796 700

Comp. time (s) with the direct method

0.09 (< 0.001)c 0.09 (< 0.001)

Comp. time (s) with the MME method

LDL mapping 0.19 (< 0.001) 0.18 (< 0.001)

Linkage mapping 0.13 (0.004) 0.02 (< 0.001)

a Random selection and random mating with effective size of 100 of 2 generations
(number of animals are 200).
b 50 families each with 2 offspring (number of animals are 200).
c Standard error over 10 replicates in the bracket.

MME matrix while the computing time of the MME method rapidly increases
with a larger number of non-zero elements.

With a general complex pedigree, the inverse of G is very dense even in
linkage mapping (e.g. 76% of non-zero elements in a pedigree spanning two
generations). Therefore, a sparse matrix technique is not useful. With a more
complex pedigree, the proportion of non-zero elements increases (95% and
97% for a pedigree of 5 and 10 generations). This may explain a smaller dif-
ference of computing time between LDL mapping and linkage mapping with a
more complex pedigree. Table II shows the number of non-zero elements and
computing time both for a complex pedigree spanning two generations and a
simple pedigree (of 50 unrelated full sib families). Although the number of
animals are the same (200), the number of non-zero elements in the inverse
of G is much smaller for a simple pedigree than for a complex pedigree when
using linkage mapping. In this case, a sparse matrix technique is very useful
and the computing time of the MME method is lower than that of the direct
method (e.g. for linkage mapping with 50 full sib families).
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Table III. Proportion of replicates having numerical problemsa in the procedure.

Marker density 10 cM 1 cM 0.1 cM
Direct method 0 0 0
MME method 0 0.24 0.69

a Numerical problems: ln L (6) cannot be obtained due to singularity or dependency
of the coefficient matrix. Estimations were carried out for 10 putative QTL positions
in 10 simulated data sets, therefore, 100 estimations were replicated.

3.2. Stability of the direct method and MME method

Table III shows the proportion of replicates having numerical problems to
obtain the log likelihood and variance components when LDL mapping is car-
ried out. Note that if G is non-positive definite, a bending algorithm is used
to ensure positive definiteness for G [35]. Thus, positive definite G is used for
both methods. When marker density is low (> 10 cM), the log likelihood and
parameters are estimable in all replicates for both the direct and MME method.
When marker density is higher (1 cM or 0.1 cM), the MME method often faces
numerical problems, i.e. ln |C| in (6) cannot be obtained, therefore, ln L (6) can-
not be estimated. This is probably due to the fact that very high marker density
increases the likelihood of the coefficient matrix to be singular. The G matrix
is an explicit part of the MME, and even though this matrix is bent to become
positive definite, the Gaussian elimination procedure could still face very small
pivotal values and there is a good chance of negative values for determinants.
These problems rarely or never occur for the direct method implementing the
V that is the sum of all covariance matrices.

3.3. Comparison with a standard VC software ‘ASReml’

Table IV compares the computing time per iteration for the direct method
with that for ASReml [12]. In LDL mapping, the direct method is much more
efficient than ASReml especially when using a complex pedigree spanning
10 generations. In linkage mapping alone, the direct method performs better
with a complex pedigree, however, with a simple pedigree, ASReml is more
efficient. It is noted that the performance of ASReml is similar to that of our
MME method (Tabs. I and II). This is because both programs use the extended
MME to obtain AI coefficients and the inverse of the coefficient matrix with
a sparse matrix technique (see App. B). Optimal ordering of sparse structures
and utilization of the reordering matrix [6] may be more efficiently optimised
in ASReml than in our MME method, making ASReml perform better than
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Table IV. Comparison of computing time (s) averaged over replicates to estimate vari-
ance components between the direct method and ‘ASReml’.

Simple pedigree General complex pedigrees

50 full sib families 2 generations 5 generations 10 generations

Direct method

0.09 (< 0.001)a 0.09 (< 0.001) 0.09 (< 0.001) 0.15 (< 0.001)

ASReml

LDL 0.3 (< 0.001) 0.33 (0.001) 5.7 (0.02) 50 (0.3)

Linkage alone < 0.01 (< 0.001) 0.2 (0.01) 5.3 (0.03) 46 (0.2)

a Standard error over 10 replicates in the bracket.

the MME method for a simple pedigree. However, in general, both programs
perform similarly in that the computational effort of the MME-based procedure
is high with LDL mapping and complex pedigrees whereas it is much lower
with a simple pedigree structure in linkage mapping.

4. DISCUSSION

This study presented a REML procedure suitable for fine-mapping of QTL
with a complex pedigree. Because the coefficient matrix is dense with LDL
mapping and a complex pedigree, MME-based methods are less computation-
ally efficient and sparse matrix techniques are not very useful. Besides, with
closely linked multi markers in fine-mapping (e.g. marker spacing <∼ 1 cM),
MME-based methods could face numerical problems because of dependency
or near-singularity in the MME. These problems were not observed in the di-
rect method.

It is common that genotypic and phenotypic observations are available only
on relatively few animals from the last few generations in an entire pedigree
(genotypes and phenotypes for ancestors are missing). In such situations when
the number of animals in the pedigree is similar or greater than the number
of available observations, the direct method is computationally efficient since
the V describes the variance covariance structure between observations, taking
into account all the ancestral relationships.

When multiple QTL are involved in phenotypes of a trait, it is useful to ana-
lyze a number of QTL simultaneously [18, 20, 29, 42, 43]. It is straightforward
to simultaneously include a number of QTL positions in the model. The com-
puting time for a multiple QTL analysis is not much different from that of a
single QTL analysis if the direct method is used; the dimension of the V is not
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changed and the computing time for inverting the V is the same in the multiple
or single QTL model. However, in MME-based methods, the computing time
rapidly increases with a larger number of QTL positions fitted since the dimen-
sion of MME linearly increases with additional QTL positions included in the
model. For example, with a complex pedigree of two generations, computing
time per iteration is 0.11, 0.12 and 0.13 (s) for the direct method and 1.6, 4.7
and 19 (s) for ASReml when fitting 2, 3 and 5 multiple QTL simultaneously
using LDL mapping. These results were expected given (2) and (3).

Since estimates were based on the same likelihood equation (7), theoreti-
cally, AI coefficients and first derivatives should have the same value in each
method if starting value and convergence criteria are the same. In this study
with a complex pedigree of two generations, the average number of itera-
tions over replicates was 4.4 (±0.27) for the direct method and 6.4 (±0.27)
for ASReml. This difference was probably due to the fact that the first and
second derivatives were estimated from two different coefficient matrices (e.g.
V matrix and MME) and the computational procedure was different. The small
number of iterations for the direct method is probably due to the fact that
the procedure is more stable, therefore quicker to reach convergence than the
MME-based method (see Sect. 3.2). However, the estimated variance compo-
nents and maximum likelihood for the direct and ASReml agreed well when
the procedure was completed without numerical problems (results not shown).

One could consider using IBD coefficients between haplotypes rather than
between animals, which can make the inverse of the matrix (H) more sparse.
However, this would be advantageous only if the proportion of zero elements
is much higher in H than in G. This is not the case in LDL mapping in which
IBD coefficients between all haplotypes (of base animals and descendents as
well) are non-zero elements. The inverse of the H matrix is a part of MME. The
MME must be inverted every iteration. Unless the proportion of zero elements
is very large in the MME, inverting MME is computationally heavy whether
partial matrix theory with a recursive method (e.g. [9, 12]) is used or not. This
is because all non-zero elements must be involved in inverting MME. As a
matter of fact, the H matrix has order 2Nq × 2Nq which makes MME bigger,
e.g. the dimension of MME with the H matrix is ∼ (Nu + 2Nq) × (Nu + 2Nq).
However, the dimension of MME with the G matrix is ∼ (Nu+Nq)× (Nu+Nq).
In linkage mapping with a relatively simple pedigree, the proportion of zero
elements is much higher in H than G. This results in a very sparse structure
in the inverse of H and the MME. In this case, zero elements can be skipped
in the computation (using sparse matrix techniques), therefore a considerable
proportion of elements does not have to be involved in inverting MME (saving
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computational cost). However, in LDL mapping, H and H−1 do not have any
zero elements. Therefore, more than 2Nq × Nq elements must be involved in
inverting MME. Note that the number of elements reduces to Nq × Nq when
using G, which is therefore computationally more efficient.

In the MME method, we used the package AMD version 1.1 [2] for an op-
timal ordering of sparse matrices. We found this procedure very useful and
dramatically reducing the computing time if and only if there was a consid-
erable proportion of zero elements in the MME (e.g. linkage mapping with
simple pedigree). However, when LDL mapping was used, the computing time
was not changed. Note that the optimal ordering had been already done before
the iteration started, the time for the optimal ordering was not included in the
computing time per iteration.

5. CONCLUSION

The direct method is generally suitable for fine-mapping of QTL with
closely linked markers and a complex pedigree where genotypes and observa-
tions are available for the last few generations. Efficient algorithms also make
use of proper statistical testing techniques such as permutation testing [4] in
fine-mapping more feasible. Only when linkage mapping is applied with a sim-
ple pedigree and sparse marker spacing, will the MME method have a similar
efficiency. In addition, the direct method has the potential to easily accommo-
date multiple QTL because the dimension of V is not affected by the number
of QTL.
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APPENDIX A: NEWTON-RAPHSON AND FISHER SCORING
ALGORITHM

The Newton-Raphson algorithm obtains the REML estimates using the fol-
lowing equation [25].

Θ(k+1) = Θ(k) −
(
H(k)

)−1 ∂L
∂Θ

∣∣∣Θ{k} (A1)

where Θ is a column vector of VC (σ2
e , σ

2
u and σ2

q), k is the iteration round,
∂L
∂Θ is a column vector of the first derivatives of the log likelihood function
with respect to each variance component, and H is the Hessian matrix which
consists of the second derivatives of the log likelihood function with respect
to the variance components. In the Fisher scoring method, the inverse of the
Hessian matrix in (A1) is replaced by minus its expected value [25].

Θ(k+1) = Θ(k) + (F(k))−1 ∂L
∂Θ

∣∣∣Θ(k) . (A2)

The derivation of the Hessian matrix and the Fisher information matrix has
been described in several studies [21, 25, 33]. AI (8) is the average of the
Hessian and Fisher information matrix.

APPENDIX B: CALCULATION OF THE ELEMENTS
OF THE AI MATRIX USING MME-BASED METHODS

Use of MME

The MME in (3) can be used to estimate the elements in the AI matrix as
in [19]. This method is potentially useful to avoid calculating the inverse of
matrix V. To simplify notation, we define Wi =

∂V
∂σ2

i
Py as working variates for
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all components (i = u, q and e). The working variates for our QTL model are
calculated as,

Wu =
∂V

∂σ2
u

Py =
1

σ2
u

Zû (A3a)

Wq =
∂V

∂σ2
q

Py =
1

σ2
q

Zq̂ (A3b)

We =
∂V

∂σ2
e

Py =
1

σ2
e

ê (A3c)

where û and q̂ are solutions from the MME, and ê = y − Xb̂ − Zû − Zq̂.

The matrix P is a projection matrix transforming the observation vector (y)
into residuals (e.g. ê = Py). Furthermore, PWe is the vector of residuals ob-
tained when We is taken as the observation vector instead of y. In this manner,
y′PPPy can be obtained as the scalar product of the scaled residual vector
(We) and the new residual vector (PWe) obtained when We is taken as the
observation vector, i.e. y′PPPy = W′

ePWe. All elements in the AI matrix can
be obtained in the same manner.

Use of Gaussian elimination on extended MME

Gilmour et al. [12] used an extended MME with Gaussian elimination to
estimate the elements of the AI matrix. We construct an M matrix including
the QTL term as an extension of the MME in (3).

M =



y′R−1y y′R−1X y′R−1Z y′R−1Z

X′R−1y X′R−1X X′R−1Z X′R−1Z

Z′R−1y Z′R−1X Z′R−1Z + (Aσ2
u)−1 Z′R−1Z

Z′R−1y Z′R−1X Z′R−1Z Z′R−1Z + (Gσ2
q)−1


(A4)

After performing Gaussian elimination, the first row and first column, M (1,1),
equals y′Py [14]. If y is replaced by We from (A3c), then M (1,1) after
Gaussian elimination equals y′PPPy that is one of the elements in the AI ma-
trix. If y is replaced by Wq from (A3b), then M (1,1) after Gaussian elimination
equals y′PG∗PG∗Py that is another element in the AI matrix. All elements in
the AI matrix can be calculated in the same manner.
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APPENDIX C: CALCULATION OF THE FIRST DERIVATIVES
USING MME-BASED METHODS

In the MME-based method, since matrix P is not explicitly calculated, the
following equations similar to [19] can be used to replace (9 a, b and c).

∂L

∂σ2
u
= −1

2

[
Nu

σ2
u
− tr(A−1Cuu)

σ4
u

−
(

ê

σ2
e

)′ (Zû

σ2
u

)]
(A5a)

∂L

∂σ2
q
= −1

2

Nq

σ2
q
− tr(G−1Cqq)

σ4
q

−
(

ê

σ2
e

)′ Zq̂

σ2
q


 (A5b)

∂L

∂σ2
e
= −1

2

[
Nr − n f

σ2
e
−

(
Nu − tr(A−1Cuu)

σ2
u

)
1

σ2
e

−
Nq − tr(G−1Cqq)

σ2
q

 1

σ2
e
−

(
ê′ê
σ4

e

) ]
(A5c)

where Cuu and Cqq is the partition of the inverse of the coefficient matrix cor-
responding polygenic effects (u) and QTL effect (q).
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