
 An Efficient Web Ontology Storage Considering Hierarchical Knowledge for Jena-based Applications 11

An Efficient Web Ontology Storage Considering Hierarchical
Knowledge for Jena-based Applications

Dongwon Jeong*, Heeyoung Shin**, Doo-Kwon Baik** and Young-Sik Jeong***

Abstract: As well as providing various APIs for the development of inference engines and storage
models, Jena is widely used in the development of systems or tools related with Web ontology
management. However, Jena still has several problems with regard to the development of real
applications, one of the most important being that its query processing performance is unacceptable.
This paper proposes a storage model to improve the query processing performance of the original Jena
storage. The proposed storage model semantically classifies OWL elements, and stores an ontology in
separately classified tables according to the classification. In particular, the hierarchical knowledge is
managed, which can make the processing performance of inferable queries enhanced and stores
information. It enhances the query processing performance by using hierarchical knowledge. For this
paper an experimental evaluation was conducted, the results of which showed that the proposed
storage model provides a improved performance compared with Jena.

Keywords: Ontology, Jena, OWL, Ontology, Storage, Hierarchical Structure

1. Introduction

The Semantic Web has been recognized as the next-

generation Web; as such, a considerable volume of
research has been conducted with a view to its realization.
In particular, various Web Ontology description languages
such as RDF (Resource Description Language), RDF-S
(RDF Schema), and OWL (Web Ontology Language) have
been developed by W3C (World Wide Web Consortium).
The Semantic Web, as a data Web, provides a common
framework that allows data to be shared and reused across
application, enterprise, and community boundaries [1].

If the Semantic Web does become reality, it will be
better for consumers because they will be able to find
products and services more easily using semantics that
provide precisely what they need. To realize the Semantic
Web, we need many technologies including, above all,
technologies for the description and management of Web
ontology. The typical description languages include RDF
[2], RDF-S [3], and DAML+OIL [4]. DAML and OIL
stand for DARPA Agent Markup Language and Ontology
Inference Layer or Ontology Interchange Language,
respectively. Currently, OWL (Web Ontology Language)
is recognized as the most representative language for the
description of Web ontology. An OWL Web ontology
consists of descriptions of classes, properties, and instances.
OWL has been designed for use in applications where the

content of information needs to be processed rather than
simply presenting the information to users. It facilitates
greater machine interpretability of Web content than that
supported by XML (Extensible Markup Language), RDF,
and RDF Schema (RDF-S) by providing additional
vocabularies along with a formal semantics. OWL is based
on earlier languages, OIL and DAML+OIL, and is now a
W3C recommendation [5]. OWL is also being used in
various applications [6,7,8,9].

Jena is a Semantic Web framework developed by Brian
Bride at the HP Semantic Web Laboratory. Jena provides a
programming environment and a basic RDF parser for
RDF, RDF-S, and OWL, and contains an internal
reasoning engine based on rules [10]. Jena shows a
relatively simple physical schema structure during the
automatic creation of a storage model. However, Jena still
has several problems with regard to real applications, and
from the perspective of storage its query processing
performance is unacceptable. In particular, the Jena storage
consumes too much time when processing a large volume
of web ontology, because Jena stores information in a
single table as a non-normalized single structure [12, 13].

In this paper, a new ontology relational database model
is proposed to solve the abovementioned limitation. The
proposed model is a plug-in storage model designed to
accept all the strengths of the Jena framework. The
suggested storage model supports more efficient query
processing performance. In addition, the results of the
experiment are described to show the advantages of the
proposed model.

The remainder of this paper is organized as follows.
Section 2 introduces the storage model of the Jena
framework; Section 3 shows the proposed storage model;
Section 4 presents the evaluation methodology, including
data sets from the experiment, the system environment, and

DOI : 10.3745/JIPS.2009.5.1.011

Manuscript received March 2, 2009; accepted March 17, 2009.
Corresponding Author: Dongwon Jeong
* Dept. of Informatics & Statistics, Kunsan National University, Gunsan,

Jeollabuk-do, Korea (djeong@kunsan.ac.kr)
** Dept. of Computer Engineering Science & Engineering, Korea

University, Seoul, Korea (shintul@software.korea.ac.kr, baikdk@
korea.ac.kr)

*** Dept. of Computer Engineering, Wonkwang University, Iksan,
Jeollabuk-do, Korea, (ysjeong@ wku.ac.kr)

12 Journal of Information Processing Systems, Vol.5, No.1, March 2009

comparative items; and Section 5 presents the conclusion.

2. Related Work

This section describes the overall architecture of the

storage structure of the Jena Semantic Web framework and
its relational model, which is automatically generated.

2.1. Jena Architecture

Fig. 1 shows the overall architecture of Jena. Jena

consists of seven parts: Reader, Writer, Network API,
Query, Inference, RDF API, and Store.

Fig. 1 Jena framework

The part comprising the Reader and Writer has the role

of reading and storing RDF in RDF/XML, N3, and N-
Triples through the RDF API. The most important part of
the Jena framework is the RDF API. The RDF API
supports the creation, processing, and querying of RDF
graphs, and also supports various storage technologies such
as the main memory, relational databases, and Berkeley
database. The Inference part is composed of the OWL API
and the RDF-S API. Therefore, Jena supports reasoning
facilities inherited from both ontology description
languages, RDF-S and OWL. The Query part is a set of
APIs for the processing of queries in RDQL (RDF Data
Query Language) [14] and SPARQL (Simple Protocol and
RDF Query Language) [11]. Finally, the Network API
enables access (query, correction operation, etc.) to the
remote RDF databases.

2.2 Jena Storage Model

Jena provides a Web ontology storage model based on

the relational database model. The storage model is
automatically created, and Fig. 2 expresses the Jana
relational database model, which consists of jena_long_lit,
jena_gntn_stmt, jena_long_uri, jena_gntn_reif, jena_prefix,
jena_graph, and jena_sys_stmt.

Once an OWL ontology is given, Jena extracts and
stores statements (triples) in a table, jena_gntn_stmt. This
table is basically composed of three columns (Subject,

Property, and Object). If the length of the literals or the
URIs is more than 256 bytes, then they are stored in
jena_long_lit and jena_long_uri respectively.

In brief, the Jena storage model stores most data in a
table (jena_gntn_stmt), which causes many problems.
These problems are summarized as the following three key
issues:

　 - Data redundancy
　 - No consideration of hierarchy between classes

or properties
　 - Low query processing performance
　
An OWL Web ontology basically consists of classes,

properties, relations between classes, and instances.
However, in the case of the Jena storage model, most data
are managed in a single table, thus causing data
redundancy. The redundancy problem naturally affects
query processing performance. It means that the Jena
storage model causes a reduction in query processing
performance. The reduction increases exponentially in the
case of join operation queries than simple queries.

For example, let’s assume that the number of all tuples
in the table jena_gntn_stmt is N. The numbers of classes
and instances are M and K (N>M and N>K). When a query
to find a specific class is given, an N-time comparison is
required to retrieve the class. If we manage the classes in a
separate table (class_def), the number of tuples of the
class_def table will be M and will hence require an M-time
comparison. As for the join operation processing, a query
to find a class and its corresponding instances is assumed.
Jena requires an N*N-time comparison, while the latter
requires M*K times.

Finally, the Jena storage model has no consideration of
hierarchical structures between classes or properties. It also
lowers the query processing performance.

Fig. 2 Jena storage model

3. Proposed Model

This section describes our proposed model, named JeSPi

(Jena Storage Plug-in for Enhanced Query Processing).

3.1 Overall Structure

Fig. 3 shows the JeSPi framework. JeSPi has two main

components for managing ontology. The first component,
Adapter, stores a given OWL ontology in the JeSPi storage
model using Jena API; the second component, Converter,

 An Efficient Web Ontology Storage Considering Hierarchical Knowledge for Jena-based Applications 13

translates the JeSPi storage model into the Jena storage
model.

 Eventually, JeSPi has the advantage of accommodating
the relational information in the OWL document to be
newly stored and the OWL document already stored. In
other words, JeSPi provides improved storage and leads
application developers to use Jena’s strengths.

Fig. 3 Overall structure of the proposed model

3.2. Proposed Storage Model

This section describes the whole structure of the

proposed JeSPi storage model. Fig. 4 shows three layers of
the storage model. Layer 1 is composed of three tables,
CLASS, PROPERTY, and HIERARCHY. Layer 2 and
Layer 3 consist of the table INSTANCE and the table
CONCEPT, respectively. And, the JeSPi storage model
classifies data into three groups (classes, properties, and
instances) and stores each group into a separate table.

Fig. 4 Relational model of the proposed storage

In Layer 1, classes and properties are stored in CLASS

and PROPERTY, respectively. The table HIERACHY
contains the hierarchical knowledge between classes or
properties. The field Status in the table is used to identify
hierarchical types. C denotes the hierarchical information
between classes, and P means the hierarchical relation
between properties.

The Jena storage does not manage the hierarchical
information as a separate table. Therefore, the operation to
find sub-nodes (for example, subclasses of a class or sub-
properties of a property) requires many comparisons.

However, JeSPi is able to reduce unnecessary cost by
storing only necessary information. Therefore, it enables
faster processing than that permitted by Jena.

In addition, OWL has many vocabularies to be managed,
such as the hierarchical information. However, this paper
deals with subPropertyOf and subClassOf only by focusing
on the hierarchical structure, and leaves the others in OWL
for future research.

The INSTANCE table of Layer 2 is composed of a table,
which is composed of four fields - IndividualID,
IndividualName, PropertyID, and Value.
The Layer 3 is composed of a table to map the relationship
between the CLASS table and the INSTANCE table. For
example, a set of classes (Professor, FullProfessor, and
AssistantProfessor) is stored in the CLASS table, and
properties such as degreeFrom, doctorDegreeFrom, and
emailAddress are stored in the PROPERTY table. The
hierarchical relationship between Professor and its sub-
classes (FullProfessor and AssistantProfessor) is stored in
the HIERARCHICAL table.

C001, a professor’s ID, is stored in the CONCEPT table
of Layer 3 by referring to an instance (I001) in the
INSTANCE table. The proposed storage model can clearly
store the relationships between classes and classes, the
relationships between properties and properties, and the
relationship among classes, properties, and instances. An
OWL ontology is stored into each table, whereupon the
proposed model shows higher performance than Jena. The
performance evaluation is described in Section 4.

OWL Full has a flexible relationship with each element,
being able to express the relationship among classes,
properties and instances without any sufficient restriction
condition. Such a characteristic makes it very difficult to
define a storage model, so for this paper this paper handles
OWL-DL only.

3.3 Adapter

One of the key components of JeSPi is Adapter, which is

composed of three parts. The role of Adapter is to store
data in the proposed storage rather than in the Jena storage.

Each part is described as the following three steps.

● Step1: Extracting and classifying the OWL data sets
This part has the role of extracting and classifying the
OWL data by analyzing the meaning of OWL data.
OWL data is loaded and then classified according to the
meanings. The classification is used to store the OWL
data in the proper tables of JeSPi storage.

● Step2: Temporarily storing data in a memory field
Once OWL data has been extracted from the given
OWL documents and classified, the data set is
temporarily stored in the memory area.

14 Journal of Information Processing Systems, Vol.5, No.1, March 2009

● Step3: Permanently storing
The OWL data in the memory is stored into the tables
created by JeSPi.

4. Experiment and Evaluation

This section describes the experiment, evaluation and

comparison of the Jena storage and the JeSPi storage.

4.1 Experimental Environment

Experiments were conducted under the following

physical environment.

● CPU: Pentium 4 (2.81GHz)
● Memory Size: 512MB
● Heap Memory Size: 1024MB
● Hard Disk Size: 100GB
● Operating System: Windows Server 2K OS
● Language: Java
● Java JDK Version: Java JDK 1.6.0
● Database Management System: Oracle 9i

For the experiments, this paper uses a data set created by

UBA (University-Bench Artificial Data Generator), an
ontology creation tool provided by Lehigh University.

UBA was developed to evaluate the results of the SWAT
project [15], and many experiments have used the data sets
created using this tool [16,17,18,19]. UBA creates data in
LUBM (n, s), where n and s mean the number of
universities and the seed value respectively. For example,
in the case of creating a data set such as LUBM (1,0), the
number of universities is 1. Also, the university is
composed of information such as multiple departments,
professors, colleges, graduate schools, and so forth.

The reason we use the OWL data set by UBA is that it is
possible to conduct experiments by creating a reasonable
ontology size. The size of an OWL data set on the web is
small, so it is difficult to obtain results that are much more
precise. UBA, however, is suitable for evaluating storages’
performance with a large volume of ontology.

This paper uses an ontology set, LUBM (1,0) created by
UBA. The generated data set basically contains a total of
15 OWL documents. For the experiment, four types of
ontology size were used, with each type containing 1, 5, 10
and 15 document files respectively.

Larger ontology sets can be generated and used for the
experiment, e.g., LUBM (5,0), LUBM (10,0), or LUBM
(20,0). In the experiments conducted for this paper,
however, LUBM (1,0) is sufficient to differentiate identify
between the performance of the Jena storage and that of the
proposed storage.

We herein define five queries for the experiment. The
queries are defined considering certain factors, the objects
of retrieval and the hierarchical knowledge. In other words,
the query patterns are defined according to what the goal,

i.e., the query result, of the query is and which hierarchical
knowledge is used or not.

● Q-P1: Search all classes
● Q-P2: Search instances of a specific class
● Q-P3: Search all hierarchical classes of a specific

class
● Q-P4: Search all hierarchical properties of a

specific property
● Q-P5: Search all hierarchical instances of a specific

class

We describe each query in SPARQL language [11].
Following that, we describe the characteristics of the query.
Let [RDF-S], [owl], and [univ] denote the following:

[RDF-S] : http://www.w3.org/2000/01/rdf-schema
[owl] : http://www.w3.org/2002/07/owl
[univ] : http://www.lehigh.edu/~zhp2/2004/0401/univ- bench.owl

● Q-P1: Search all classes

select ?subj
where {
?subj ?Prop Uv::[owl]#Class

}

● Q-P2: Search an email address of AssistantProfessor7
select ?Obj
where {

?subj Uv::[univ]# emailAddress ?Obj
?subj ?prop
Uv::http://www.Department0.University0.edu/Assistant
Professor7

}

● Q-P3: Search all professor classes
select ?class
where{

{
?class Uv::[RDF-S]#subClassOf ?Obj.
?Obj Uv::[RDF-S]#subClassOf Uv::[univ]#Professor

}
union (unite?) all
{

?class subClassOf ?Obj.
?Obj Uv::[RDF-S]#subClassOf Uv::[univ]#Professor

}
}

● Q-P4: Search all properties included in DegreeFrom

select ?
where{

{
?subj [RDF-S]#subPropertyOf ?Obj.
?Obj [RDF-S]#subPropertyOf
Uv::[univ]#degreeFrom

}
union all

 An Efficient Web Ontology Storage Considering Hierarchical Knowledge for Jena-based Applications 15

{
?subj Uv::[RDF-S]#subPropertyOf
Uv::[univ]#degreeFrom

}
}

● Q-P5: Search all professor instances
select ?ins
where{

?ins rdf:type ?subj
{

?subj Uv::[RDF-S]#subClassOf ?Obj.
?Obj Uv::[RDF-S]#subClassOf Uv::[univ]
#Professor

}
union all
{

?subj Uv::[RDF-S]#subClassOf
Uv::[univ]#Professor

}
}

4.2 Results of the Experiment

This section describes the results of the experiment

conducted on the following comparative items: query
response time, accuracy, and completeness.

4.2.1 Results of the experiment on query response time

As mentioned above, this paper used four data sets,

LUBM (1,0,1), LUBM (1,0,5), LUBM (1,0,10) and LUBM
(1,0,15), for the experiment. Table 1 and Table 2 show the
entire results of the experiments with four data sets and
five queries.

Table 1 Results of the experiment on query response

time.
Jena Models

Data sets Q-P1 Q-P2 Q-P3 Q-P4 Q-P5
LUBM(1,0,1) 506.4 1417.6 515.8 516.0 1118.4
LUBM(1,0,5) 678.2 2096.8 516.0 524.6 1443.8

LUBM(1,0,10) 681.4 3406.4 516.0 596.0 9481.0
LUBM(1,0,15) 825.0 4603.0 516.0 624.2 11796.6

JeSPi Models
Data sets Q-P1 Q-P2 Q-P3 Q-P4 Q-P5

LUBM(1,0,1) 500.0 891.0 500.0 500.0 503.0
LUBM(1,0,5) 500.0 1153.2 500.0 500.0 512.8

LUBM(1,0,10) 500.0 1818.8 500.0 500.0 2971.8
LUBM(1,0,15) 500.0 2034.4 500.0 500.0 3772.6

Fig. 5 shows the results of the experiment in Table 1. Fig.

5(a) and Fig. 5(d) show the results with each query to
respectively find a class and a property. In Fig. 5(a) and
5(d), the larger the ontology, the more query response time
Jena consumes. On the other hand, JeSPi’s response time is
uniform. Regardless of the data sets such as LUBM (1,0,1)
and LUBM (1,0,15), the number of classes or properties is

constant. In other words, as the size of the ontology size,
only instance increases in size. Therefore, all the data sets
have the same class or property set. As mentioned above,
Jena stores all data (classes, properties, and instances) in a
table, and thus compares unnecessary data (instances and
properties) as well as classes to search for a given class.
However, JeSPi manages data in separate tables and
accesses classes to do it. As a result, JeSPi requires the
same query response time to search for a class or property;
whereas Jena’s response time increases exponentially
according to the size of the table, i.e., instances.

Fig. 5(b) shows the results of the experiment with the
query (Q-P2) to find all the instances of a given class.
Therefore, this query requires the equi-join operation to get
the query result. To find its query result, two operations
are required: The first consists in finding information
related with the given class, the result of which is a tuple
containing information such as class ID, class name, and so
on; the other consists in finding corresponding instances to
the given class. To do this, an equi-join operation between
instances and classes should be accomplished. In a word,
the query processing performance is affected by
comparison cost of both operations.

In Fig. 5(b), Jena consumes much more time compared
to JeSPi. We simply assume that the numbers of classes,
properties, and instances are 10, 5, and 100. For the first
operation, Jena compares all of the instances and properties
including classes, whereas JeSPi only compares classes.
Therefore, Jena’s comparison time is 115 while JeSPi’s is
10. For the second operation, Jena requires 1*115-time
comparison and JeSPi’s comparison time is 1*100. As a
result, Jena and JeSPi consume 115*115 and 10*100
respectively.

Fig. 5(e) depicts the results of the experiment with the
query (Q-P5) to find all instances of the sub-classes of a
given class. In this figure, we can understand that JeSPi is
more efficient than Jena for the same reason discussed in
relation to Fig. 5(b).

There is a difference in the query response time between
Jena and JeSPi in Fig. 5(c) because JeSPi stores only the
information necessary for the hierarchical relationship
between classes or properties. However, the relational
database storage model in Jena stores additional
information (#type, #first, #rest) together. The number of
properties, however, is limitedly equal as data sets increase
as mentioned above, so both the Jena model and the JeSPi
model show no change in query response time.

The reasons for the greater improvement in JeSPi’s
performance compared with Jena can be summarized as
follows:

● First, when we search instances of classes, a join

operation is executed. In this process, Jena needs to
execute the join operation with all tuples in the single
table. JeSPi, however, can directly find instances of
classes using the table that contains information on
pairs, class ID, and instance ID. Therefore, the query
response time of JeSPi is faster than that of Jena.

16 Journal of Information Processing Systems, Vol.5, No.1, March 2009

(a) Result of Q-P1 Experiment
Query-Pattern # 1 Response Time

0

100

200

300

400

500

600

700

800

900

1 File 5 FIles 10 Files 15 Files

LUBM(1,0,n) Data Sets

T
im

e
(m

s
)

Jena2

JeSPi

(b) Result of Q-P2 EXperiment
Query-Pattern # 2 Response Time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 File 5 FIles 10 Files 15 Files

LUBM(1,0,n) Data Sets

T
im

e
(m

s
)

Jena2

JeSPi

(c) Result of Q-P3 Experiment
Query-Pattern # 3 Response Time

490

495

500

505

510

515

520

1 File 5 FIles 10 Files 15 Files

LUBM(1,0,n) Data Sets

T
im

e
(m

s)

Jena2

JeSPi

(d) Result of Q-P4 Experiment
Query-Pattern # 4 Response Time

0

100

200

300

400

500

600

700

1 File 5 FIles 10 Files 15 Files

LUBM(1,0,n) Data Sets

T
im

e
(m

s)

Jena2

JeSPi

(e) Result of Q-P5 Experiment
Query-Pattern # 5 Response Time

0

2000

4000

6000

8000

10000

12000

14000

1 File 5 FIles 10 Files 15 Files

LUBM(1,0,n) Data Sets

T
im

e
(m

s
)

Jena2

JeSPi

Fig. 5 Expression of the experiment results in graphs

● To find the sub-nodes, i.e., sub-properties or sub-
classes, JeSPi uses the table storing hierarchical
knowledge only. It can remove unnecessary
comparisons, and thus the proposed model shows a
faster query processing performance than Jena.

4.2.2 Results of the experiment in terms of the

number of tuples, completeness, and accuracy

Table 2 shows the results of the experiment in terms of

the number of tuples, completeness, and accuracy of the
query results for the Jena and JeSPi storage models. In this
paper, completeness means that we measure the degree of
completeness of each query answer as the percentage of the
entailed answers that are returned by the system. Accuracy
is measured as the number of true answers/the number all
answers.

For example, given that the required result set is {a, b,
d} and the query processing result set is {a, b, c, d}, then
completeness becomes 100%. Only three of the results,
however, are true, and thus accuracy is 3/4 * 100 = 75%.

Table 2 shows that both completeness and accuracy are
100% for all items. In other words, both storages can return
users all exact answers, meaning that both storages return
the same answers for all queries, from Q-P1 to Q-P5.

With the experiments shown in Fig. 5 and Table 2, even
though both storages provide the same query result, the
proposed model supports a more improved query
processing performance.

4.2.3 Qualitative evaluation

Table 3 shows the qualitative evaluation between the

Jena storage model and the proposed storage model.
The proposed model consumes less query response time

than the Jena storage, because the latter stores all data in a
non-normalized table structure.

The Jena storage model has high redundancy owing to
an inherent structural problem. In Jena, all data are stored
as triples in a single table. Hence, if a class has many
instances, then the class information is duplicated. Such
redundancy also lowers its query processing performance
as well as requiring high memory occupation.

As for ease of data comprehension, the relational
database model in Jena is stored in a single table, so it is
not easy for users to understand the meanings of data. The
proposed model, however, is structured conveniently to
enable understanding of meanings. It provides support for
users to intuitively understand the meanings of data, for
example, which are classes or which are their instances.
Besides, in the proposed model, ontology data are
classified and stored in separate tables, and it also helps
users’ to understand data.

As for the query modeling cost, JeSPi facilitates the
abstraction and comprehension of relationships with
specific data because the OWL ontology data are
semantically classified into classes, properties, and
instances. However, in the Jena storage model, we can

 An Efficient Web Ontology Storage Considering Hierarchical Knowledge for Jena-based Applications 17

identify only subjects, predicates or objects. In addition, it
makes the management of data easy, because managers can
identify semantically and systematically ontology and
storage structure.

Table 3 Qualitative evaluation

Items Jena JeSPi
Query processing performance Low High

Duplication of data Duplicated Normalized
Ease of data comprehension Difficult Easy

Query modeling cost Low High
Ease of model conversion Low High

5. Conclusion and Future Work

This paper proposes a new storage model aimed at

enhancing the efficiency of the Jena storage model. The
proposed storage model has been developed for use as a
Jena plug-in. For the purposes of this paper, the overall
architecture of the proposed storage model was shown, and
an experimental evaluation was conducted.

The results of the experiment and the evaluation show
that the proposed storage model provides a more improved
performance than the Jena storage model. Most
significantly, the difference in performance between the
two models increases exponentially as the size of the
ontology becomes larger.

In the future, the conversion module should be
implemented; and research on comparative evaluations
with various systems such as Sesame and DLDB will be
necessary.

References

[1] T. Berners-Lee, J. Hendler, and O. Lassila, The
Semantic Web, Scientific American Magazine (2001).
Available at: http://www.sciam.com/ (accessed 23
January 2008).

[2] D. Beckett, RDF/XML Syntax Specification, 2004.
[3] D. Brickley and R.V. Guha (eds.), RDF Vocabulary

Description Language 1.0: RDF Schema, 2004.
[4] D. Connolly, F.V. Harmelen, I. Horrocks, D.L.

McGuinness, P.F. Patel-Schneider, and L.A. Stein,
DAML+OIL Reference Description W3C Note, 2001.
Available at: http://www.w3.org/TR/daml+oil-reference
(accessed 23 January 2008).

[5] M. Dean and G. Schreiber (eds.), OWL Web
Ontology Language Reference (2004).

[6] I.C. Hsu and S.J. Kao, An OWL-based extensible
transcoding system for mobile multi-devices, Journal
of Information Science, 31(3) 6 (2005), pp.178 - 195.

[7] L. Liao, K. Xu, and S. Liao, Constructing intelligent
and open mobile commerce using a semantic web
approach, Journal of Information Science, 31(5) 10
(2005), pp. 407 - 419.

[8] H. Wang and C. Wang, Ontologies for universal
information systems, Journal of Information Science
21(3) 1 (1995), pp. 232 - 239.

[9] L. Han, G. Chen, and L. Xie, AASA: A Method of
Automatically Acquiring Semantic Annotations,
Journal of Information Science, Vol. 8 (2007), pp.
435 - 450.

[10] HP Labs, Jena – A Semantic Web Framework for
Java.

[11] E. Prud'hommeaux and A. Seaborne (eds.), SPARQL
Query Language for RDF, 2008.

[12] H.S. Kim, H.S. Cha, J.S. Kim, and J.H. Son,
Development of an Efficient OWL Document
Management System for Embedded Applications,
Springer-Verlag, Lecture Notes in Computer Science
3597, (2005), pp. 75-84.

[13] M.J. Park and C.W. Chung, Property-Based OWL
Storage Schema in Relational Databases (Unpublished
Technical Report, Div. of Computer Science, KAIST,
Dec. 2005).

[14] Seaborne, RDQL - A Query Language for RDF, 2004.
[15] Y. Guo, SWAT Projects - the Lehigh University

Benchmark (LUBM).

Table 2. Experiment results on the number of tuples, completeness, and accuracy of query results.
LUBM(1,0,1) LUBM(1,0,5) LUBM(1,0,10) LUBM(1,0,15) Queries Data sets

Compared items Jena JeSPi Jena JeSPi Jena JeSPi Jena JeSPi
The number of query results 43 43 43 43 43 43 43 43
Completeness (%) 100 100 100 100 100 100 100 100

Q-P1
(C)

Accuracy (%) 100 100 100 100 100 100 100 100
The number of query results 10 10 46 46 94 94 146 146
Completeness (%) 100 100 100 100 100 100 100 100

Q-P2
(CI)

Accuracy (%) 100 100 100 100 100 100 100 100
The number of query results 6 6 6 6 6 6 6 6
Completeness (%) 100 100 100 100 100 100 100 100

Q-P3
(CH)

Accuracy (%) 100 100 100 100 100 100 100 100
The number of query results 3 3 3 3 3 3 3 3
Completeness (%) 100 100 100 100 100 100 100 100

Q-P4
(PH)

Accuracy (%) 100 100 100 100 100 100 100 100
The number of query results 34 34 147 147 294 294 447 447
Completeness (%) 100 100 100 100 100 100 100 100

Q-P5
(CHI)

Accuracy (%) 100 100 100 100 100 100 100 100

18 Journal of Information Processing Systems, Vol.5, No.1, March 2009

[16] Y. Guo, Z. Pan, and J. Heflin, An Evaluation of
Knowledge Base Systems for Large OWL Datasets,
Springer-Verlag, Lecture Notes in Computer Science,
3298 (2004) pp. 274-288.

[17] Y. Guo, Z. Pan, and J. Heflin, LUBM: A Benchmark
for OWL Knowledge Base Systems, Journal of Web
Semantics, 3(2) (2005), pp. 158-182.

[18] D.W. Jeong, M.H. Choi, Y.S. Jeon, Y.H. Han, Y.S.
Jeong, and S.K. Han, A Novel Memory-Oriented
OWL Storage System, Springer-Verlag, Lecture
Notes in Computer Science, 4331 (2006), pp. 542-549.

[19] D.W. Jeong, M.H. Choi, Y.S. Jeon, Y.H. Han, L.T.
Yang, Y.S. Jeong, and S.K. Han, Persistent Storage
System for Efficient Management of OWL Web
Ontology, Springer-Verlag, Lecture Notes in
Computer Science, 4611 (2007), pp. 1089-1097.

Dongwon Jeong
He received his Ph.D. degree in
Computer Science from Korea
University, Seoul, Korea, in 2004. He
worked as a full-time instructor from
1999 to 2000 in the Advanced Institute
of Information Technology, Korea. He
was a Senior Researcher with the

Jigunet Corporation from 2000 to 2001. He was a Research
Assistant Professor at Korea University from 2004-2005.
He was a Visiting Research Scholar (PostDoc.), School of
Information Sciences & Technology, Pennsylvania State
University, USA, in 2005. Since 2005, he has been a
Professor in the Dept. of Informatics and Statistics, Kunsan
National University, Korea. He was a committee member
of the Data Study Group (SG08.02), Telecommunications
Technology Association (TTA), Korea, from 2002 to 2004.
Since 2004 he has been a committee member of the
Metadata Project Group (PG 606), Telecommunications
Technology Association (TTA) of Korea. He has been a
committee member of the Data Management Service
(ISO/IEC JTC 1/SC 32 Mirror Committee) and the
Geographic Information (ISO/TC211) Mirror Committee
of the Korean Agency for Technology and Standards
(KATS) since 2006 and 2008 respectively. He is and has
been a PC member or Program/Publicity/General Chair of
many conferences and workshops. His research interests
include Data Integration, Semantic Web, Semantic Sensor
Network, Semantic GIS, Semantic Grid, and Security.

Heeyoung Shin
He received a Master’s degree in
Computer Science from Korea
University, Seoul, Korea, in 2008. He
has been working for Hana Financial
Group, Seoul, Korea since 2008. His
research interests include Data
Integration, Semantic Web, and

Metadata Management.

Doo-Kwon Baik
He received his Ph.D. degree in
Computer Science at Wayne State
University, USA, in 1986. He was the
Dean of the College of Information and
Communications from 2002 to 2006,
and has been a director of the Research
Institute of Computer, Information and

Communication, Korea University since 2006. He has also
been a Korean Head of Delegates (HOD), ISO/IEC JTC
1/SC 32 since 1993. He is and has been a member of many
societies, conferences, and workshops. His research
interests include Data Engineering, Software Engineering,
and Modeling and Simulation.

Young-Sik Jeong
He received a Ph.D. degree in
Computer Science from Korea
University, Seoul, Korea, in 1993. He
was a visiting scholar at the Dept. of
Computer Science and Engineering,
Michigan State University, East
Lansing, MI 48824, USA, in 1997, as

well as at the Dept. of Electrical and Computer
Engineering, Wayne State University, Detroit, MI 48202,
USA, in 2004. He has been a director of the Culture
Contents Technology Society since 2006; a member of the
Appraisal Committee of the University Industrial
Technology Force (UNITEF) for Patents since 2003; a
chairman of the IEC/TC 108 Korean Agency for
Technology and Standards since 2003; a member of the
Committee of the IEC/TC 100 Korean Agency for
Technology and Standards since 2002; and a member of the
Korean Committee, ISO/IEC JTC 1/SC 25 since 2002. He
has also been a PC Member or Program/Publicity/General
Chair of many conferences and workshops. He has been a
Professor in the Department of Computer Engineering,
Wonkwang University, Iksan, Korea since 1993. His
interests include Grid Computing, Semantic Grid, Mobile
Computing, and e-Learning.

