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Abstract

Streaming XPath evaluation algorithms must record a
potentially exponential number of pattern matches when
both predicates and descendant axes are present in queries,
and the XML data is recursive. In this paper, we use a com-
pact data structure to encode these pattern matches rather
than storing them explicitly. We then propose a polyno-
mial time streaming algorithm to evaluate XPath queries
by probing the data structure in a lazy fashion. Extensive
experiments show that our approach not only has a good
theoretical complexity bound but is also efficient in prac-
tice.

1 Introduction

XML has become the de facto standard for data ex-
change. The problem of efficiently evaluating XML
queries, e.g. XPath, in bothmain memoryandstreaming
environments has therefore attracted a lot of attention from
the research community [7, 16, 28].

In this paper, we focus on a streaming environment, as
found with stock market data, network monitoring or sensor
networks. In such an environment, data streams, which can
be potentially infinite, arrive continuously and must be pro-
cessed using a single sequential scan because of the limited
storage space available. Query results should be distributed
incrementally and as soon as they are found, potentially be-
fore we read all the data. Furthermore, the query processing
algorithm should scale well in time and space. An algo-
rithm that meets these requirements for XPath processing
over XML data is called astreaming XPath evaluation al-
gorithm.

Several streaming XPath evaluation algorithms based on
finite state automata (FSA) have been proposed to process
XPath queries containing the child axis (‘/’), descendant
axis (‘//’) and wildcard (‘*’) [3, 19]. Automaton-based
methods are attractive due to their efficiency and clean de-
sign. However, they cannot evaluate XPath queries which
contain predicates (‘[...]’) since an FSA is memory-less, as

observed in [25]. Since predicates are common in XPath
queries, we must be able to handle not only wildcards, child
and descendant axes, but also predicates.

When evaluating predicates on XML streams, we may
encounter data that potentially can be a query solution – a
candidatenode – before we encounter the data required to
evaluate the predicates to decide its membership; therefore,
we must remember candidates as well as their query pattern
matches until the relevant data is encountered. For exam-
ple, consider the XPath query//a[d]/b[e]//c and the sam-
ple XML document shown in figure 1(a)1. When we process
the XML elementc1 in the document order (or equivalently,
a pre-order traversal of the XML tree), we cannot determine
whether or not it is in the query result at the point that it is
encountered. We therefore need to record information about
the pattern match to subquery//a/b//c: (an, b1, c1) until
we can determine the predicate satisfaction ofan and b1,
thus deciding whether or notc1 is a solution.

Based on this intuition, several algorithms [23, 25, 26,
21, 20] have been proposed to process XML queries con-
taining predicates. These algorithms are efficient and scale
well for nonrecursiveXML streams, i.e. data in which tags
do not repeat along a root-to-leaf path. However, when
predicates are combined with descendant axis traversal and
the XML data is recursive, evaluating XPath queries in a
streaming fashion raises new challenges:
• Due to the combination of descendant axis traversal in
a query and the recursive structure of XML data, the num-
ber of pattern matches of a single XML node to a subquery
can be potentially exponential to the query size. Consider
the queryQ1 : //a[d]//b[e]//c and the XML data in fig-
ure 1(a). Note thatQ1 is different from the earlier query
due to the descendant (rather than child) axis traversal be-
tween tagsa andb. For the XML nodec1 there aren2 ways
for c1 to match subquery//a//b//c: (ai, bj , c1), where
1 ≤ i ≤ n, 1 ≤ j ≤ n. Representingn2 in terms of the size
of the data and query, this becomesO((|D|/|Q|)|Q|), where
|D| is the XML data size,|Q| is the XPath query size.
• At least one pattern match must satisfy the query predi-

1Throughout the paper, we use subscripts to distinguish nodes with the
same tag.
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Figure 1. Sample XML Data and an XPath
Query

cates to make a candidate become part of the result. How-
ever, until a pattern match which satisfies the query predi-
cates is found, we must record all the pattern matches for a
candidate and test their predicate satisfaction. In the worst
case, we will not know whether or not the candidate is in-
deed a solution until all pattern matches are considered.

For example, when nodec1 is met, since we are not able
to determine the predicate satisfaction of itsn2 subquery
pattern matches we must record all of them. Processing
the data in document order, we then verify that the matches
(ai, bj , c1), 2 ≤ i ≤ n, 2 ≤ j ≤ n fail the predicates inQ1.
At the very end, we find that the match(a1, b1, c1) satisfies
the predicates and thereforec1 is a query solution.

These challenges do not exist in a non-streaming envi-
ronment since XML nodes can be randomly accessed dur-
ing query processing. For example, in the best known poly-
nomial time main memory algorithms for evaluating XPath
queries [16], the whole document is loaded into main mem-
ory before query processing. Since XML nodes can be ran-
domly accessed, predicates can be checked first so that we
do not need to remember the pattern matches. These tech-
niques are not suitable for processing XML streams, where
only a single sequential scan is allowed. Furthermore, as
will be shown in section 5, the algorithms have trouble pro-
cessing large XML files.

Previous XPath streaming algorithms that handle pred-
icates either do not support descendant axis traversal [23,
21], or explicitly store all pattern matches [25, 26]. As ana-
lyzed in [26], the worst case complexity of the algorithms
in [25, 26] is O(|D| × 2|Q| × k), wherek is the number
of different query pattern matches in which an XML node
participates.

As discussed, recording pattern matches by enumerat-
ing and storing them explicitly can be expensive. Motivated
by [7], we therefore design a stack-based data structure to
concisely encode pattern matches. We then propose a novel
XPath streaming algorithm, TwigM, which searches for sat-
isfying matches in the compact data structure by pruning the

search space without enumerating all the pattern matches.
In this way, TwigM achieves a complexity which is polyno-
mial in the size of the data and query. As tested in extensive
experiments, TwigM is a practically efficient and worst case
polynomial algorithm.

The TwigM algorithm was implemented in an XPath
query processor for XML streams and demonstrated in [11].

The contributions of this paper are:

1. We design a data structure to encode the matches in
a compact form. For example, to processQ1 on the
sample data in figure 1(a), TwigM stores2n nodes to
encoden2 pattern matches.

2. We propose a streaming XPath evaluation algorithm
called TwigM. Recall that to determine whether a can-
didate is indeed a solution entails finding at least one
pattern match that satisfies all the query predicates.
Rather than computing all the pattern matches in the
search space explicitly from the compact data struc-
ture, and then testing predicate satisfaction, TwigM
prunes the search space as we process the XML stream
by checking predicate satisfaction on a small number
of elements in the data structure. For example, we only
need to check predicate satisfaction on2n elements in-
stead of checkingn2 pattern matches to evaluateQ1.

3. We analyze the time complexity of TwigM, which is
polynomial in terms of the size of the data and query.

4. We present a detailed performance evaluation of an im-
plementation of TwigM compared with several other
related systems. The results show that our approach
not only has a good theoretical complexity but a good
performance on various practical queries and data sets.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the data model and query language. Sec-
tion 3 gives an overview our XPath streaming evaluation
strategy. TwigM is introduced and analyzed in section 4.
Section 5 presents performance results. Section 6 discusses
related work, and section 7 concludes the paper.

2 Data Model and Query Language

In this paper, XML data is modeled as a stream of
modified SAX events: startElement(tag, level, id) and
endElement(tag, level), wheretag is the tag of the node
being processed,level is level of the node in the corre-
sponding XML tree, andid is unique identifier of the node.2

These events are the input to our algorithms.

Definition 2.1: Thecurrent nodeis the XML node whose
tag is currently being parsed by the SAX parser. Anactive

2We omit the discussion of attributes for now, however our implemen-
tation supports attributes as well as elements.
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nodeis an XML node whose start tag has been processed
but end tag has not yet been processed by the SAX parser.

Proposition 2.1: At any point in time, the number of active
nodes is bounded by the depth of the XML tree.

We focus the discussion on a commonly used subset
of XPath 1.0: XP {/,//,∗,[]}, following [25, 24, 17, 32].
XP {/,//,∗,[]} consists of child axis traversal (/), descendant
axis traversal (//), wildcards (*), branches (or predicates, de-
noted as [...]), and name tests.

Following previous work [1, 7], we represent an XPath
query in XP {/,//,∗,[]} as aquery tree. For example, the
queryQ1://a[d]//b[e]//c searches for allc nodes that are
descendants ofb nodes, which in turn have a childe and an
ancestora with at least one childd. The tree corresponding
to Q1 is shown in figure 1(b). Thec node inQ1 is called
thereturn node and is indicated by darkening the node. An
unannotated line between two nodes represents a child axis,
and a line annotated with// represents a descendant axis. If
a node has more than one child or is the return node, then
it is called abranching node. For example, nodesa, b and
c are branching nodes inQ1. We use “XPath query” and
“query tree” interchangeably.

As discussed in section 1, there are two challenges in
efficiently processingXP {/,//,∗,[]} on XML streams: first,
descendant axes in the query combined with the recursive
structure of XML data; and second, predicates in the query
combined with the single-scan requirement of stream pro-
cessing. Therefore we will start by considering two simple
subsets ofXP {/,//,∗,[]}: XP {/,//,∗}, which denotes XPath
queries without branching; andXP {/,[]}, which denotes
XPath queries without descendent axis traversal and wild-
cards. The techniques used in processing queries in these
sub-languages will then be combined in a query processor
for XP {/,//,∗,[]}.

3 Overview of Query Processing

In this section, we give the intuition of howXP {/,//,∗,[]}

queries are evaluated over XML data streams; details of the
algorithms will be given in the next section.

For an XPath queryQ, we build a machineM which
takes as input a sequence of SAX events of an XML stream
D and computes a set of node ids as solutions ofQ 3.
The structure ofM resembles that ofQ, with data struc-
tures attached to machine nodes to record information about
matches(see figure 2(b) and (c)). We start by describ-
ing machines for the simple cases, PathM for queries in
XP {/,//,∗} and BranchM for queries inXP {/,[]}, before
extending them to one forXP {/,//,∗,[]}, TwigM.

3Our implementation returns XML fragments instead of node ids.
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Figure 2. Example for PathM

3.1 PathM: XP {/,//,∗} Query Processing

As discussed earlier, the combination of descendant axis
traversal in queries and the recursive structure of XML data
can result in an exponential number of pattern matches to
the query size for a single query solution. To evaluate
queries using polynomial time, we encode matches com-
pactly and avoid enumerating all the matches for a solution.

To achieve the first requirement, we attach a stack to each
machine nodev to recordactive XML nodeswhich are solu-
tions to the subquery from the machine root tov. The XML
nodes on a stack are retained only as long as they are ac-
tive, and therefore by Proposition 2.1 the memory require-
ment for a stack is bounded by the document depth. Since
a tag may occur multiple times in a query, the total memory
requirement is bounded by the size of the query times the
document depth.

To achieve the second requirement, we push an XML
node onto the stack of machine nodev if its relationship
with the nodes in the stack ofv’s parent nodeu satisfies
the axis betweenu andv. Sinceu’s stack stores all active
solutions for the subquery from the root tou, the XML node
pushed ontov’s stack is a solution for the subquery from
the root tov. The time to check the push condition for each
XML node is therefore bounded by the number of active
nodes (i.e the document depth, Proposition 2.1) times the
query size.

Example 3.1: Figure 2(c) shows the machineM2 for the
queryQ2 in figure 2(b). A machine node is created for each
query node and given the label of its corresponding query
node’s tag. For example, machine nodev1 is labeleda, v2

is labeledb, andv3 is labeledc. The machine node built
for the root (return) node in the query is also called the root
(return) node in the machine. Thusv1 is the root ofM2 and
v3 is the return node.

A stack is built for each machine node to record informa-
tion about active XML nodes that are solutions to its sub-
query. For example, the stack forv1 records active XML
nodes reachable by//a, and the stack forv2 records active
XML nodes reachable by//a//b. Since active XML nodes
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can be distinguished by their levels, the stacks record only
the level of matching active nodes.

The edge between machine nodes is annotated with a
node push condition according to the axis between the cor-
responding query nodes. For example, the parent edge ofv2

is labeled by “(≥, 1)”, since the corresponding query node
b has a parent edge of ‘//’. The edge label indicates that an
XML node will be pushed tov2’s stack if and only if there
exists a node inv1’s stack such that their level difference is
≥ 1.

PathM accepts the SAX events of an XML stream and
computes the solutions for the query. Each SAX event (tag,
level, id) will be sent to machine nodes whose label is the
same astag or ‘*’. In M2’s execution on the XML treeD2

of figure 2(a), the SAX event startElement(a, 1, a1) will be
sent tov1 since its label isa.

A machine nodev qualifies for a startElement SAX event
(tag, level, id), if (1) v is the root andlevel satisfies its
parent edge label; or (2)v is not the root and there exists
an l′ on the stack ofv’s parent such thatlevel − l′ satisfies
v’s parent edge label. This XML node is pushed onto the
qualified nodev’s stack as a solution to the subquery from
the root tov. Continuing with our example,a1 is pushed
onv1’s stack sincev1 is the root,v1’s parent edge is labeled
(≥,1), anda1’s level = 1 ≥ 1. Similarly, we push data
nodesa2, . . ., an on v1’s stack, data nodesb1, . . ., bn on
v2’s stack, and data nodesc1 onv3’s stack. The snapshot of
M2’s state at this point of execution is shown in figure 2(c).
Sincev3 is the return node, node idc1 is output.

A machine node v qualifies for an endElement
event(tag,level) if level is equal to the top node inv’s stack
(meaning that this is the matching end tag);v then pops its
stack to guarantee that only active nodes remain. For exam-
ple, endElement(c, 2n+1) is sent to machine nodev3 since
its label isc. Furthermore, the top element inv3’s stack is
level 2n + 1 and is equal to thelevel of the endElement
event; we therefore popv3’s stack.

As an optimization, we do not need to create machine
nodes for ‘*’ interior query nodes. Instead, we record the
level difference of non-‘*’ query nodes through the edge
labels of their corresponding machine nodes.

Observe that in this example, although there aren2

pattern matches which qualifyc1 as a query solution
((ai, bj , c1) where1 ≤ i ≤ n, 1 ≤ j ≤ n), we only store
2n nodes. Furthermore, to verify each sub-query solution it
is sufficient to check nodes on the parent stack of a qualified
machine node. For example, to determine thatc1 is a query
solution we only need to check nodes inv2’s stack, rather
than enumerating and testing alln2 query pattern matches
thatc1 participates in.

Although the stacks used in PathM are similar to those
proposed in [7], the algorithms to compute query results
are quite different. First, PathM pushes nodes onto a stack
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Figure 3. Example for BranchM

if and only if they are solutions to the corresponding sub-
query, rather than pushing all nodes whose tag matches the
label of the stack. Second, to determine if an XML node is a
query solution, we only need to check its relationship with
nodes in the parent stack of the query return node (poly-
nomial time), rather than enumerating and verifying all the
pattern matches the XML node participates in.

3.2 BranchM: XP {/,[]} Query Processing

Another challenge for evaluating XPath queries in a
streaming environment lies in checking predicate satisfac-
tion. We focus on this problem in BranchM, which pro-
cesses queries inXP {/,[]}. The issue is that when a data
node matches a machine node, we may not be able to deter-
mine if it is a solution to the query since the nodes matching
the predicate conditions may not have been seen yet.

We therefore associate with each machine node a set of
possible solutions calledcandidates. To verify a candidate,
we need to record pattern matches to subqueries and test
predicate satisfaction on them. Since a predicate is an exis-
tential quantifier which can be satisfied with a single match
to each condition, we attach a boolean array calledbranch
matchto each machine node and record whether or not each
of the child conjunctions has found a match in the XML data
rather than recording all the matches.

Example 3.2:Figure 3(c) shows the machineM3 for query
Q3 in figure 3(b). The BranchM machine is different from
a PathM machine in three key ways: First, an edge label
in BranchM is always (=,1) since there are only child axes
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and no ‘*’-nodes; we therefore omit edge labels from the
figure. Second, at any moment there is at most one active
XML node matching a query node; machine nodes therefore
record a single match rather than a stack of matches. Third,
for each BranchM machine node, we associate the levelL of
the match (initialized to0), a set of candidatesC (initialized
to ∅), and the branch match boolean arrayB (initialized to
false (F )).

Now, consider the action ofM3 on the data in figure 3(a).
In this example, we are not able to determine ifc1 is a query
solution until we test predicate satisfaction of the pattern
match(a1, b1, c1) for subquery/a/b/c.

As in PathM, when BranchM receives a SAX event (tag,
level, id) it will send it to the machine nodes whose label
is the same astag. For example, startElement(a, 1, a1) will
be sent to the machine nodev1 since its label isa.

A machine node determines if it qualifies for a
startElement(tag, level, id) event by comparinglevel with
the element in its parent node according to the parent edge
condition, as in PathM. Thelevel of a matched active data
node is then recorded inL. If the machine node is the return
node, we addid to its candidate setC. Continuing the ex-
ample above, machine nodev1 qualifies for this event since
the label ofv1 is a andv1 is root. The level information1 is
therefore recorded inv1’s L. Similarly, we record the level
of b1 (2) in v2’s L and the level ofc1 (3) in v3’s L, and put
the id ofc1 into v3’s candidate setC.

When a machine node receives an endElement(tag,
level) event, it checks if the event corresponds to the
recorded data node. For any qualified machine nodev, it
then checks if all the components in its branch matchB are
true (T ). If so, this branch has found a match to all its
predicates. Ifv is the root, we output its candidate setC;
otherwise, we set its parent’s branch match component for
v to true, and addv’s candidate set to its parent’s candi-
date set. We then reset the qualified machine node’s state to
(L = −1, C = ∅, B = < F, . . . , F >).

Continuing the example above, when endElement(c, 3)
is sent toM3, it again matchesv3. Sincev3’s branch match
is trivially true (there are no qualifications on the match, and
thereforeB is missing forv3 in the figure), we set its parent
v2’s branch match forv3 to T , addv3’s candidate set{c1}
to v2’s candidate set, and resetv3’s state. We proceed in a
similar fashion for the other startElement and endElement
events. The snapshot after the endElement event fore1 is
shown in figure 3(c). Finally, on the endElement event for
a1, machine nodev1 qualifies; since its branch matchB is
all T , its candidate set{c1} is output as the query solution.

v3   c

v2    b

v1   a

(≥, 1)

(≥, 1)

(≥, 1)

d   v4

e   v5

(=, 1)

(=, 1)

L: level   B: branch match  C: candidates

CL B

CL B

…
c1n+1

F,  Tc12n

F,  T

…
1

F,  Fn

F,  F

Figure 4. TwigM M1 for Q1 in Figure 1

3.3 Putting Them Together in TwigM

Having discussed the technical approaches for dealing
with descendant axis traversal and predicate testing, we now
put the two together in TwigM for evaluating queries in the
languageXP {/,//,∗,[]} over recursive XML streams.

There are three important features of TwigM. First, as
in BranchM, TwigM tests predicate satisfaction on a given
pattern match using a branch match boolean array in a re-
cursive fashion to verify a candidate query solution. Sec-
ond, because of the presence of ‘//’ and ‘*’, TwigM builds
a stack to record active XML node matches for each query
node as in PathM. However, each stack element now con-
tains the level, candidate set, and branch match array for
the matched data node. The stacks compactly encode all
the pattern matches to subqueries that a candidate query
solution participates in. Third, since TwigM needs to test
predicates on multiple pattern matches to verify each candi-
date, it groups pattern matches and eliminates the ones with
failed predicates effectively without enumeration. There-
fore TwigM only probes a polynomial number of matches in
a potentially exponential search space and achieves a poly-
nomial time complexity.

Example 3.3:Figure 4 shows the machineM1 for queryQ1

in figure 1(b). There are five nodes inM1, v1, v2, v3, v4 and
v5 labeleda, b, c, d ande, respectively. Each node has the
level difference requirement on its parent edge as in PathM.
Each node also has a stack, which is initially empty. An
element of a stack has the same data structure as the state of
a node in BranchM; it is a triple, representing the matching
XML node’s level, candidate setandbranch match.

Now, consider the action ofM1 on the dataD1 in
figure 1(a). The startElement processing is similar to
PathM except a triple with level information, candidates and
branch match is pushed onto the stack instead of only level
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information. For example, when processing the data node
a1 with level 1 and ida1, since machine nodev1 qualifies
for this event, the triple (L = 1, C = ∅, B = < F, F >) is
pushed onv1’s stack. Similarly, we push corresponding in-
formation for nodesa2, . . ., an onv1’s stack, nodesb1, . . .,
bn onv2’s stack, andc1 along with its node id as a candidate
onv3’s stack.

When the endElement event ofc1 is received byM1, the
event is sent tov3. The top elementn in v3’s stack has the
same level asc1. Sincen’s branch matchB is trivially all T ,
for each element in the stack ofv3’s parent (v2) whose level
satisfies the parent edge condition, we set its branch match
for v3 to T , denoting that it has found a match to query child
c, and upload the candidate set:{c1}

4. In this example, ev-
ery element inv2’s stack satisfies the parent edge condition.
Then we popv3’s stack. The snapshot at this moment is
shown in figure 4, where the second component of branch
matches forv2 has been set toT to denote that the match
for v3 has been found.

When the endElement event forbn is received, it matches
the top elementn in v2’s stack. However, since one com-
ponent of the branch match ofn is F (predicatee has not
found a match), we directly popv3’s stack. Similarly, we
process the endElement events for nodesbn−1, . . ., b2 and
startElement events for nodee1. On the endElement event
of e1, a match is now found for the top elementn of v5’s
stack. Sincen satisfies the parent edge condition with the
top element inv2’s stack,b1, we setb1’s branch match for
v5 to T and popn. On the endElement event forb1, since its
branch match is allT , we set the branch matches of the el-
ements inv1’s stack (which all satisfy the parent edge label
condition) forv2 to T , upload their candidate sets, and pop
the stack. Finally, on the endElement event fora1, since
v1’s branch match is allT and it is the root, its candidate set
{c1} is output as the query result.

As we can see, TwigM uses stacks to compactly encode
query pattern matches. In the above example,n2 pattern
matches (3n2 elements) to subquery//a//b//c in which
the XML nodec1 participates are recorded using2n + 1
elements in stacks. To verify a candidate query solution,
TwigM removes a set of unsatisfied pattern matches by pop-
ping one element in the stack. For example, since node
bn does not satisfy the predicate we pop it, eliminating
all n matches in whichbn was participating ((ai, bn, c1),
1 ≤ i ≤ n). When multiple satisfying pattern matches exist
for a query solution, TwigM eliminates duplicate candidates
by taking the union. Therefore TwigM only needs to pro-
cess a polynomial number of elements in the stacks to verify
a candidate query solution instead of computing all the pat-
tern matches. In the above example, TwigM processes2n
elements in the stacks rather thann2 pattern matches.

4The stacks we use allow examining all elements.

4 Algorithms

4.1 Abstract Machine TwigM

We now formally present TwigM discussed in the previ-
ous section. First we define anXP {/,//,∗,[]} queryQ.

Definition 4.1: An XP {/,//,∗,[]} query is a treeQ(V , Σ, η,
ρ, root, ζ, sol), where
• V is a finite set of nodes
• Σ is a finite alphabet of node tags
• η:V → {‘*’ } ∪Σ is thename function; η(n) returns the
name ofn, which can be either a tag or ‘*’
• ρ:V → {ǫ} ∪ V is theparent function; ρ(n) returns the
parent node ofn
• ζ:V → {/, //} is theparent edge function; ζ(v) returns
the label of the incoming edge ofv
• root ∈ V is the root ofQ
• sol ∈ V is the return node.

TwigM machine is a tuple (V , η, ρ, ζ, I, S, δs,δe, root,
sol) built from a queryQ (V ′, Σ, η′, ρ′, root′, ζ′, sol′)
where
• V is a set of machine nodes corresponding to nodes in
Q. root andsol are machine nodes corresponding toroot′

andsol′ of Q, respectively. Several functions are defined on
machine nodes.

A name functionη returns the label of a machine node.
Each machine node except theroot has a parent which

can be retrieved by a parent functionρ.
Parent edge functionζ:V → {=,≥} × N on a nodev

returnsv’s parent edge label, which records the level differ-
ence and axis information betweenv and its parentρ(v) as
the condition on which an XML node should be pushed into
the state ofv. The first component is a function, either “≥”
or “=”, depending on the axis between query nodev and
ρ(v), and the second component is a positive integer repre-
senting level difference of betweenv andρ(v). We say that
an integerl satisfies theparent edge conditionof v if the
functionζ(v)[1](l, ζ(v)[2]) returnsT (true).

A child identity functionβ : V → N identifies a child
within its parent by its order, so that the match information
of the child can be recorded in its parent’s branch match.
• I is the input SAX event startElement (tag, level, id) or
endElement (tag, level) which are described by the domain
of node tagsΣ 5, node levelΓ, and XML node idsΥ.
• S denotes the state associated with machine nodes, and
is described by a stack functionξ: V → (Γ × {T, F}∗ ×
Υ∗)∗. In the following we useS to denote the states(Γ ×
{T, F}∗ × Υ∗)∗. ξ(v) returns a stack of active XML nodes
that are solutions to the subquery from the query root to

5We assume that the alphabet of node tags in the query is the same as
that of the XML data, and addǫ for empty id in the last component of
endElement events.
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Algorithm 1 Functionsδs, δe for TwigM
Start Element Function δs

1: for all v such that((η(v) = a)∨(η(v) =‘*’ ))∧((v = root)∧
ζ(v)[1](l, ζ(v)[2])∨ (v! = root)∧∃e ∈ ξ(ρ(v))(ζ(v)[1](l−
e[1], ζ(v)[2])) do

2: push(ξ(v), < l, < F, . . . F >, ∅ >);
3: if (v = sol) then
4: top(ξ(v))[3] = top(ξ(v))[3] ∪ {id};
5: end if
6: end for

End Element Functionδe

1: for all v such that ((η(v) = a) ∨ (η(v) =‘*’ )) ∧
(top(ξ(v))[1] = l) do

2: if (∀i((top(ξ(v))[2][i] = T )) then
3: if (v = root) then
4: ouput(top(ξ(v))[3]);
5: else
6: for all e such thate ∈ ξ(ρ(v)) ∧ ζ(v)[1](l −

e[1], ζ(v)[2]) do
7: e[2][β(v)] = T ;
8: e[3] = e[3] ∪ top(ξ(v))[3];
9: end for

10: end if
11: end if
12: pop(ξ(v))
13: end for

the corresponding query node. For a node in a stack, we
record its level, branch match and candidate set information.
Branch match records for each child ofv whether or not a
match on data has been found. The candidate set records
the set of possible solutions to be verified with respect tov.
• δs and δe are transition functions corresponding to
startElement and endElement events, respectively. The
functions compute the next state of a machine node accord-
ing to its current state and the input SAX event.

4.2 Machine Construction

Next, let us describe how to construct a TwigM for a
given queryQ:
• NodesV , sol, name functionη :
For each query nodev′ in V ′ whose name is an XML
tag (η′(v′) ∈ Σ), we build a machine nodev and set
η(v) = η′(v′); for each branching or leaf query node whose
label is ‘*’, we build a machine nodev and setη(v) =‘*’.
All v thus constructed compriseV . Let f andf ′ represent
the mapping functions between query nodes and machine
nodes,f ′(v′) = v andf(v) = v′. Setsol = f ′(sol′).

Note that we could create a machine node foreachquery
node. However, we do not need to build machine nodes for
interior ‘*’ nodes since we capture them in the level differ-
ence between nodes, as described next.

• Parent functionρ, parent edge functionζ, child identity
functionβ, root:
To constructζ andρ, for two query nodesv′1 andv′2, such
thatv′1 is an ancestor ofv′2 with no intervening non *-nodes
(that is, the path betweenv′1 andv′2 is comprised of all *-
nodes), let c be the number of *-nodes betweenv′1 andv′2.
Set f ′(v′1) to be the parent off ′(v′2), and set the second
component of the edge label between them in TwigM to be
c + 1. If one of the edges betweenv′1 andv′2 in Q is labeled
‘//’, then set the first component of the edge to≥; otherwise
set it to=.

We set theroot as the machine node without parent. For
each childc of a machine nodev, we setβ(c) to be the order
of c within v.
• Stack functionξ
For each nodev ∈ V , we build a stack and initialize it to be
empty.
• Start element functionδs

δs : I × S × {=,≥} × N → (V → S) computes the next
state of nodev according to input startElement SAX events,
current state ofv’s parent andv’s parent edge label.

A startElement(a, l, id) event invokes theδs function
on each qualified machine nodev. A nodev is qualified
if: (1) η(v) = a or η(v) = ‘*’; (2) v is the root andl
satisfies the parent edge condition; or (3)v is not the root
and there exists an elemente in the stack ofv’s parent whose
level is l’ and l − l’ satisfiesv’s parent edge condition. If
v is qualified, then we push< l, < F, . . . F >, ∅ > onto
v’s stack. Furthermore, ifv is sol then we addid to v’s
candidate set.δs is formally defined in algorithm 1.
• End element functionδe

δe : I × S × {=,≥} × N → (V → S) computes the next
state of nodev and that of its parent according to the input
endElement SAX events,v’s current state, andv’s parent
edge label.

An endElement event (a, l) invokes theδe function on
every qualified machine nodev. A nodev is qualified if
η(v) = a or η(v) = ‘*’, and the level of the top element of
v’s stack isl.

Let n be the top element ofv’s stack. Ifv is root andn’s
branch match is allT , we can determine that there is a pat-
tern match for the query, thereforen’s candidates are output
as query solutions. Ifv is not root andn’s branch match
is all T , then for every elementn′ in v’s parent stack, such
that the level difference ofn andn′ satisfiesv’s parent edge
label condition, we know thatn is a match to a query child
of n′’s, and therefore set the component ofv in n′’s branch
match toT . Furthermore, we load the candidates ofn to n′

to be verified with respect tov′’s subtree query. Finally, we
popv’s stack. Note that if noden’s branch match contains
F , we not only discardn, but all the pattern matchesn par-
ticipates in; therefore we can remove failed pattern matches
without having to enumerate them.δe is formally defined in
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Algorithm 1.

4.3 Correctness and Complexity Analysis

Theorem 4.1:TwigM correctly evaluates queries.

To prove the theorem, we first give several definitions.

Definition 4.2: Given a nodev in a query treeQ, we name
the subquery fromroot tov without branches theprefix sub-
queryof v. If we cut off all the branches of the nodes be-
tween root andv, excludingv, the remainder ofQ is called
thesuffix subqueryof v.

For example,//a//b is the prefix subquery of nodeb
with respect toQ in figure 1(b),//a//b[e]//c is the suffix
subquery ofb, however,//a//b//c is not a suffix subquery
of b.

Since each query node whose label is not ‘*’ has a corre-
sponding machine node, we blur machine nodes and query
nodes in the following.

Proposition 4.2: On the startElement event for a nodea, a
is pushed onto a machine nodev’s stack if and only ifa is
an active node and a solution to the prefix subquery ofv.
Proof Sketch: Proof by induction on the levels of the ma-
chine nodes in TwigM starting from the root. According to
the construction of the parent edge functionζ, it holds im-
mediately for the root. Assume the proposition holds for a
machine node with levell. An XML nodea is pushed onto
the stack of nodev with level l + 1, if and only if there is a
node inv’s parent’s stack, and their level difference satisfies
v’s parent edge condition. Therefore the proposition holds.

Proposition 4.3: On an endElement event for a data node
a, which matches the top noden in the stack of a machine
nodev, we set the branch match ofv to the nodes inv’s
parent’s stack if and only if each candidate ofn is a solution
to the suffix subquery ofv.
Proof Sketch: Proof by induction on the levels of machine
nodes in TwigM starting from leaves. The base case holds
according to proposition 4.2.

Theorem 4.1 is a special case of proposition 4.3.

Theorem 4.4:The time complexity of TwigM isO((|Q| +
RB)|Q| |D|), whereR is the depth of the XML tree.
Proof Sketch: The polynomial time complexity results
from three key features of TwigM. First we use stacks to
store an exponential number of pattern matches compactly.
Second, before we push a node onto a stack, we check its
relationship with the nodes in its parent stack, and therefore
guarantee that the nodes in a stack are solutions to the pre-
fix subquery. Third, for predicates, we only use a boolean
to record its satisfaction.

All the detailed proofs can be found in [10].

Name Size Node Number Tag Number Depth
Book 9MB 149K 12 20

Benchmark 34MB 616K 77 12
Protein 75MB 2277K 66 7

Figure 5. Dataset Description

BookDataset
Q1 //section/title
Q2 //section//figure
Q3 //title
Q4 //book//section//title
Q5 //section[./figure]/title
Q6 //section[./section]/title
Q7 /book//section[./title]/figure
Q8 //section/figure/image[@source=“defaultCDATA24553”]
Q9 //section[./figure/image/@source=“defaultCDATA3”]/title
Q10 //section[.//section]/figure/*
ProteinDataset
Q1 /ProteinDatabase//protein/name
Q2 /ProteinDatabase/ProteinEntry/*/*/*/author
Q3 //ProteinEntry/reference/refinfo/xrefs/xref/db
Q4 //ProteinEntry//reference//refinfo//xrefs//xref//db
Q5 //organism[./source]
Q6 //ProteinEntry[./reference]/@id
Q7 //ProteinEntry//refinfo[./volume]//author
Q8 //ProteinEntry/reference/refinfo[./year=“1988”]/title
Q9 //ProteinEntry[.//refinfo[./title, ./citation/@type]]/@id
Q10 //ProteinEntry/*[./createddate = “10-Sep-1999”]/uid

Figure 6. Query Sets

5 Experimental Evaluation

We have implemented TwigM in C++ and demonstrated
it in [11]. The SAX parser used is Expat [12]. In this sec-
tion, we present a detailed performance study of this imple-
mentation.

5.1 Experiment Setup

Environment. All experiments were conducted on a Pen-
tium III 1.5GHz machine with 512MB memory, running the
Redhat 9 distribution of GNU/ Linux(kernel 2.4.20-8). All
experiments were repeated 10 times and the average pro-
cessing time was calculated disregarding the maximum and
minimum values.
Datasets.We conducted experiments on three datasets. The
first is a synthetic dataset generated by IBM’s XML Genera-
tor [18], which takes a DTD and a set of parameters as input.
We use theBook DTD from the XQuery use cases [30] as
the input DTD. We apply the default settings of XML Gen-
erator for all the parameters except forNumberLevelsand
MaxRepeats. NumberLevelsbounds the maximum depth of
the XML document generated and is set to 20.MaxRepeats
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Figure 7. Query Execution Time
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Figure 8. Memory Usage

determines the maximum number of times an element can
repeat in its parent and is set to 9. The second is a bench-
mark data set generated by XMark [31] conforming to the
default auction DTD. The third one is a real dataset from
the International Protein Sequence Database [15]. Features
of the datasets are shown in figure 5.

Queries. We tested 10 queries on thebook and pro-
tein datasets, as listed in figure 6.Q1 to Q4 belong to
XP {/,//,∗}, Q5 to Q8 belong toXP {/,//,[]}, but restrict
the path expressions in predicates to be either an attribute
or a single child axis. Q8 has a value test as predicate
and produces results of small sizes.Q9 and Q10 belong
to XP {/,//,∗,[]}, and allow multiple predicates to apply to a
single node, path expressions inXP {/,//,∗,[]} to be present
in predicates, predicates to be nested, and ‘*’s to appear
anywhere. For the benchmark dataset, we tested the bench-
mark queries provided by XMark [31] which only contain
“/”, “//”, “*” and predicates. We use the original query
names for the benchmark queries.

Systems. We compare TwigM with several XML query
processing systems.XMLTK (version 1.01) [3] is a stream-
ing XPathXP {/,//,∗} processor using a DFA (Determin-
istic Finite Automaton) constructed lazily.XSQ (version
1.0) [25] is a streaming XPathXP {/,//,[]} processor using
transducers, in which a predicate is restricted to be a single

child axis or an attribute, with an optional value test. The
release versions of other XML query streaming processors
such as SPEX [24], XSM [23],XAOS [6], TurboXPath [20]
and BEA/XQRL [14] are not yet publically available. We
also compare with two non-streaming XML query proces-
sors:Galax(release 0.3.5) [28] is a comprehensive imple-
mentation of XQuery 1.0.XMLTaskForce(release 2003-
01-30) [16] is a main-memory, nearly complete implemen-
tation of the XPath 1 recommendation, and the only such
system with polynomial time complexity in the literature.

5.2 Query Processing Time

First we compare the processing time of TwigM
with XMLTK, XSQ, Galax and XMLTaskForce6. Fig-
ures 7(a),(b) and (c) report the query execution time for the
Book, BenchmarkandProteindatasets respectively. As we
can see, forXP {/,//,∗} XMLTK has the best performance;
for other queries, TwigM is the fastest.

The performance of TwigM and XMLTK is stable, and
does not degrade on complex queries. The performance of
the other systems degrades due to enumerating multiple pat-
tern matches to a subquery for a query result. For example,

6The processing time reported here is normalized according to bench-
mark [8, 2]
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Figure 9. Query Execution Time as Book Data Size Increases

Q3 andQ4 on Book have the same set of nodes as query
result, while each result ofQ4 has multiple pattern matches
to //book//section sincesectionnodes are nested. TwigM
and XMLTK use the same amount of processing time for
both queries, the processing time of XMLTaskForce onQ4

increases a little compared toQ3, while the performance of
XSQ and Galax degrades significantly.

As we can see, only TwigM is able to evaluate all the test
queries on the three datasets. Its performance is good and
stable: it performs well on recursive and non-recursive data,
simple as well as complex queries. When multiple pattern
matches are present (e.g. thebookdataset), the performance
advantage of TwigM is substantial. Although XMLTK out-
performs TwigM onQ1 to Q4, the difference between their
performance is small compared to the difference between
TwigM’s performance and that of XSQ and Galax. For
queries containing multiple ‘*’, XMLTK needs to build a
DFA with an exponential number of states in the worst case
and its performance degrades significantly.

5.3 Memory Usage

Next we compare the memory usage of TwigM with
XMLTK, XSQ, Galax and XMLTaskForce. Process mem-
ory usage is measured using Redhat’s system monitor. The
total memory usage of XSQ includes memory consumed
by the Java virtual machine. Figures 8(a), (b) and (c) re-
port the memory usage for theBook, BenchmarkandPro-
tein datasets, respectively. There are several observations.
First, the streaming processors, TwigM, XMLTK and XSQ,
use substantially less memory than the non-streaming pro-
cessors, Galax and XMLTaskForce, which require memory
much larger than the data size. Second, as the sizes of the
datasets change from 9MB(Book) to 34MB(Benchmark)
to 75MB(Protein), the memory consumption of TwigM,
XMLTK and XSQ remains roughly the same; XMLTask-
Force runs out of memory forProtein. Third, TwigM and
XMLTK use as little as 1MB memory for all queries in all
datasets.
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Figure 10. Memory Usage for Q10 as Book
Data Size Increases

5.4 Scalability of Query Processing Time

We also measure the scalability of the systems as data
size increases.

To test the scalability as the data size increases, we du-
plicated theBook dataset between 2 and 6 times. Figure 9
reports the processing time on increasing sizes of XML data
for queries of different types:Q1, Q5 andQ9, respectively.
The performance of other queries are similar and are omit-
ted. The results show that as the file size increases the exe-
cution time of TwigM increases very slowly for both simple
and complex queries.

5.5 Scalability of Memory Usage

Figure 10 shows the memory usage of different systems
as thebook data size increases. As we can see, when the
data size increases from9MB to54MB, the memory usage
of the streaming processors (TwigM, XMLTK and XSQ)
is constant, while the memory consumption of Galax and
XMLTaskForce increases much faster than the data size.
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5.6 Overall Results

From the experiments, we can see that TwigM has sev-
eral benefits:

• TwigM algorithm is practically efficient with guaran-
teed polynomial time complexity.

• TwigM has polynomial time complexity in the size of
the data and query, which is verified in the experiment.

• When multiple pattern matches are present, the per-
formance of TwigM is substantially better than other
systems, as shown in thebookdataset.

• For all the datasets in the experiments, TwigM is the
most efficient query engine that handles XPath with
child, descendant axes and predicates.

• TwigM is suitable for processing data streams with
small memory usage. The memory consumption of
TwigM remains almost constant (1MB) as the data and
query sizes change in the experiments. We have also
tested benchmark queries over data that is over 1GB
in size, and found that the memory usage remains at
1MB.

6 Related Work

Several XPath streaming engines have been proposed.
XSQ [25], SPEX [24], and XSM [23] use a hierarchi-
cal arrangement of transducers augmented with a buffer.
XSQ processes XPath queries with child and descendant
axes, and predicates with the restriction that predicates do
not contain axes. SPEX processes regular expressions,
which are similar to the XPath queries of XSQ. XSM and
FluX [21] do not support descendant axis traversal. [5] an-
alyzes the buffer requirement for evaluating XPath queries
without wildcards on XML streams. In contrast, TwigM is
a polynomial algorithm for XPath queries containing child
axis, descendant axis, wildcards and (unrestricted) predi-
cates.

XAOS [6] is an XPath processor that supports reverse
axes (parent and ancestor) using a matching structure to
store XML nodes. XAOS produces query results by travers-
ing the matching structure at the end of the stream. In con-
trast, TwigM can produce results incrementally.

[20] discusses how to handle child, descendant axes,
predicates and wildcards in XQuery using TurboXPath.
When a recursive data node matching a query node is met,
an independent thread of control is generated. Therefore
the pattern matches to the query are independently recorded
and manipulated explicitly.

BEA/XQRL [14] is a full implementation of XQuery.
The design goal of BEA/XQRL is different from our work:

BEA/XQRL targets processing general XQuery queries on
small XML messages (a few 100KB in size), while our goal
is to process a commonly used subset of XPath queries ef-
ficiently on large XML streams (megabytes and gigabytes).
We believe that these two systems demonstrate the trade-
offs between query language expressiveness and system
simplicity and efficiency.

[29] discusses how to exploit schema information to op-
timize XQuery evaluation on XML streams. [22] proposes
XQuery rewriting techniques according to the dependency
relationship between clauses in an XQuery for streaming
process.

A number of XPath query filtering systems have been
proposed. Filtering systems focus on determining whether
or not an incoming data stream matches a large number
of queries. YFilter [13] uses a single automaton to evalu-
ate common expressions of queries to improve the perfor-
mance. XTrie [9] uses a trie structure instead of a flat ta-
ble to index XPath queries based on common substrings.
XPush [17] lazily constructs a single deterministic push-
down automaton to filter XPath queries with predicates. [4]
gives the lower bounds of XPath filter algorithms.

There are many papers on non-streaming XPath query
processing. [16, 27] propose polynomial main memory al-
gorithms for answering full XPath queries by randomly ac-
cessing an XML document. Galax [28] is a full-fledged
XQuery query engine based on random accesses on a DOM
model. [32, 1, 7] process tree pattern queries over a database
system for XML data. Although [1, 7] also use a stack-
based data structure, they focus on a different processing
environment than ours, and therefore have different algo-
rithms. First, our algorithm takes a streaming XML doc-
ument as input, while the input of [1, 7] is relations of
XML node labels{DocID, StartPos, EndPos, Level} with
optional indices. Second, our algorithm produces results in-
crementally, while [1, 7] use sort and merge-join, which are
blocking operations; they therefore cannot produce results
incrementally. Furthermore, we focus on XPath query pro-
cessing which returns the nodes matching the return node
in the query; therefore it is possible to achieve a polynomial
time complexity. On the other hand, the queries handled by
[1, 7] return all the pattern matches.

7 Conclusions

We have discussed reasons for the potentially exponen-
tial time complexity of existing XPath streaming query pro-
cessors: computing all the pattern matches for each so-
lution of queries containing both predicates and descen-
dant axis traversal on recursive data. Using a compact
data structure to encode pattern matches, we gave a poly-
nomial time algorithm to evaluate a large class of XPath
queries,XP {/,//,∗,[]}, over streaming XML data. The al-
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gorithm, TwigM, achieves its efficiency by searching for
results lazily without enumerating all the pattern matches.
A detailed experimental study shows that our approach not
only has a good theoretical complexity bounds but also
works well in practice on a wide variety of queries and
datasets.
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