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Abstract 

 

In this paper, a wavelet based hybrid method is employed to provide the quick 

and accurate solutions of fractional Black-Scholes equation with boundary condition 

for a European option pricing (EOP) problem. The fractional Black-Scholes is used 

as a model for valuing European or American call and put options on a non-dividend 

paying stock.  To the best of our knowledge, until now there is no rigorous 

Legendre wavelet solutions have been reported for the fractional Black-Scholes  
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equations (BSE). The fundamental idea of wavelet method is to convert the fractional 

Block-Scholes equations into a group of algebraic equations, which involves a finite 

number of variables. The illustrative examples are given to demonstrate the 

applicability and validity of the method. Moreover the use of wavelets is found to be 

simple, flexible, accurate and small computation costs. 

 

Keywords: Black-Scholes equation, Legendre wavelets, Laplace transforms method, 

Operational matrices 

 

 

1. Introduction 
 

   Wavelet Analysis, as a relatively new and emerging area in Applied 

Mathematical Research, has received considerable attention in dealing with PDEs 

[27-34]. In the last decades, fractional calculus found many applications in various 

fields of physical sciences such as viscoelasticity, diffusion, control, relaxation 

processes, signal processing, electromagnetism, biosciences, fluid mechanics, 

electrochemistry, fluid mechanics and so on. Fractional differential equations are 

extensively used in modeling phenomena in various fields of science and engineering 

[16,17,18-20,35]. 

In 1973, Fischer Black and Myron Scholes [8] established the famous 

theoretical scheme for options which earned them the 1997 Nobel Prize in 

Economics.  The equilibrium condition between the expected return on the option, 

the expected return on the stock and the riskless interest rate based on the stochastic 

model is the Black-Scholes equation. An important key idea of Black and Scholes lie 

in the formation of a riskless portfolio taking positions in bonds (cash), option and 

the underlying stock. Such a model strengthens the use of the no-arbitrage principle 

as well. During the past few decades, many researchers studied the existence of 

solutions of the Black Scholes model using many methods [1-7,9-15,21-23-25,26,36]. 

Razzaghi and Yousefi [31] introduced the Legendre wavelet method for solving 

variational problems and constrained optimal control problems. Mohammadi and 

Hosseini [33] had showed a new Legendre wavelet operational matrix of derivative 

in solving singular ordinary differential equations. Yousefi [32] introduced the 

Legendre wavelets for solving Lane-Emden type differential equations. Recently, 

Fukang Yin et al. [34] introduced a coupled method of Laplace Transform and 

Legendre wavelets for Lane-Emden type differential Equations. 

In this work, making use of nice properties of Haar wavelets and the operational 

matrix, we consider the following the Black-Scholes model (BSM) for the value of 

an option is described by the equation     

                             

       
2 2 2

2
0, , 0, ,

2

U x U U
r t x r t U x t R T

t x x

   
     

  
     (1.1) 

 

where  ,U x t  is the European call option price at asset price x  and at time t , K   
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is the exercise price, T  is the maturity,  r t  is the risk free interest rate, and 

 ,x t  represents the volatility function of underlying asset. Let us denote 

 ,cU x t  and  ,pU x t  are the values of the European call and put options, 

respectively. Then, the payoff functions are  

 

 
   

   

, max ,0

, max ,0

c

p

U x t x E

U x t E x

  


  

             (1.2) 

where E  denotes the expiration price for the option and the function  max ,0x  

gives the larger value between x  and 0.The main aim of this work is to apply the 

Laplace Legendre wavelet method (LLWM) to solve the fractional order 

Black-Scholes equation.  

 

The paper is organized as follows: In Sec.2 the basic definitions and properties of the 

fractional Riemann-Liouville integral and Caputo fractional derivatives are briefly 

mentioned.  For complete sake of Legendre wavelets methods and method of 

solution are presented in Sec.3. In Sec.4 Illustrative examples are presented for 

applicability and validity of the proposed wavelet methods. Finally, Sec.5 is 

dedicated to conclusion. 

 

 

 

2. Definitions of fractional derivatives and integrals 

 
The Caputo fractional derivative allows the utilization of initial and boundary 

conditions involving integer order derivatives, which have clear physically 

interpretations. 

 

(1) Riemann-Liouville definition: 

 

 

 

 
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        (2.1)              

 Fractional integral of order   is as follows: 

 
 

   
1

0

1
, 0.

t

R

a tI f t t T f T dT
 



 
  
                         (2.2) 

 

(2) Caputo definition: 
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3. Legendre wavelet method (LWM) preliminaries 

 
The Legendre wavelets are defined by 

      

k
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,

otherwise
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 

               (3.1) 

 

Where ,1,...,2,1,0  Mm  and 12,...,2,1  kn .  The coefficient is for 

orthonormality, then, the wavelets  form an orthonormal basis for L
2
[0,1]. 

In the above formulation of Legendre wavelets, the Legendre polynomials are in the 

following way: 
                                   

                                   

                                        
  

(3.2)
                                             

 and {pm+1(x) } are the orthogonal functions of order m, which is named the 

well-known shifted Legendre polynomials on the interval [0,1]. Note that, in the 

general form of Legendre wavelets, the dilation parameter is a = 2
-j
 and the 

translation parameter is b= n 2
j
. 

 

Theorem 3.1: 

Let   be the two – dimensional Legendre wavelets vector, we have 

.                                                  

(3.3) 

 where D x is 2
k-1 

 ,2
k’-1

MM` x  2
k-1

2
k’-1

MM` and has the form as follows: 

D x =   

In which 0’ and D is 2
k-1 

2
k’-1

MM` x  2
k-1

2
k’-1

MM` matrix and the element of  

D is defined as follows: 
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(3.4) 

and  I, O are   identity matrix. 

 

Theorem 3.2: Let  be the two-dimensional Legendre wavelets vector and 

we have                                           

(3.5) 

         Dy = , 

where  Dy is 2
k-1 

 ,2
k’-1

MM` x  2
k-1

2
k’-1

MM` and O’, D is MM’ x MM’matrix is 

given as 

D = , 

in which O and F is M’ x M’ matrix and F is defined as follows: 

 

                              (3.6) 

The operational matrices for nth derivative can be derived as 

 

  , 

Where  D
n
 is the nth power of matrix D. 

 

3.1 Block Pulse Functions (BPFs) 

The block pulse functions form a complete set of orthogonal functions which defined 

on the interval [0, b) by  

                   (3.7) 

for i = 1,2,…,m. It is also known that for any absolutely integrable function f(t) on 

[0,b) can be expanded in block pulse functions: 

                   (3.8) 

              (3.9) 

where   are the coefficients of the block-pulse function, given by 
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                                  (3.10) 

Remark 1:  Let A and B are two matrices of m x m, then   

Lemma 3.1: Assuming f(t) and g(t)  are two absolutely integrable functions, which 

can be expanded in block pulse function as f(t) = FB(t) and g(t) = GB(t) respectively, 

then we have 

                     (3.11) 

where H = F G. 

 

3.2 Approximating the nonlinear term  

 

The Legendre wavelets can be expanded into m- set of block-pulse Functions as 
 

                             (3.12) 

Taking the collocation points as following  

               (3.13) 

The m-square Legendre matrix is defined as  

              (3.14) 

The operational matrix of product of Legendre wavelets can be obtained by using the 

properties of BPFs, let  are two absolutely integrable functions, 

which can be expanded by Legendre wavelets as  and 

 respectively. Then 

        (3.15) 

               (3.16) 

and   

Then, 

 
 

                             (3.17) 

where  H=  

 

3.3 Function Approximation.  
 

A given function f(x) with the domain [0,1] can be approximated by: 

                            f(x)=  (3.18) 

If the infinite series in Eq. (3.18) is truncated, then this equation can be written as: 

             f(x)                (3.19) 

where C and   are the matrices of size (2
j -1 

M x 1). 
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C =[c1,0,c1,1,…c1,M-1,c2,0,c2,1,…c2,M-1,…c2
j-1

,1,… c2
j-1

,M-1]
T     

              (3.20)
 

T
.            (3.21) 

Consider the Black-Scholes option pricing equation as follows: 

           
   

   
2

2

, ,
1 , , 0 1,

U x t U x t U
k kU x t

t x x


  
     

  
  (3.22)      

Taking Laplace transform on both sides of Eq. (3.22), we get 

 ( ) ( ,0) [ 1 ]xx xsL U U x L U k U kU                  (3.23) 

 
( ,0) 1

( ) ( 1 )xx x

U x
L U L U k U kU

s s
                (3.24)           

Taking inverse Laplace transform to Eq. (3.24) we get 

  1 1
( , ) ( ,0) 1xx xU x t U x L L U k U kU

s

  
     

 
        (3.25)               

Because 
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!
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1
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
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n
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                     =  ,...)2,1,0(;
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1 1 


 nt
n

n           (3.26)                                                               

We have 

1 1

0

[ ()] (.)

t

L s L dt                           (3.27)       

From Eq.(3.25) 

    1 1
( , ) ( ,0) xxU x t U x L L U f x g U

s

  
    

 
            (3.28) 

Where  

 

   1 x

g U kU

f x k U

  


  

                (3.29)          

     1 1
( , ) ( ,0) xxU x t U x L L U f x g U

s

  
    

 
        (3.30)               

By using the Legendre wavelets method,  

 

( , ) ( , )

( ,0) ( , )

( ) ( , )

( , )

T

T

T

T

U x t C x t

U x S x t

g U G x t

f x F x t












 


 
 

                        (3.31) 

 Substituting Eq.(3.31) in Eq.(3.30), we obtain                                                                      

( TT SC 2T T TC D x F G  )
2

tP                               

(3.32)                                                            

Here TG  has a linear relation with C. When we solve a linear algebraic system, we 

get the solution is more complex and large computation time. In order to overcome  
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the above drawbacks, we introduce an approximation formula as follows: 
2

1 2
( ,0) ( )n n n

n n

U U U
U U x k g U

x x x


   
     

   
                       (3.33)         

where  g U kU              

Expanding u(x,t) by Legendre wavelets using the following relation 
2 2

1 0 [ ]T T T T T
nn x n tC C C D F G P                  (3.34)                          

From the above formula, the wavelet coefficients can be calculated successively. 

 

 

4. Numerical examples                                  
 

In this section, two examples are given for demonstrating the validity and 

applicability of the proposed method. 

 

Example 1.Consider the fractional Black-Scholes option pricing equation as follows 

[2,25,36]: 

   
   

2

2

, ,
1 , , 0 1,

U x t U x t U
k kU x t

t x x






  
     

  
                  (4.1)                           

with the initial condition    ,0 max 1 .xU x e                            

(4.2) 

We notice that this system of equations contains just two dimensionless 

parameters 22 /k r  , where k  represents the balance between the rate of interests 

and the variability of stock returns and the dimensionless time to expiry  21

2
T .  

Using Homotopy perturbation method (HPM), the exact solution is given by 

            , max 1,0 max ,0 1x xU x t e E kt e E kt 

            (4.3) 

Setting, 1  , the exact solution in a closed form is given by 

        , max 1,0 max ,0 1x kt x ktU x t e e e e
                    (4.4) 

Here   E z  is Mittag-Leffler function in one parameter. 

 

The Laplace Legendre wavelet (LLW) scheme is given by 

 
2 2

1 0 [ ]T T T T T
nn x n tC C C D F G P                  (4.5) 

 

The calculating results show that combining with wavelet matrix, the method in this 

paper can be effectively used in numerical calculus for constant coefficient fractional 

differential equations, and that the method is feasibility.  

 

 

Example 2.  Consider the Black-Scholes equation [11,14] 
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   
 

2

2

2

, ,
0.5 , 0, 0 1,

U x t U x t U
x x U x t

t x x


  
     

  
                 (4.6) 

 

with initial condition    3,0U x x                  (4.7) 

The exact solution in a closed form is given by 

  3 6.5, tU x t x e                         (4.8) 

Table.1 Numerical results for Example.2 

(x,t)  [36]VIMU  

 

[9]ADMU  [15]HPMU  LLWMU  

(0.1,0.13)  0.0063281 0.0092646 0.0073609 0.0045554 

(0.2,0.18)  0.0064473 0.0093652 0.0074447 0.0045367 

(0.3,0.27)  0.0064603 0.0094713 0.0075226 0.0046228 

(0.4,0.32)  0.0065227 0.0094747 0.0075656 0.0046818 

(0.5,0.38)  0.0065863 0.0095805 0.0076267 0.0047882 

(0.7,0.43)  0.0066178 0.0096129 0.0076926 0.0047823 

 

Table.1 shows the comparison between the proposed wavelet methods and other 

methods.  Fig.1 shows the accuracy of the methods for Example.1.  It is worth 

mentioning that the LLWM provide excellent results when compared with exact 

solution.  

 

All the numerical experiments presented in this section were computed in double 

precision with some MATLAB codes on a personal computer System Vostro 1400 

Processor x86 Family 6 Model 15 Stepping 13 Genuine Intel ~1596 Mhz. 

 

 

5. Conclusion 
 

In this work, the Laplace Legendre wavelet method (LLWM) has been 

successfully employed to obtain the numerical solutions of the linear fractional 

Black-Scholes equation with boundary condition for a European option pricing (EOP) 

problem. The proposed schemes are the capability to overcome the difficulty arising 

in calculating the integral values while dealing with nonlinear fractional partial 

differential equations. This method shows higher efficiency than the traditional 

Legendre wavelet method for solving fractional PDEs. The execution time for 

LLWM is less than that variational iteration method (VIM), homotopy perturbation 

method (HPM) and also the homotopy analysis method (HAM). These two wavelet 

methods can be easily extended to find the solution of all other non-linear differential 

equations. The proposed wavelet results are in excellent agreement with the exact 

solution and those obtained by the Adomian decomposition method (ADM), 

Homotopy perturbation method (HPM), Homotopy analysis method (HAM) and the 

differential transform method (DTM). The numerical solutions obtained using the 

proposed method show that the solutions are in very good coincidence with the exact  
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