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Abstract: As well as providing various APIs for the development of inference engines and storage 
models, Jena is widely used in the development of systems or tools related with Web ontology 
management. However, Jena still has several problems with regard to the development of real 
applications, one of the most important being that its query processing performance is unacceptable. 
This paper proposes a storage model to improve the query processing performance of the original Jena 
storage. The proposed storage model semantically classifies OWL elements, and stores an ontology in 
separately classified tables according to the classification. In particular, the hierarchical knowledge is 
managed, which can make the processing performance of inferable queries enhanced and stores 
information. It enhances the query processing performance by using hierarchical knowledge. For this 
paper an experimental evaluation was conducted, the results of which showed that the proposed 
storage model provides a improved performance compared with Jena. 
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1. Introduction 
 
The Semantic Web has been recognized as the next- 

generation Web; as such, a considerable volume of 
research has been conducted with a view to its realization. 
In particular, various Web Ontology description languages 
such as RDF (Resource Description Language), RDF-S 
(RDF Schema), and OWL (Web Ontology Language) have 
been developed by W3C (World Wide Web Consortium). 
The Semantic Web, as a data Web, provides a common 
framework that allows data to be shared and reused across 
application, enterprise, and community boundaries [1].  

If the Semantic Web does become reality, it will be 
better for consumers because they will be able to find 
products and services more easily using semantics that 
provide precisely what they need. To realize the Semantic 
Web, we need many technologies including, above all, 
technologies for the description and management of Web 
ontology. The typical description languages include RDF 
[2], RDF-S [3], and DAML+OIL [4]. DAML and OIL 
stand for DARPA Agent Markup Language and Ontology 
Inference Layer or Ontology Interchange Language, 
respectively. Currently, OWL (Web Ontology Language) 
is recognized as the most representative language for the 
description of Web ontology. An OWL Web ontology 
consists of descriptions of classes, properties, and instances. 
OWL has been designed for use in applications where the 

content of information needs to be processed rather than 
simply presenting the information to users. It facilitates 
greater machine interpretability of Web content than that 
supported by XML (Extensible Markup Language), RDF, 
and RDF Schema (RDF-S) by providing additional 
vocabularies along with a formal semantics. OWL is based 
on earlier languages, OIL and DAML+OIL, and is now a 
W3C recommendation [5]. OWL is also being used in 
various applications [6,7,8,9]. 

Jena is a Semantic Web framework developed by Brian 
Bride at the HP Semantic Web Laboratory. Jena provides a 
programming environment and a basic RDF parser for 
RDF, RDF-S, and OWL, and contains an internal 
reasoning engine based on rules [10]. Jena shows a 
relatively simple physical schema structure during the 
automatic creation of a storage model. However, Jena still 
has several problems with regard to real applications, and 
from the perspective of storage its query processing 
performance is unacceptable. In particular, the Jena storage 
consumes too much time when processing a large volume 
of web ontology, because Jena stores information in a 
single table as a non-normalized single structure [12, 13]. 

In this paper, a new ontology relational database model 
is proposed to solve the abovementioned limitation. The 
proposed model is a plug-in storage model designed to 
accept all the strengths of the Jena framework. The 
suggested storage model supports more efficient query 
processing performance. In addition, the results of the 
experiment are described to show the advantages of the 
proposed model. 

The remainder of this paper is organized as follows. 
Section 2 introduces the storage model of the Jena 
framework; Section 3 shows the proposed storage model; 
Section 4 presents the evaluation methodology, including 
data sets from the experiment, the system environment, and 
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comparative items; and Section 5 presents the conclusion. 
 
 

2. Related Work 
 
This section describes the overall architecture of the 

storage structure of the Jena Semantic Web framework and 
its relational model, which is automatically generated.  

 
2.1. Jena Architecture 
 
Fig. 1 shows the overall architecture of Jena. Jena 

consists of seven parts: Reader, Writer, Network API, 
Query, Inference, RDF API, and Store. 

 

 
Fig. 1 Jena framework 

 
The part comprising the Reader and Writer has the role 

of reading and storing RDF in RDF/XML, N3, and N-
Triples through the RDF API. The most important part of 
the Jena framework is the RDF API. The RDF API 
supports the creation, processing, and querying of RDF 
graphs, and also supports various storage technologies such 
as the main memory, relational databases, and Berkeley 
database. The Inference part is composed of the OWL API 
and the RDF-S API. Therefore, Jena supports reasoning 
facilities inherited from both ontology description 
languages, RDF-S and OWL. The Query part is a set of 
APIs for the processing of queries in RDQL (RDF Data 
Query Language) [14] and SPARQL (Simple Protocol and 
RDF Query Language) [11]. Finally, the Network API 
enables access (query, correction operation, etc.) to the 
remote RDF databases. 

 
2.2 Jena Storage Model 
 
Jena provides a Web ontology storage model based on 

the relational database model. The storage model is 
automatically created, and Fig. 2 expresses the Jana 
relational database model, which consists of jena_long_lit, 
jena_gntn_stmt, jena_long_uri, jena_gntn_reif, jena_prefix, 
jena_graph, and jena_sys_stmt. 

Once an OWL ontology is given, Jena extracts and 
stores statements (triples) in a table, jena_gntn_stmt. This 
table is basically composed of three columns (Subject, 

Property, and Object). If the length of the literals or the 
URIs is more than 256 bytes, then they are stored in 
jena_long_lit and jena_long_uri respectively.  

In brief, the Jena storage model stores most data in a 
table (jena_gntn_stmt), which causes many problems. 
These problems are summarized as the following three key 
issues: 

　 - Data redundancy  
　 - No consideration of hierarchy between classes 

or properties 
　 - Low query processing performance 
　  
An OWL Web ontology basically consists of classes, 

properties, relations between classes, and instances. 
However, in the case of the Jena storage model, most data 
are managed in a single table, thus causing data 
redundancy. The redundancy problem naturally affects 
query processing performance. It means that the Jena 
storage model causes a reduction in query processing 
performance. The reduction increases exponentially in the 
case of join operation queries than simple queries.  

For example, let’s assume that the number of all tuples 
in the table jena_gntn_stmt is N. The numbers of classes 
and instances are M and K (N>M and N>K). When a query 
to find a specific class is given, an N-time comparison is 
required to retrieve the class. If we manage the classes in a 
separate table (class_def), the number of tuples of the 
class_def table will be M and will hence require an M-time 
comparison. As for the join operation processing, a query 
to find a class and its corresponding instances is assumed. 
Jena requires an N*N-time comparison, while the latter 
requires M*K times. 

Finally, the Jena storage model has no consideration of 
hierarchical structures between classes or properties. It also 
lowers the query processing performance. 

 

 
Fig. 2 Jena storage model 

 
 

3. Proposed Model 
 
This section describes our proposed model, named JeSPi 

(Jena Storage Plug-in for Enhanced Query Processing).  
 
3.1 Overall Structure 
 
Fig. 3 shows the JeSPi framework. JeSPi has two main 

components for managing ontology. The first component, 
Adapter, stores a given OWL ontology in the JeSPi storage 
model using Jena API; the second component, Converter, 
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translates the JeSPi storage model into the Jena storage 
model. 

 Eventually, JeSPi has the advantage of accommodating 
the relational information in the OWL document to be 
newly stored and the OWL document already stored. In 
other words, JeSPi provides improved storage and leads 
application developers to use Jena’s strengths. 

 

 
Fig. 3 Overall structure of the proposed model 

 
3.2. Proposed Storage Model  
 
This section describes the whole structure of the 

proposed JeSPi storage model. Fig. 4 shows three layers of 
the storage model. Layer 1 is composed of three tables, 
CLASS, PROPERTY, and HIERARCHY. Layer 2 and 
Layer 3 consist of the table INSTANCE and the table 
CONCEPT, respectively. And, the JeSPi storage model 
classifies data into three groups (classes, properties, and 
instances) and stores each group into a separate table. 

  

 
Fig. 4 Relational model of the proposed storage 

 
In Layer 1, classes and properties are stored in CLASS 

and PROPERTY, respectively. The table HIERACHY 
contains the hierarchical knowledge between classes or 
properties. The field Status in the table is used to identify 
hierarchical types. C denotes the hierarchical information 
between classes, and P means the hierarchical relation 
between properties.  

The Jena storage does not manage the hierarchical 
information as a separate table. Therefore, the operation to 
find sub-nodes (for example, subclasses of a class or sub-
properties of a property) requires many comparisons. 

However, JeSPi is able to reduce unnecessary cost by 
storing only necessary information. Therefore, it enables 
faster processing than that permitted by Jena.  

In addition, OWL has many vocabularies to be managed, 
such as the hierarchical information. However, this paper 
deals with subPropertyOf and subClassOf only by focusing 
on the hierarchical structure, and leaves the others in OWL 
for future research. 

The INSTANCE table of Layer 2 is composed of a table, 
which is composed of four fields - IndividualID, 
IndividualName, PropertyID, and Value.  
The Layer 3 is composed of a table to map the relationship 
between the CLASS table and the INSTANCE table. For 
example, a set of classes (Professor, FullProfessor, and 
AssistantProfessor) is stored in the CLASS table, and 
properties such as degreeFrom, doctorDegreeFrom, and 
emailAddress are stored in the PROPERTY table. The 
hierarchical relationship between Professor and its sub-
classes (FullProfessor and AssistantProfessor) is stored in 
the HIERARCHICAL table.  

C001, a professor’s ID, is stored in the CONCEPT table 
of Layer 3 by referring to an instance (I001) in the 
INSTANCE table. The proposed storage model can clearly 
store the relationships between classes and classes, the 
relationships between properties and properties, and the 
relationship among classes, properties, and instances. An 
OWL ontology is stored into each table, whereupon the 
proposed model shows higher performance than Jena. The 
performance evaluation is described in Section 4. 

OWL Full has a flexible relationship with each element, 
being able to express the relationship among classes, 
properties and instances without any sufficient restriction 
condition. Such a characteristic makes it very difficult to 
define a storage model, so for this paper this paper handles 
OWL-DL only. 

 
3.3 Adapter 
 
One of the key components of JeSPi is Adapter, which is 

composed of three parts. The role of Adapter is to store 
data in the proposed storage rather than in the Jena storage. 

 
Each part is described as the following three steps. 
 

● Step1: Extracting and classifying the OWL data sets 
This part has the role of extracting and classifying the 
OWL data by analyzing the meaning of OWL data. 
OWL data is loaded and then classified according to the 
meanings. The classification is used to store the OWL 
data in the proper tables of JeSPi storage. 

● Step2: Temporarily storing data in a memory field 
Once OWL data has been extracted from the given 
OWL documents and classified, the data set is 
temporarily stored in the memory area. 
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● Step3: Permanently storing 
The OWL data in the memory is stored into the tables 
created by JeSPi. 

  
 

4. Experiment and Evaluation 
 
This section describes the experiment, evaluation and 

comparison of the Jena storage and the JeSPi storage. 
 
4.1 Experimental Environment 
 
Experiments were conducted under the following 

physical environment. 
 
● CPU: Pentium 4 (2.81GHz) 
● Memory Size: 512MB 
● Heap Memory Size: 1024MB 
● Hard Disk Size: 100GB 
● Operating System: Windows Server 2K OS 
● Language: Java 
● Java JDK Version: Java JDK 1.6.0 
● Database Management System: Oracle 9i 

 
For the experiments, this paper uses a data set created by 

UBA (University-Bench Artificial Data Generator), an 
ontology creation tool provided by Lehigh University. 

UBA was developed to evaluate the results of the SWAT 
project [15], and many experiments have used the data sets 
created using this tool [16,17,18,19]. UBA creates data in 
LUBM (n, s), where n and s mean the number of 
universities and the seed value respectively. For example, 
in the case of creating a data set such as LUBM (1,0), the 
number of universities is 1. Also, the university is 
composed of information such as multiple departments, 
professors, colleges, graduate schools, and so forth. 

The reason we use the OWL data set by UBA is that it is 
possible to conduct experiments by creating a reasonable 
ontology size. The size of an OWL data set on the web is 
small, so it is difficult to obtain results that are much more 
precise. UBA, however, is suitable for evaluating storages’ 
performance with a large volume of ontology. 

This paper uses an ontology set, LUBM (1,0) created by 
UBA. The generated data set basically contains a total of 
15 OWL documents. For the experiment, four types of 
ontology size were used, with each type containing 1, 5, 10 
and 15 document files respectively. 

Larger ontology sets can be generated and used for the 
experiment, e.g., LUBM (5,0), LUBM (10,0), or LUBM 
(20,0). In the experiments conducted for this paper, 
however, LUBM (1,0) is sufficient to differentiate identify 
between the performance of the Jena storage and that of the 
proposed storage.  

We herein define five queries for the experiment. The 
queries are defined considering certain factors, the objects 
of retrieval and the hierarchical knowledge. In other words, 
the query patterns are defined according to what the goal, 

i.e., the query result, of the query is and which hierarchical 
knowledge is used or not. 

 
● Q-P1: Search all classes 
● Q-P2: Search instances of a specific class 
● Q-P3: Search all hierarchical classes of a specific 

class 
● Q-P4: Search all hierarchical properties of a 

specific property 
● Q-P5: Search all hierarchical instances of a specific 

class 
 

We describe each query in SPARQL language [11]. 
Following that, we describe the characteristics of the query. 
Let [RDF-S], [owl], and [univ] denote the following: 
 
[RDF-S] : http://www.w3.org/2000/01/rdf-schema  
[owl] : http://www.w3.org/2002/07/owl 
[univ] : http://www.lehigh.edu/~zhp2/2004/0401/univ- bench.owl  

 
● Q-P1: Search all classes  

select ?subj 
where { 
?subj ?Prop Uv::[owl]#Class 

} 
 

● Q-P2: Search an email address of AssistantProfessor7 
select ?Obj 
where { 

?subj Uv::[univ]# emailAddress ?Obj 
?subj ?prop 
Uv::http://www.Department0.University0.edu/Assistant
Professor7 

} 
  

● Q-P3: Search all professor classes  
select ?class 
where{ 

{   
?class Uv::[RDF-S]#subClassOf ?Obj. 
?Obj Uv::[RDF-S]#subClassOf Uv::[univ]#Professor  

} 
union (unite?) all 
{   

?class subClassOf ?Obj. 
?Obj Uv::[RDF-S]#subClassOf Uv::[univ]#Professor  

} 
} 

 
● Q-P4: Search all properties included in DegreeFrom 

select ? 
where{ 

{  
?subj [RDF-S]#subPropertyOf ?Obj.  
?Obj [RDF-S]#subPropertyOf 
Uv::[univ]#degreeFrom 

} 
union all 
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{   
?subj Uv::[RDF-S]#subPropertyOf 
Uv::[univ]#degreeFrom 

} 
} 
 

● Q-P5: Search all professor instances 
select ?ins 
where{ 

?ins rdf:type ?subj 
{ 

?subj Uv::[RDF-S]#subClassOf ?Obj.  
?Obj Uv::[RDF-S]#subClassOf Uv::[univ] 
#Professor  

} 
union all 
{   

?subj Uv::[RDF-S]#subClassOf 
Uv::[univ]#Professor  

} 
} 
  
4.2 Results of the Experiment 
 
This section describes the results of the experiment 

conducted on the following comparative items: query 
response time, accuracy, and completeness. 

 
4.2.1 Results of the experiment on query response time  
 
As mentioned above, this paper used four data sets, 

LUBM (1,0,1), LUBM (1,0,5), LUBM (1,0,10) and LUBM 
(1,0,15), for the experiment. Table 1 and Table 2 show the 
entire results of the experiments with four data sets and 
five queries. 

 
Table 1 Results of the experiment on query response 

time. 
Jena Models 

Data sets Q-P1 Q-P2 Q-P3 Q-P4 Q-P5 
LUBM(1,0,1) 506.4 1417.6 515.8 516.0 1118.4
LUBM(1,0,5) 678.2 2096.8 516.0 524.6 1443.8

LUBM(1,0,10) 681.4 3406.4 516.0 596.0 9481.0
LUBM(1,0,15) 825.0 4603.0 516.0 624.2 11796.6

JeSPi Models 
Data sets Q-P1 Q-P2 Q-P3 Q-P4 Q-P5 

LUBM(1,0,1) 500.0 891.0 500.0 500.0 503.0 
LUBM(1,0,5) 500.0 1153.2 500.0 500.0 512.8 

LUBM(1,0,10) 500.0 1818.8 500.0 500.0 2971.8
LUBM(1,0,15) 500.0 2034.4 500.0 500.0 3772.6

 
Fig. 5 shows the results of the experiment in Table 1. Fig. 

5(a) and Fig. 5(d) show the results with each query to 
respectively find a class and a property. In Fig. 5(a) and 
5(d), the larger the ontology, the more query response time 
Jena consumes. On the other hand, JeSPi’s response time is 
uniform. Regardless of the data sets such as LUBM (1,0,1) 
and LUBM (1,0,15), the number of classes or properties is 

constant. In other words, as the size of the ontology size, 
only instance increases in size. Therefore, all the data sets 
have the same class or property set. As mentioned above, 
Jena stores all data (classes, properties, and instances) in a 
table, and thus compares unnecessary data (instances and 
properties) as well as classes to search for a given class. 
However, JeSPi manages data in separate tables and 
accesses classes to do it. As a result, JeSPi requires the 
same query response time to search for a class or property; 
whereas Jena’s response time increases exponentially 
according to the size of the table, i.e., instances. 

Fig. 5(b) shows the results of the experiment with the 
query (Q-P2) to find all the instances of a given class. 
Therefore, this query requires the equi-join operation to get 
the query result.  To find its query result, two operations 
are required: The first consists in finding information 
related with the given class, the result of which is a tuple 
containing information such as class ID, class name, and so 
on; the other consists in finding corresponding instances to 
the given class. To do this, an equi-join operation between 
instances and classes should be accomplished.  In a word, 
the query processing performance is affected by 
comparison cost of both operations.   

In Fig. 5(b), Jena consumes much more time compared 
to JeSPi. We simply assume that the numbers of classes, 
properties, and instances are 10, 5, and 100. For the first 
operation, Jena compares all of the instances and properties 
including classes, whereas JeSPi only compares classes. 
Therefore, Jena’s comparison time is 115 while JeSPi’s is 
10. For the second operation, Jena requires 1*115-time 
comparison and JeSPi’s comparison time is 1*100. As a 
result, Jena and JeSPi consume 115*115 and 10*100 
respectively. 

Fig. 5(e) depicts the results of the experiment with the 
query (Q-P5) to find all instances of the sub-classes of a 
given class. In this figure, we can understand that JeSPi is 
more efficient than Jena for the same reason discussed in 
relation to Fig. 5(b).  

There is a difference in the query response time between 
Jena and JeSPi in Fig. 5(c) because JeSPi stores only the 
information necessary for the hierarchical relationship 
between classes or properties. However, the relational 
database storage model in Jena stores additional 
information (#type, #first, #rest) together. The number of 
properties, however, is limitedly equal as data sets increase 
as mentioned above, so both the Jena model and the JeSPi 
model show no change in query response time. 

The reasons for the greater improvement in JeSPi’s 
performance compared with Jena can be summarized as 
follows: 

 
● First, when we search instances of classes, a join 

operation is executed. In this process, Jena needs to 
execute the join operation with all tuples in the single 
table. JeSPi, however, can directly find instances of 
classes using the table that contains information on 
pairs, class ID, and instance ID. Therefore, the query 
response time of JeSPi is faster than that of Jena. 
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(a) Result of Q-P1 Experiment 
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(b) Result of Q-P2 EXperiment 
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(c) Result of Q-P3 Experiment 
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(d) Result of Q-P4 Experiment 
Query-Pattern # 4 Response Time
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(e) Result of Q-P5 Experiment 
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Fig. 5 Expression of the experiment results in graphs 

● To find the sub-nodes, i.e., sub-properties or sub-
classes, JeSPi uses the table storing hierarchical 
knowledge only. It can remove unnecessary 
comparisons, and thus the proposed model shows a 
faster query processing performance than Jena. 

 
4.2.2 Results of the experiment in terms of the 

number of tuples, completeness, and accuracy  
 
Table 2 shows the results of the experiment in terms of 

the number of tuples, completeness, and accuracy of the 
query results for the Jena and JeSPi storage models. In this 
paper, completeness means that we measure the degree of 
completeness of each query answer as the percentage of the 
entailed answers that are returned by the system. Accuracy 
is measured as the number of true answers/the number all 
answers.  

For example, given that the required result set is {a, b, 
d} and the query processing result set is {a, b, c, d}, then 
completeness becomes 100%. Only three of the results, 
however, are true, and thus accuracy is 3/4 * 100 = 75%. 

Table 2 shows that both completeness and accuracy are 
100% for all items. In other words, both storages can return 
users all exact answers, meaning that both storages return 
the same answers for all queries, from Q-P1 to Q-P5.    

With the experiments shown in Fig. 5 and Table 2, even 
though both storages provide the same query result, the 
proposed model supports a more improved query 
processing performance.  

 
4.2.3 Qualitative evaluation 
 
Table 3 shows the qualitative evaluation between the 

Jena storage model and the proposed storage model. 
The proposed model consumes less query response time 

than the Jena storage, because the latter stores all data in a 
non-normalized table structure.  

The Jena storage model has high redundancy owing to 
an inherent structural problem. In Jena, all data are stored 
as triples in a single table. Hence, if a class has many 
instances, then the class information is duplicated. Such 
redundancy also lowers its query processing performance 
as well as requiring high memory occupation. 

As for ease of data comprehension, the relational 
database model in Jena is stored in a single table, so it is 
not easy for users to understand the meanings of data. The 
proposed model, however, is structured conveniently to 
enable understanding of meanings. It provides support for 
users to intuitively understand the meanings of data, for 
example, which are classes or which are their instances. 
Besides, in the proposed model, ontology data are 
classified and stored in separate tables, and it also helps 
users’ to understand data.  

As for the query modeling cost, JeSPi facilitates the 
abstraction and comprehension of relationships with 
specific data because the OWL ontology data are 
semantically classified into classes, properties, and 
instances. However, in the Jena storage model, we can 
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identify only subjects, predicates or objects. In addition, it 
makes the management of data easy, because managers can 
identify semantically and systematically ontology and 
storage structure.  

 
Table 3 Qualitative evaluation 

Items Jena JeSPi  
Query processing performance Low High 

Duplication of data Duplicated Normalized
Ease of data comprehension Difficult Easy 

Query modeling cost Low High 
Ease of model conversion Low High 

 
 

5. Conclusion and Future Work 
 
This paper proposes a new storage model aimed at 

enhancing the efficiency of the Jena storage model. The 
proposed storage model has been developed for use as a 
Jena plug-in. For the purposes of this paper, the overall 
architecture of the proposed storage model was shown, and 
an experimental evaluation was conducted. 

The results of the experiment and the evaluation show 
that the proposed storage model provides a more improved 
performance than the Jena storage model. Most 
significantly, the difference in performance between the 
two models increases exponentially as the size of the 
ontology becomes larger.  

In the future, the conversion module should be 
implemented; and research on comparative evaluations 
with various systems such as Sesame and DLDB will be 
necessary. 
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