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Abstract observed in [25]. Since predicates are common in XPath

gueries, we must be able to handle not only wildcards, child
Streaming XPath evaluation algorithms must record a and descendant axes, but also predicates.

potentially exponential number of pattern matches when When evaluating predicates on XML streams, we may
both predicates and descendant axes are present in queriesgncounter data that potentially can be a query solution — a
and the XML data is recursive. In this paper, we use a com- candidatenode — before we encounter the data required to
pact data structure to encode these pattern matches ratherevaluate the predicates to decide its membership; therefor
than storing them explicitly. We then propose a polyno- we must remember candidates as well as their query pattern
mial time streaming algorithm to evaluate XPath queries matches until the relevant data is encountered. For exam-

by probing the data structure in a lazy fashion. Extensive
experiments show that our approach not only has a good
theoretical complexity bound but is also efficient in prac-
tice.

1 Introduction

XML has become the de facto standard for data ex-
change. The problem of efficiently evaluating XML
queries, e.g. XPath, in botimain memoryand streaming
environments has therefore attracted a lot of attentiom fro
the research community [7, 16, 28].

In this paper, we focus on a streaming environment, as
found with stock market data, network monitoring or sensor
networks. In such an environment, data streams, which ca
be potentially infinite, arrive continuously and must be-pro

cessed using a single sequential scan because of the limited

storage space available. Query results should be distdbut

incrementally and as soon as they are found, potentially be-

fore we read all the data. Furthermore, the query processin
algorithm should scale well in time and space. An algo-
rithm that meets these requirements for XPath processin
over XML data is called atreaming XPath evaluation al-
gorithm

Several streaming XPath evaluation algorithms based on
finite state automata (FSA) have been proposed to process .

XPath queries containing the child axis (‘/’), descendant
axis (/') and wildcard (*) [3, 19]. Automaton-based

methods are attractive due to their efficiency and clean de-*

sign. However, they cannot evaluate XPath queries which
contain predicates ([...]") since an FSA is memory-less, a

n

ple, consider the XPath queyya[d]/ble]//c and the sam-

ple XML document shown in figure 1(8)When we process
the XML element; in the document order (or equivalently,

a pre-order traversal of the XML tree), we cannot determine
whether or not it is in the query result at the point that it is
encountered. We therefore need to record information about
the pattern match to subquerya/b//c: (an,b1,c1) until

we can determine the predicate satisfactiormgfand by,

thus deciding whether or net is a solution.

Based on this intuition, several algorithms [23, 25, 26,
21, 20] have been proposed to process XML queries con-
taining predicates. These algorithms are efficient andescal
well for nonrecursiveXML streams, i.e. data in which tags
do not repeat along a root-to-leaf path. However, when
predicates are combined with descendant axis traversal and
the XML data is recursive, evaluating XPath queries in a
streaming fashion raises new challenges:

Due to the combination of descendant axis traversal in
a query and the recursive structure of XML data, the num-
ber of pattern matches of a single XML node to a subquery
can be potentially exponential to the query size. Consider

Yhe query@; : //ald]//ble]//c and the XML data in fig-

ure 1(a). Note thaf), is different from the earlier query

%ue to the descendant (rather than child) axis traversal be-

tween tags: andb. For the XML nodec; there arer? ways

for ¢; to match subquery/a//b//c: (ai, b;,c1), where
<13 <n,1<j<n.Representing? in terms of the size

e data and query, this becont®g | D|/|Q|)!%!), where

| D] is the XML data size|@)| is the XPath query size.

At least one pattern match must satisfy the query predi-

1Throughout the paper, we use subscripts to distinguishgwith the
same tag.



?a\ search space without enumerating all the pattern matches.
In this way, TwigM achieves a complexity which is polyno-
mial in the size of the data and query. As tested in extensive
experiments, TwigM is a practically efficient and worst case
polynomial algorithm.

The TwigM algorithm was implemented in an XPath
query processor for XML streams and demonstrated in [11].

The contributions of this paper are:

by
\O e

by

G

(a) DataD, (b) QueryQ:

1. We design a data structure to encode the matches in

Figure 1. Sample XML Data and an XPath
Query

cates to make a candidate become part of the result. How-
ever, until a pattern match which satisfies the query predi-
cates is found, we must record all the pattern matches for a
candidate and test their predicate satisfaction. In thestvor
case, we will not know whether or not the candidate is in-
deed a solution until all pattern matches are considered.

For example, when nodg is met, since we are not able
to determine the predicate satisfaction ofiits subquery
pattern matches we must record all of them. Processing
the data in document order, we then verify that the matches
(@i, bj,c1),2 <i<n,2<j<nfail the predicates i), .

At the very end, we find that the matét , by, ¢1) satisfies
the predicates and therefargis a query solution.

These challenges do not exist in a non-streaming envi-
ronment since XML nodes can be randomly accessed dur-
ing query processing. For example, in the best known poly-
nomial time main memory algorithms for evaluating XPath
queries [16], the whole document is loaded into main mem-
ory before query processing. Since XML nodes can be ran-

a compact form. For example, to proc&3s on the
sample data in figure 1(a), TwigM stor2s nodes to
encoden? pattern matches.

. We propose a streaming XPath evaluation algorithm

called TwigM. Recall that to determine whether a can-
didate is indeed a solution entails finding at least one
pattern match that satisfies all the query predicates.
Rather than computing all the pattern matches in the
search space explicitly from the compact data struc-
ture, and then testing predicate satisfaction, TwigM
prunes the search space as we process the XML stream
by checking predicate satisfaction on a small number
of elements in the data structure. For example, we only
need to check predicate satisfactior2erelements in-
stead of checking? pattern matches to evaluafy.

. We analyze the time complexity of TwigM, which is

polynomial in terms of the size of the data and query.

. We present a detailed performance evaluation of an im-

plementation of TwigM compared with several other
related systems. The results show that our approach
not only has a good theoretical complexity but a good
performance on various practical queries and data sets.

The remainder of the paper is organized as follows. Sec-

domly accessed, predicates can be checked first so that W8an 2 presents the data model and query language. Sec-
do not need to remember the pattern matches. These tecthon 3 gives an overview our XPath streaming evaluation

nigues are not suitable for processing XML streams, where

strategy. TwigM is introduced and analyzed in section 4.

only a single sequential scan is allowed. Furthermore, 3Sgection 5 presents performance results. Section 6 discusse

will be shown in section 5, the algorithms have trouble pro-
cessing large XML files.

Previous XPath streaming algorithms that handle pred-
icates either do not support descendant axis traversal [23,
21], or explicitly store all pattern matches [25, 26]. As-ana
lyzed in [26], the worst case complexity of the algorithms
in [25, 26] isO(|D| x 29! x k), wherek is the number
of different query pattern matches in which an XML node
participates.

As discussed, recording pattern matches by enumerat
ing and storing them explicitly can be expensive. Motivated

related work, and section 7 concludes the paper.

2 Data Model and Query Language

In this paper, XML data is modeled as a stream of
modified SAX events: startElemetig, level, id) and
endElementg, level), wheretag is the tag of the node
being processedevel is level of the node in the corre-
sponding XML tree, anéd is unique identifier of the nodé.
These events are the input to our algorithms.

by [7], we therefore design a stack-based data structure td2€finition 2.1: The current nodes the XML node whose
concisely encode pattern matches. We then propose a novdRd is currently being parsed by the SAX parser. a&tive

XPath streaming algorithm, TwigM, which searches for sat-

2We omit the discussion of attributes for now, however ourlenen-

isfying matches in the compact data structure by pruning thetation supports attributes as well as elements.



nodeis an XML node whose start tag has been processed

&
but end tag has not yet been processed by the SAX parser. ? I = 1) J
| Vida el
an o a 1
Proposition 2.1: At any point in time, the number of active by //J @ |?
nodes is bounded by the depth of the XML tree. n b V2o b Lokl
We focus the discussion on a commonly used subset bn /Il &1 J
of XPath 1.0: X P/.//-=1}, following [25, 24, 17, 32]. o c Vie ¢ |20+
{/.//1} i i i
XP consists of child axis traversal (/), descendant (a)DataD, (b) QueryQ, (c) PathMM, for Qs

axis traversal (//), wildcards (*), branches (or predisatke-
noted as [...]), and name tests.

Following previous work [1, 7], we represent an XPath
query in X P{/.//:%[} as aquery tree For example, the
query@1://ald]//ble]//c searches for alt nodes that are
descendants dfnodes, which in turn have a chitdand an
ancestor, with at least one child. The tree corresponding As discussed earlier, the combination of descendant axis
to Q1 is shown in figure 1(b). The node inQ; is called traversal in queries and the recursive structure of XML data
thereturnnode and is indicated by darkening the node. An can result in an exponential number of pattern matches to
unannotated line between two nodes represents a child axisthe query size for a single query solution. To evaluate
and a line annotated wittirepresents a descendant axis. If queries using polynomial time, we encode matches com-
a node has more than one child or is the return node, therpactly and avoid enumerating all the matches for a solution.
it is called abranching node For example, nodes, b and To achieve the first requirement, we attach a stack to each
¢ are branching nodes ;. We use “XPath query” and machine node to recordactive XML nodesgvhich are solu-
“query tree” interchangeably. tions to the subquery from the machine roottdrhe XML

As discussed in section 1, there are two challenges innodes on a stack are retained only as long as they are ac-
efficiently processing P{/://+[} on XML streams: first,  tive, and therefore by Proposition 2.1 the memory require-
descendant axes in the query combined with the recursivement for a stack is bounded by the document depth. Since
structure of XML data; and second, predicates in the querya tag may occur multiple times in a query, the total memory
combined with the single-scan requirement of stream pro-requirement is bounded by the size of the query times the

Figure 2. Example for PathM

3.1 PathM: x P/.//-*} Query Processing

cessing. Therefore we will start by considering two simple
subsets ofX P{/-//-=0}: X p{/-//.*} which denotes XPath
queries without branching; and P{/:0}, which denotes

XPath queries without descendent axis traversal and wild-

document depth.

To achieve the second requirement, we push an XML
node onto the stack of machine nodef its relationship
with the nodes in the stack afs parent node: satisfies

cards. The techniques used in processing queries in thesthe axis between andwv. Sinceu’s stack stores all active
sub-languages will then be combined in a query processorsolutions for the subquery from the rootitpthe XML node

3 Overview of Query Processing

In this section, we give the intuition of haw P{/+//-*[I}

gueries are evaluated over XML data streams; details of the

algorithms will be given in the next section.
For an XPath query), we build a machinel/ which

takes as input a sequence of SAX events of an XML stream

D and computes a set of node ids as solutiong)of.
The structure ofA/ resembles that of), with data struc-

tures attached to machine nodes to record information abou
We start by describ-

matches(see figure 2(b) and (c)).
ing machines for the simple cases, PathM for queries in
X P1/://-*} and BranchM for queries ik P{/:0}, before
extending them to one fox P{/-//-=[} TwigM.

30ur implementation returns XML fragments instead of node id

pushed onta’s stack is a solution for the subquery from
the root tov. The time to check the push condition for each
XML node is therefore bounded by the number of active
nodes (i.e the document depth, Proposition 2.1) times the
query size.

Example 3.1: Figure 2(c) shows the machind, for the
queryQ- in figure 2(b). A machine node is created for each
guery node and given the label of its corresponding query
node’s tag. For example, machine nades labeleda, v

is labeledb, andvs is labeledc. The machine node built
for the root (return) node in the query is also called the root

{return) node in the machine. Thusis the root ofA; and

v3 is the return node.

A stack is built for each machine node to record informa-
tion about active XML nodes that are solutions to its sub-
query. For example, the stack for records active XML
nodes reachable b/ a, and the stack fov, records active
XML nodes reachable by/a//b. Since active XML nodes



can be distinguished by their levels, the stacks record only

the level of matching active nodes.

The edge between machine nodes is annotated with a
node push condition according to the axis between the cor-

responding query nodes. For example, the parent edge of
is labeled by “¢, 1)”, since the corresponding query node

b has a parent edge of ‘//’. The edge label indicates that an

XML node will be pushed tas’s stack if and only if there
exists a node im's stack such that their level difference is
> 1.

PathM accepts the SAX events of an XML stream and
computes the solutions for the query. Each SAX evant,(
level, id) will be sent to machine nodes whose label is the
same asag or . In Ms'’s execution on the XML treé,
of figure 2(a), the SAX event startElement(, a;) will be
sent tov; since its label ist.

A machine node qualifies for a startElement SAX event
(tag, level, id), if (1) v is the root andevel satisfies its
parent edge label; or (2) is not the root and there exists
an!’ on the stack of’s parent such thdkevel — I’ satisfies
v's parent edge label. This XML node is pushed onto the
qualified nodev’s stack as a solution to the subquery from
the root tow. Continuing with our exampley; is pushed
onwv,’s stack since; is the rootw,’s parent edge is labeled
(>,1), anda;’s level = 1 > 1. Similarly, we push data
nodesas, ..., a, Onvy’s stack, data nodds, ..., b, on
v9’s stack, and data nodes onwvs’s stack. The snapshot of
Msy's state at this point of execution is shown in figure 2(c).
Sincews is the return node, node i is output.

A machine nodewv qualifies for an endElement
event{ag,level) if level is equal to the top node iris stack
(meaning that this is the matching end tag}hen pops its

2]
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d
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(a) DataD; (b) QueryQ@s;
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L: level B: branch match C: candidates

(c) BranchMM; for Q3

Figure 3. Example for BranchM

if and only if they are solutions to the corresponding sub-
guery, rather than pushing all nodes whose tag matches the
label of the stack. Second, to determine if an XML node is a
guery solution, we only need to check its relationship with
nodes in the parent stack of the query return node (poly-
nomial time), rather than enumerating and verifying all the
pattern matches the XML node participates in.

3.2 BranchM: x P/} Query Processing

stack to guarantee that only active nodes remain. For exam-

ple, endElement{ 2n + 1) is sent to machine nodg since
its label isc. Furthermore, the top elementig’s stack is
level 2n + 1 and is equal to thécvel of the endElement
event; we therefore pog’s stack. L]

As an optimization, we do not need to create machine

nodes for “*" interior query nodes. Instead, we record the
level difference of non-*" query nodes through the edge
labels of their corresponding machine nodes.

Observe that in this example, although there afe
pattern matches which qualifg; as a query solution
((as,bj,¢1) wherel < i <n, 1 < j < n), we only store

Another challenge for evaluating XPath queries in a
streaming environment lies in checking predicate satisfac
tion. We focus on this problem in BranchM, which pro-
cesses queries i P/}, The issue is that when a data
node matches a machine node, we may not be able to deter-
mine if it is a solution to the query since the nodes matching
the predicate conditions may not have been seen yet.

We therefore associate with each machine node a set of
possible solutions callecendidates To verify a candidate,

we need to record pattern matches to subqueries and test

predicate satisfaction on them. Since a predicate is an exis

21 nodes. Furthermore, to verify each sub-query solution it tential quantifier which can be satisfied with a single match

is sufficient to check nodes on the parent stack of a qualifie
machine node. For example, to determine thas a query
solution we only need to check nodesusis stack, rather
than enumerating and testing aft query pattern matches
thatc; participates in.

gto each condition, we attach a boolean array cabiethch

matchto each machine node and record whether or not each
of the child conjunctions has found a match in the XML data
rather than recording all the matches.

Example 3.2:Figure 3(c) shows the machiié; for query

Although the stacks used in PathM are similar to those Q3 in figure 3(b). The BranchM machine is different from
proposed in [7], the algorithms to compute query results a PathM machine in three key ways: First, an edge label
are quite different. First, PathM pushes nodes onto a stackin BranchM is always (=,1) since there are only child axes



and no **-nodes; we therefore omit edge labels from the L cC B
figure. Second, at any moment there is at most one active | ; || || FF |
XML node matching a query node; machine nodes therefore > 1) —
record a single match rather than a stack of matches. Third, | 1 | | | | FF |
for each BranchM machine node, we associate the leoé| LCB ———
the match (initialized t®), a set of candidates (initialized
to ()), and the branch match boolean arfyinitialized to [0 || |[FT]
False (F)). \_‘ d

Lo Lo J[Fr]

Now, consider the action df/; on the data in figure 3(a). ' (> 1)

In this example, we are not able to determing ifs a query e O
®vVv; C

solution until we test predicate satisfaction of the patter
L: level B: branch match C: candidates

match(aq, b1, ¢1) for subquery/a/b/c.

As in PathM, when BranchM receives a SAX evefaiy,
level, id) it will send it to the machine nodes whose label
is the same asig. For example, startElement(l, a;) will Figure 4. TwigM Af; for @, in Figure 1
be sent to the machine nodgsince its label is:.

A machine node determines if it qualifies for a 3.3 Putting Them Together in TwigM

startElementiag, level, id) event by comparingevel with ] ) ] ]
the element in its parent node according to the parent edge Having discussed the technical approaches for dealing
condition. as in PathM. Thiwvel of a matched active data  With descendant axis traversal and predicate testing, we no
node is then recorded ib. If the machine node is the return  Put the two tc;g/;?}he[?}in TwigM for evaluating queries in the
node, we addd to its candidate sef’. Continuing the ex-  1anguagex Pt/»//-=Ui over recursive XML streams.

ample above, machine nodequalifies for this eventsince 1 here are three important features of TwigM. First, as
the label ofv; is a andv; isroot. The level information is in BranchM, TwigM tests predicate satisfaction on a given
therefore recorded in,’s L. Similarly, we record the level ~ Pattérn maich using a branch match boolean array in a re-

of b1 (2) invy’s L and the level of:; (3) invs's L, and put cursive fashion to verify a candidate query solution. Sec-
the id of¢; into vs's candidate set. ond, because of the presence of ‘//' and *', TwigM builds

a stack to record active XML node matches for each query
When a machine node receives an endElement( node as in PathM. However, each stack element now con-
level) event, it checks if the event corresponds to the tains the level, candidate set, and branch match array for
recorded data node. For any qualified machine ngdée the matched data node. The stacks compactly encode all
then checks if all the components in its branch mdicare ~ the pattern matches to subqueries that a candidate query
true (T). If so, this branch has found a match to all its solution participates in. Third, since TwigM needs to test
predicates. If is the root, we output its candidate st predicates on multiple pattern matches to verify each eandi
otherwise, we set its parent’s branch match component fordate, it groups pattern matches and eliminates the ones with
v to true, and addv’s candidate set to its parent's candi- failed predicates effectively without enumeration. There
date set. We then reset the qualified machine node’s state tdore TwigM only probes a polynomial number of matches in
(L= -1,C= 0,B=<F,...,F>). a potentially exponential search space and achieves a poly-
nomial time complexity.
Continuing the example above, when endElemersiy(
is sent toM3, it again matchess. Sincevs’s branch match
is trivially true (there are no qualifications on the mataid a
thereforeB is missing forvs in the figure), we set its parent
vo's branch match fop; to 7', addvs's candidate sefc; }
to vy's candidate set, and resefs state. We proceed in a
similar fashion for the other startElement and endElement
events. The snapshot after the endElement event;fis
shown in figure 3(c). Finally, on the endElement event for
a1, machine node; qualifies; since its branch matdh is
all 7, its candidate seftc; } is output as the query solution.
|

Example 3.3:Figure 4 shows the machiné; for query@,
in figure 1(b). There are five nodesid,, vy, v2, v3, v4 and
vy labeleda, b, ¢, d ande, respectively. Each node has the
level difference requirement on its parent edge as in PathM.
Each node also has a stack, which is initially empty. An
element of a stack has the same data structure as the state of
a node in BranchM; it is a triple, representing the matching
XML node’slevel candidate seandbranch match

Now, consider the action ofi/; on the dataD; in
figure 1(a). The startElement processing is similar to
PathM except a triple with level information, candidated an
branch match is pushed onto the stack instead of only level



information. For example, when processing the data node4  Algorithms

a1 with level 1 and iday, since machine node, qualifies
for this event, thetriplelf = 1,C = §,B=< F,F >)is
pushed on’s stack. Similarly, we push corresponding in-
formation for nodess, ..., a,, onwv;’s stack, nodes;, .. .,

b, Onwy’s stack, and; along with its node id as a candidate
onws’s stack.

When the endElement event@fis received byl/;, the
event is sent tws. The top element in v3’s stack has the
same level ag;. Sincen’s branch matclB is trivially all T,
for each element in the stack of's parent {») whose level

4.1 Abstract Machine TwigM

We now formally present TwigM discussed in the previ-
ous section. First we define anP{/.//-* [} queryQ.

Definition 4.1: An X P/.//-=I} query is atre@(V, X, 7,
p, root, ¢, sol), where

o I/ is afinite set of nodes

e X is a finite alphabet of node tags

satisfies the parent edge condition, we set its branch matct 7:V° — {*' } UX is thename functions(n) returns the

for v3 to T', denoting that it has found a match to query child
¢, and upload the candidate sét; } *. In this example, ev-

ery elementiny’s stack satisfies the parent edge condition.

Then we popuvs’s stack. The snapshot at this moment is

!

name ofn, which can be either a tag or
e p:V — {e} UV is theparent function p(n) returns the
parent node ofy

e C:V — {/,//} is theparent edge functign(v) returns

shown in figure 4, where the second component of branchthe label of the incoming edge of

matches fow, has been set té' to denote that the match
for v3 has been found.

When the endElement event figr is received, it matches
the top element in vy’s stack. However, since one com-
ponent of the branch match afis F' (predicatee has not
found a match), we directly pop;’s stack. Similarly, we
process the endElement events for noblgs, . . ., b2 and
startElement events for node. On the endElement event
of e;, a match is now found for the top elemenbf vs’s
stack. Sincen satisfies the parent edge condition with the
top element inv’s stack,b;, we seth;’s branch match for
vs toT and popn. On the endElement event for, since its
branch match is all', we set the branch matches of the el-
ements inv;’s stack (which all satisfy the parent edge label
condition) foruv, to T', upload their candidate sets, and pop
the stack. Finally, on the endElement event dgr since
v1's branch match is all’ and it is the root, its candidate set
{c1} is output as the query result. [

e root € V is the root ofQ)
e sol € V is the return node. ]

TwigM machine is a tuplelW(, n, p, ¢, I, S, 6s,6¢, root,
sol) built from a query@ (V', %, o/, o/, root’, ¢’, sol’)
where
e IV is a set of machine nodes corresponding to nodes in
Q. root andsol are machine nodes corresponding-tot’
andsol’ of @), respectively. Several functions are defined on
machine nodes.

A name functiom returns the label of a machine node.

Each machine node except theot has a parent which
can be retrieved by a parent functipn

Parent edge functiog:V — {=,>} x N on a nodev
returnsv’s parent edge label, which records the level differ-
ence and axis information betweerand its parenp(v) as
the condition on which an XML node should be pushed into
the state ob. The first componentis a function, either™
or “=", depending on the axis between query nedand

As we can see, TwigM uses stacks to compactly encoder(v), and the second component is a positive integer repre-

query pattern matches. In the above exampkepattern
matches §n? elements) to subquery/a//b//c in which
the XML nodec; participates are recorded usigg + 1

senting level difference of betweerandp(v). We say that
an integer satisfies thegparent edge conditioof v if the
function¢(v)[1](1, ¢(v)[2]) returnsT (true).

A child identity functions : V' — N identifies a child

elements in stacks. To verify a candidate query solution, %' - > )
TwigM removes a set of unsatisfied pattern matches by pop_W|th|n its parent by its order, S0 that the match information
ping one element in the stack. For example, since node©f tr_le chllc_j can be recorded in its parent’s branch match.

b, does not satisfy the predicate we pop it, eliminating ® IS the input SAX event startElemertuf, level, id) or

all n matches in whichh,, was participating (@;, b, c1), endElementtag, level) which are described bythe domain

1 < i < n). When multiple satisfying pattern matches exist Of hode tags °, node level, and XML node ids'.

for a query solution, TwigM eliminates duplicate candidate ® S denotes the state associated with machine nodes, and
by taking the union. Therefore TwigM only needs to pro- iS described by a stack functign V' — (I' x {7, F'}* x

cess a polynomial number of elements in the stacks to verify L *)*. In the following we use5' to denote the statgs™ x

a candidate query solution instead of computing all the pat- {7 £}* x T*)*. {(v) returns a stack of active XML nodes
tern matches. In the above example, TwigM proce&ses that are solutions to the subquery from the query root to

elements in the stacks rather thahpattern matches.

5We assume that the alphabet of node tags in the query is the aam
that of the XML data, and add for empty id in the last component of
endElement events.

4The stacks we use allow examining all elements.



Algorithm 1 Functions),, . for TwigM
Start Element Function d,
1: forall v such tha{(n(v) = a)V(n(v) =* ))A((v = root) A
C()[1](L, C(v)[2]) v (v! = root) A e € £(p(v)) (¢ (v)[1](1 -
e[1],¢(v)[2])) do

20 push(E(w), <, < F,...F >,0>);
3: if (v = sol) then

4: top(§(v))[3] = top(&(v))[3] U {id};
5. endif

6: end for

End Element Function é.
1: for all v such that((n(v)
(top(§(v))[1] =1) do

2. if (Vi((top(£())[2][¢] = T)) then

3 if (v = root) then

4 ouput(top(€(v))[3]);

5: else

6: for all e such thate € &(p(v)) A C(v)[1](1 —
e[1], ¢(v)[2]) do

7 e[2][B(v)] = T

8: e[3] = e[3] U top(£(v))[3];

9: end for

10: end if

11:  endif

12: pop(£(v))

13: end for

e Parent functiorp, parent edge functioq, child identity
functiong, root:

To construct andp, for two query node®] andv), such
thatv] is an ancestor of}, with no intervening non *-nodes
(that is, the path betweer{ andv is comprised of all *-
nodes), let ¢ be the number of *-nodes betwegmndv},.
Set f/(v]) to be the parent of’(v5), and set the second
component of the edge label between them in TwigM to be
¢+ 1. If one of the edges betweef andv; in @ is labeled
‘I, then set the first component of the edgetpotherwise
set it to=.

We set theroot as the machine node without parent. For
each child: of a machine node, we set3(c) to be the order
of c within v.

e Stack functior¢

For each node € V, we build a stack and initialize it to be
empty.

e Start element functioti,

ds : I xS x{=2>} xN— (V- S) computes the next
state of node according to input startElement SAX events,
current state of’s parent ands’s parent edge label.

A startElementq, [, id) event invokes thé, function
on each qualified machine node A nodew is qualified
if: (1) n(v) = aorn(w) ="*; (2) v is the root and
satisfies the parent edge condition; or (3} not the root
and there exists an elemerih the stack of)'s parentwhose
level is!’ and [ — I’ satisfiesv’s parent edge condition. If

the corresponding query node. For a node in a stack, wey is qualified, then we pusk I,< F,...F >, > onto

record its level, branch match and candidate set informatio
Branch match records for each child©ofvhether or not a

v’s stack. Furthermore, ib is sol then we addd to v’s
candidate set, is formally defined in algorithm 1.

match on data has been found. The candidate set records End element functios,

the set of possible solutions to be verified with respect to
e §, and . are transition functions corresponding to

de : I xS x{=>} xN— (V- S) computes the next
state of node and that of its parent according to the input

startElement and endElement events, respectively. TheendElement SAX events;'s current state, and’s parent
functions compute the next state of a machine node accordedge label.

ing to its current state and the input SAX event.
4.2 Machine Construction

Next, let us describe how to construct a TwigM for a
given queryQ:
e NodesV, sol, name function :
For each query node’ in VV/ whose name is an XML
tag (y(v') € %), we build a machine node and set
n(v) = n/(v'); for each branching or leaf query node whose
label is *’, we build a machine node and set)(v) ="
All v thus constructed comprigé. Let f and f’ represent

An endElement event( [) invokes thej, function on
every gualified machine node A nodewv is qualifiedif
n(v) = a orn(v) ="', and the level of the top element of
v's stack isl.

Letn be the top element afs stack. Ifv is root andn’s
branch match is all’, we can determine that there is a pat-
tern match for the query, therefoués candidates are output
as query solutions. I is notroot andn’s branch match
is all T, then for every element’ in v’s parent stack, such
that the level difference of andn’ satisfiess’s parent edge
label condition, we know that is a match to a query child
of n’’s, and therefore set the componentah n”’s branch

the mapping functions between query nodes and machinenatch to7". Furthermore, we load the candidatesidb n’

nodes,f’(v') = v andf(v) =v'. Setsol = f'(sol’).
Note that we could create a machine nodedfachquery

to be verified with respect ta’’s subtree query. Finally, we
popv’s stack. Note that if node’s branch match contains

node. However, we do not need to build machine nodes for ', we not only discardh, but all the pattern matchespar-

interior **’ nodes since we capture them in the level differ-
ence between nodes, as described next.

ticipates in; therefore we can remove failed pattern matche
without having to enumerate themy. is formally defined in



Algorithm 1. Name Size | Node Number| Tag Number| Depth
Book 9MB 149K 12 20

4.3 Correctness and Complexity Analysis Benchmark| 34MB 616K 77 12
Protein 75MB 2277K 66 7

Theorem 4.1: TwigM correctly evaluates queries. [ Figure 5. Dataset Description

To prove the theorem, we first give several definitions.
. . . BookDataset

Definition 4.2: Given a node in a query tre€), we name O. | Isectionftitie

the subquery fromoot to v without branches therefix sub- Q. | lisection/ffigure

queryof v. If we cut off all the branches of the nodes be- | g, | /title

tween root and, excludingv, the remainder of) is called Q. | I!/book//section//title

thesuffix subquergf v. [ Qs | /Isection[./figure]/title

: . Qs | /lsection[./section]/title
For example,//a//b is the prefix subquery of node Or | Ibooki/section[ fitle]/figure

with respect tay in figure 1(b),//a//ble]//cis the suffix Qs | /Isection/figure/image[@source="default CDATA24553]
subquery ob, however,//a//b//cis nota suffix subquery | o, | jisection[./figurelimage/@source="defaultCDATA3 it

of b._ _ Q10 | //section[.//section]/figure/*
Since each query node whose label is not ‘*” has a corre-[ proteinDataset

sponding machine node, we blur machine nodes and query Q, | /ProteinDatabase//protein/name
nodes in the following. Q2 | /ProteinDatabase/ProteinEntry/*/*/*/author

o . Q3 /IProteinEntry/reference/refinfo/xrefs/xref/db
Proposition 4.2: On the startElement event for a node: Q4 /IProteinEntry//reference//refinfo//xrefs//xref//db

is pushed onto a machine nods stack if and only ifa is Qs | llorganism[./source]
an active node and a solution to the prefix subqueny. of Qs | lIProteinEntry[./reference]/@id
Proof Sketch: Proof by induction on the levels of the ma- | o, | //ProteinEntry//refinfo[./volume]//author
chine nodes in TwigM starting from the root. Accordingto | Qs | //ProteinEntry/reference/refinfol./year="1988")/éit|
the construction of the parent edge functigrit holds im- Qo | /IProteinEntry[.//refinfo[./title, ./citation/@typel®id
mediately for the root. Assume the proposition holds for a | Q.o | //ProteinEntry/*[./createdlate = “10-Sep-1999"]/uid
machine node with levél An XML nodea is pushed onto
the stack of node with levell + 1, if and only if there is a Figure 6. Query Sets
node inv’s parent’s stack, and their level difference satisfies
v's parent edge condition. Therefore the proposition holds. 5 Experimental Evaluation
|

Proposition 4.3: On an endElement event for a data node e have implemented TwigM in C++ and demonstrated
a, which matches the top nodein the stack of a machine it in [11]. The SAX parser used is Expat [12]. In this sec-
nodew, we set the branch match ofto the nodes in’s tion, we present a detailed performance study of this imple-
parent’s stack if and only if each candidate:gé a soluton ~ Mmentation.

to the suffix subquery aof. )

Proof Sketch: Proof by induction on the levels of machine °-1 EXxperiment Setup

nodes in TwigM starting from leaves. The base case holds

according to proposition 4.2. - Environment. All experiments were conducted on a Pen-
. , . tium 111 1.5GHz machine with 512MB memory, running the
Theorem 4.1 s a special case of proposition 4.3. Redhat 9 distribution of GNU/ Linux(kernel 2.4.20-8). All
Theorem 4.4: The time complexity of TwigM iO((|Q| + experiments were repeated 10 times and the average pro-
RB)|Q| |DJ), whereR is the depth of the XML tree. cessing time was calculated disregarding the maximum and

Proof Sketch: The polynomial time complexity results minimum values.

from three key features of TwigM. First we use stacks to Datasets.We conducted experiments on three datasets. The

store an exponential number of pattern matches compactlyfirstis a synthetic dataset generated by IBM’s XML Genera-

Second, before we push a node onto a stack, we check itgor [18], which takes a DTD and a set of parameters as input.

relationship with the nodes in its parent stack, and theeefo We use theBookDTD from the XQuery use cases [30] as

guarantee that the nodes in a stack are solutions to the prethe input DTD. We apply the default settings of XML Gen-

fix subquery. Third, for predicates, we only use a boolean erator for all the parameters except fsumberLeveland

to record its satisfaction. (] MaxRepeatsNumberLeveldounds the maximum depth of
All the detailed proofs can be found in [10]. the XML document generated and is set to MaxRepeats
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determines the maximum number of times an element canchild axis or an attribute, with an optional value test. The
repeat in its parent and is set to 9. The second is a benchrelease versions of other XML query streaming processors
mark data set generated by XMark [31] conforming to the such as SPEX [24], XSM [23],XAOS [6], TurboXPath [20]
default auction DTD. The third one is a real dataset from and BEA/XQRL [14] are not yet publically available. We
the International Protein Sequence Database [15]. Featurealso compare with two non-streaming XML query proces-
of the datasets are shown in figure 5. sors:Galax(release 0.3.5) [28] is a comprehensive imple-

Queries. We tested 10 queries on thgook and pro- mentation O.f Xngry 1.0.XMLTaskForce(reIeasg 2003-
tein datasets, as listed in figure 60, to Q, belong to 01-30) [16] is a main-memory, nearly complete implemen-
XPU//#}, Qs to Qs belong toX PU/+//:13, but restrict tation of the XPath 1 recommendation, and the only such

the path expressions in predicates to be either an attribute®yStem With polynomial time complexity in the literature.

or a single child axis. Qs has a value test as predicate ] ]

and produces results of small size§y and Q1o belong 5.2 Query Processing Time

to X P{/.//-=[} and allow multiple predicates to apply to a

single node, path expressionsinP{/-//-*[} to be present First we compare the processing time of TwigM
in predicates, predicates to be nested, and *'s to appeamwith XMLTK, XSQ, Galax and XMLTaskForcé. Fig-
anywhere. For the benchmark dataset, we tested the benchires 7(a),(b) and (c) report the query execution time for the
mark queries provided by XMark [31] which only contain Book, Benchmarkand Proteindatasets respectively. As we
“", “II", “*" and predicates. We use the original query can see, foiX P1/://»*} XMLTK has the best performance;
names for the benchmark queries. for other queries, TwigM is the fastest.

The performance of TwigM and XMLTK is stable, and
does not degrade on complex queries. The performance of
the other systems degrades due to enumerating multiple pat-
tern matches to a subquery for a query result. For example,

Systems. We compare TwigM with several XML query
processing systemXMLTK (version 1.01) [3] is a stream-
ing XPath X P{/-//-*} processor using a DFA (Determin-
istic Finite Automaton) constructed lazilyXSQ (version

1.0) [25]is a _Streaming XPat'XP{/.’//’H} processor using 5The processing time reported here is normalized accordirgnch-
transducers, in which a predicate is restricted to be asingl mark[8, 2]
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Figure 9. Query Execution Time as Book Data Size Increases

@3 and @4 on Book have the same set of nodes as query 300

result, while each result @4 has multiple pattern matches o

to / /book/ / section sincesectiomodes are nested. TwigM g

and XMLTK use the same amount of processing time for o /

both queries, the processing time of XMLTaskForcebn %

increases a little compared €, while the performance of P G G G S

XSQ and Galax degrades significantly. TY seon
As we can see, only TwigM is able to evaluate all the test L [+Twiguoecdax © XWiTaskForce] |

queries on the three datasets. Its performance is good and he system reports errors for missing points. Systems teatat shown

stable: it performs well on recursive and non-recursivadat in the legend do not support this query.

simple as well as complex queries. When multiple pattern

matches are present (e.g. theokdataset), the performance

advantage of TwigM is substantial. Although XMLTK out-

performs TwigM on@; to Q4, the difference between their

performance is small compared to the difference between

TWigM’S performance and that of XSQ and Galax. For 5.4 Scalabmty of Query Processing Time

queries containing multiple *’, XMLTK needs to build a

DFA with an exponential number of states in the worst case

and its performance degrades significantly. We also measure the scalability of the systems as data
size increases.

To test the scalability as the data size increases, we du-
plicated theBook dataset between 2 and 6 times. Figure 9

Next we compare the memory usage of TwigM with renqts the processing time on increasing sizes of XML data
XMLTK, XSQ, Galax and XMLTaskForce. Process mem- ., queries of different types?;, Qs andQy, respectively.

ory usage is measured using Redhat's system monitor. Therhe performance of other queries are similar and are omit-
total memory usage of XSQ includes memory consumedeq The results show that as the file size increases the exe-

by the Java virtual machine. Figures 8(a), (b) and (C) re- ction time of TwigM increases very slowly for both simple
port the memory usage for ttlBook, Benchmarkand Pro- and complex queries.

tein datasets, respectively. There are several observations.

First, the streaming processors, TwigM, XMLTK and XSQ,

use substantially less memory than the non-streaming pro5,5 Scalability of Memory Usage

cessors, Galax and XMLTaskForce, which require memory

much larger than the data size. Second, as the sizes of the

datasets change from 9MBg¢oK) to 34MB(Benchmark Figure 10 shows the memory usage of different systems
to 75MB(Protein, the memory consumption of TwigM, as thebookdata size increases. As we can see, when the
XMLTK and XSQ remains roughly the same; XMLTask- data size increases frahd/ B to 54 M B, the memory usage
Force runs out of memory faProtein Third, TwigM and of the streaming processors (TwigM, XMLTK and XSQ)
XMLTK use as little as IMB memory for all queries in all is constant, while the memory consumption of Galax and
datasets. XMLTaskForce increases much faster than the data size.

Figure 10. Memory Usage for Q.o as Book
Data Size Increases

5.3 Memory Usage
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5.6 Overall Results BEA/XQRL targets processing general XQuery queries on
small XML messages (a few 100KB in size), while our goal
From the experiments, we can see that TwigM has sev-is to process a commonly used subset of XPath queries ef-
eral benefits: ficiently on large XML streams (megabytes and gigabytes).
We believe that these two systems demonstrate the trade-
offs between query language expressiveness and system
simplicity and efficiency.
e TwigM has polynomial time complexity in the size of [29] discusses how to exploit schema information to op-

the data and query, which is verified in the experiment. timize XQuery evaluation on XML streams. [22] proposes
XQuery rewriting techniques according to the dependency

e When multiple pattern matches are present, the per-relationship between clauses in an XQuery for streaming
formance of TwigM is substantially better than other process.
systems, as shown in timokdataset. A number of XPath query filtering systems have been
proposed. Filtering systems focus on determining whether
or not an incoming data stream matches a large number
of queries. YFilter [13] uses a single automaton to evalu-
ate common expressions of queries to improve the perfor-
° TngM is suitable for processing data streams with mance. XTrie [9] uses a trie structure instead of a flat ta-
small memory usage. The memory consumption of ble to index XPath queries based on common substrings.
TwigM remains almost constant (1MB) as the data and XPush [17] lazily constructs a single deterministic push-
query sizes change in the experiments. We have alsgdown automaton to filter XPath queries with predicates. [4]
tested benchmark queries over data that is over 1GBgives the lower bounds of XPath filter algorithms.
in size, and found that the memory usage remains at There are many papers on non-streaming XPath query

e TwigM algorithm is practically efficient with guaran-
teed polynomial time complexity.

e For all the datasets in the experiments, TwigM is the
most efficient query engine that handles XPath with
child, descendant axes and predicates.

1MB. processing. [16, 27] propose polynomial main memory al-
gorithms for answering full XPath queries by randomly ac-
6 Related Work cessing an XML document. Galax [28] is a full-fledged

XQuery query engine based on random accesses on a DOM
dmodel. [32, 1, 7] process tree pattern queries over a daabas
system for XML data. Although [1, 7] also use a stack-
based data structure, they focus on a different processing
‘environment than ours, and therefore have different algo-
Fithms. First, our algorithm takes a streaming XML doc-
ument as input, while the input of [1, 7] is relations of
XML node labels{DoclID, StartPos, EndPos, Leyelith
optional indices. Second, our algorithm produces resuts i
crementally, while [1, 7] use sort and merge-join, which are
blocking operations; they therefore cannot produce result
incrementally. Furthermore, we focus on XPath query pro-
cessing which returns the nodes matching the return node

Several XPath streaming engines have been propose
XSQ [25], SPEX [24], and XSM [23] use a hierarchi-
cal arrangement of transducers augmented with a buffer.
XSQ processes XPath queries with child and descendan
axes, and predicates with the restriction that predicates d
not contain axes. SPEX processes regular expression
which are similar to the XPath queries of XSQ. XSM and
FluX [21] do not support descendant axis traversal. [5] an-
alyzes the buffer requirement for evaluating XPath queries
without wildcards on XML streams. In contrast, TwigM is
a polynomial algorithm for XPath queries containing child

gzlz,sdescendant axis, wildcards and (unrestricted) predi in the query; therefore it is possible to achieve a polynémia

. time complexity. On the other hand, the queries handled b
XAOS [6] is an XPath processor that supports reverse ! plexty quen y

: ; Jl, 7] return all the pattern matches.
axes (parent and ancestor) using a matching structure t
store XML nodes. XAOS produces query results by travers- .
ing the matching structure at the end of the stream. In con-/  Conclusions
trast, TwigM can produce results incrementally.

[20] discusses how to handle child, descendant axes, We have discussed reasons for the potentially exponen-
predicates and wildcards in XQuery using TurboXPath. tial time complexity of existing XPath streaming query pro-
When a recursive data node matching a query node is metcessors: computing all the pattern matches for each so-
an independent thread of control is generated. Therefordution of queries containing both predicates and descen-
the pattern matches to the query are independently recordedant axis traversal on recursive data. Using a compact
and manipulated explicitly. data structure to encode pattern matches, we gave a poly-

BEA/XQRL [14] is a full implementation of XQuery. nomial time algorithm to evaluate a large class of XPath
The design goal of BEA/XQRL is different from our work: queries,X P{/-//-%[}  over streaming XML data. The al-
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gorithm, TwigM, achieves its efficiency by searching for [13] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fleer.

results lazily without enumerating all the pattern matches

A detailed experimental study shows that our approach not
only has a good theoretical complexity bounds but also [14]
works well in practice on a wide variety of queries and
datasets.
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