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Simple eigenvalue tests are given to ascertain that a given real 4X 4 matrix 
transforms the four-vector of Stokes parameters of a beam of light into the 
four-vector of Stokes parameters of another beam of light, and to determine 
whether a given 4X4 matrix is a weighted sum of pure Mueller matrices. The 
latter result is derived for matrices satisfying a certain symmetry condition. To 
derive these results indefinite inner products are applied. 

I. INTRODUCTION 

The intensity and the state of polarization of a (partially) polarized beam of light are 
completely determined by the four Stokes parameters I, Q U, and K The Stokes parameters 
form the components of a real four-vector I= {1,Q, U, v), called the Stokes vector,’ which 
satisfies the Stokes criterion, i.e., we have 

I>(@+ u2+ v2)1’2, (1) 

so that the degree of polarization c 

p= @+ u2+ P)1’2/1<1. (2) 

For an introduction of Stokes parameters we refer to Refs. 2-4. 
In physics one encounters a plethora of real 4x4 matrices M that represent a linear 

transformation of (the Stokes parameters of) a beam of light into (the Stokes parameters of) 
another beam of light. Such matrices are called Mueller matrices. In order that a Mueller 
matrix M be physically meaningful, it must have the following necessary property: For every 
column vector Ic={lc,QO,UO,V,-,} satisfying the inequality 

the product vector I=MI, satisfies Eq. (1). If this holds M is said to satisfy the Stokes 
criterion. 

In reality, Mueller matrices may satisfy more restrictions than the Stokes criterion only. 
They are usually derived as the averages of so-called pure Mueller matrices, which describe the 
transformation of the four-vector of Stokes parameters of an incident beam of strictly mono- 
chromatic light into the four-vector of Stokes parameters of an outgoing beam of light if the 
corresponding complex electric vectors are transformed into each other by a complex 2X2 
matrix called the Jones matrix.3”‘6 More precisely, they are usually derived in the form 

N 

M= c c&fJi, 
i=l 

(4) 
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where cl ,...,cN)O and MJ~ is the pure Mueller matrix corresponding to the Jones matrix Ji. The 

connection between MJ and J is given in, e.g., Sec. 5.14 of Ref. 3. In this article the term 
“Mueller matrix” will pertain to a matrix of the form (4). 

The first major purpose of this article is to derive necessary and sufficient conditions for a 
real 4 X 4 matrix M to satisfy the Stokes criterion in terms of the eigenvalue structure of M. The 
problem of tinding necessary and sufficient conditions for M to satisfy the Stokes criterion has 
been studied by Konovalov,7 Van der Mee and Hovenier,’ and Nagirner.’ According to Refs. 
7-9, it is sufficient to prove that a real 4x4 matrix M maps all real vectors g= { l,q,u,u} 
satisfying 

q2+u2+vz=1 

into vectors I = {l,Q, U, v) satisfying Eq. ( 1) . If we introduce 

(5) 

G=diag(l,-1,-1,-l) (6) 

and the real symmetric matrix 

N=MGM, (7) 

where M denotes the matrix transpose of M, then M satisfies the Stokes criterion if and only 
if 

~llGmf122+~132+~14 1 2 l/2 
(8) 

and 

D(q,u,v)=N,1+2N,2q+2N13u+2N14v+N22Q2+N33u2+N44U2+2N23qu+2N24qv+2N34uU 
(9) 

has a non-negative minimum if {q,u,v) satisfies the constraint (5). For the special real block- 
diagonal matrices 

F= (10) 

which occur, e.g., as scattering matrices of certain particles,3 Mueller matrices of certain 
optical devices,5 and reflection matrices of one-dimensionally rough surfaces,1o the minimum of 
D(q,u,v) under the constraint (5) can be computed analytically to find necessary and sufficient 
conditions for F to satisfy the Stokes criterion.7’9 In Ref. 8 a diagonalization method was used 
to find necessary and sufficient conditions for F to satisfy the Stokes criterion. 

A different approach to chiding conditions for a real matrix to satisfy the Stokes criterion 
has been suggested by Nagirner’ and Xing:” a diagonalization of the given real matrix M, 
followed by a simple comparison test of its eigenvalues. It has been applied to matrices of the 
form ( 10) in Refs. 8, 9. Said in simple terms, if one were to factorize M in the form 

(11) 

where the exponent - 1 denotes the matrix inverse and Ui and U2 are real 4x4 matrices 
satisfying 
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UGU=G, [U]ll>O, (12) 

then M satisfies the Stokes criterion if and only if the diagonal matrix on the right-hand side 
of Eq. ( 11) does, and the latter is true if and only if ;lo>max( 1 ill 1, 1 A2 1, I A3 I ). Studying only 
factorizations of M where U, = U2, Nagimer’ either had to restrict himself to the class of 
matrices M for which GM is real symmetric, or to state a similar criterion in terms of the 
eigenvalues of GaGM. Neither author indicates whether the diagonalization ( 11) is possible 
and, if this is the case, how it is to be obtained. We note that the real matrices U satisfying Eq. 
( 12) form the orthochronous subgroup of the Lorentz group.i2 

At this point, we devote a few lines to the physical significance of G-symmetric matrices. 
If M is the scattering matrix of an assembly consisting of one kind of particles where for each 
particle in one position a particle in the reciprocal position is found, diag ( 1, 1, - 1,l) M is real 
symmetric.3 Thus diag( 1, - 1,1, - 1 )M becomes real symmetric on premultiplication by G. 
Since a matrix M satisfies the Stokes criterion whenever diag ( 1, - 1, - 1, 1 > M does, the class of 
real matrices M such that GM is real symmetric is physically relevant. 

The second major purpose of this article is to derive necessary and sufficient conditions for 
a real 4X4 matrix to be a Mueller matrix. Such necessary and sufficient conditions have 
already been given by Cloude, 13*14 who transformed a given real 4X4 matrix M into a Her- 
mitian 4X4 matrix T, the so-called coherency matrix, and showed M to be a Mueller matrix 
if and only if all of the eigenvalues of T are non-negative. From the eigenvalues ;li and an 
orthonormal basis {kf’ ,ki”,kp’ ,k$“) of corresponding eigenvectors of T one finds 

4 
M= C aiMJi, 

i=l 

where for i= 1,2,3,4 

Ji= 

6’) + k;i) 
kf)+ik$i) 

(13) 

(14) 

We present details on the coherency matrix in the Appendix. In this article we try to find 
necessary and sufficient conditions in terms of the eigenvalue structure of M. 

Conditions for a real 4X4 matrix to be a (pure) Mueller matrix have been given by many 
authors, “-‘O but not all of these authors have specified all of their conditions, some have given 
necessary conditions and others sufficient conditions. In Refs. 13, 15, 17, and 20 necessary and 
sufficient conditions were given concerning pure Mueller matrices and in Refs. 13 and 14 
concerning general Mueller matrices. In Refs. 11 and 12 the importance of the Lorentz group 
was stressed. 

In the present article, we answer both questions asked about the Stokes criterion: A 
diagonalization of the form ( 11) is not always possible, but, if it is, a procedure is given to find 
it. If it is not possible, a different “normal form” is found that also allows one to reduce the 
verification of the Stokes criterion to an eigenvalue comparison test. To do the job, we apply the 
theory of matrices real symmetric with respect to an indefinite scalar product.2’*22 In fact, we 
introduce the indefinite scalar product 

where Ij=~Ij ,Q Uj, Vi> with j = 1,2 and the asterisk denotes complex conjugation. Then, 
!’ 

obviously, M satdies the Stokes criterion if ljkII,MI]>O and [MI],>0 for every real vector I 
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with p,Il>O and a,>O. A complex indefinite scalar product is defined, because the theory of 
indefinite scalar products is formulated for complex matrices, in spite of the fact that the Stokes 
parameters are always real. 

If M is a real 4x4 matrix such that GM is symmetric, the above normal form of M can 
be used to lind necessary and sufficient conditions for M to be a Mueller matrix. More pre- 
cisely, we lirst prove that all real 4X4 matrices satisfying Eq. ( 12) and det U= + 1 are pure 
Mueller matrices, which reduces the problem to tackling the normal form of M. Using 
Cloude’s coherency matrix T, we easily find necessary and sufficient conditions for M to be a 
Mueller matrix in terms of the eigenvalue structure of M. 

Throughout the article, CO~(~~,~,,...,~~-~) denotes the m Xm matrix whose columns are 
the m-vectors go ,..., &ml. 

II. REDUCTION TO NORMAL FORM 

The four-dimensional vector space with indefinite scalar product ( 15) is in fact the usual 
Minkowski space, possibly extended to deal with complex vectors. Following the terminology 
of Refs. 21, 22, a vector I is called positive if [I,Il > 0, negutiue if [I,11 <O, non-negative if 
[I,I])O, nonpositive if [I,I’J(O, and neutral if m,I] =O. Linear subspaces consisting of only 
non-negative vectors have dimension of at most one and linear subspaces consisting of only 
nonpositive vectors have dimension of at most three Also, if &J1=0 for every vector J, then 
I=O. 

A real 4X4 matrix M is called G symmetric if GM is real symmetric, i.e., if 

&&GMG. (16) 

As known, a real symmetric matrix has only real eigenvalues, is diagonalizable, and can in fact 
be diagonalized by a real orthogonal matrix of determinant 1. These properties are lost for 
G-symmetric matrices: They may have complex conjugate pairs of eigenvalues and may not be 
diagonalizable. Instead, it is possible to find a real 4X4 matrix U such that GU is orthogonal 
and U-‘MU has a special form.22 

The G-orthogonal matrices, i.e., the matrices U such that UGU=G, form the so-called 
Lorentz gro~p.~~ Any such matrix Uc can be written in one of the forms Uo=U, Uo= -U, 
U,=GU or Uo= -GU, where 

UGU=G, detU=+l, [Ulll>O. (17) 

Denoting by 3 the set of all real 4 X4 matrices U satisfying ( 17), we seek a normal form of 
G-symmetric matrices where the diagonalizing transformation UE 9. This requires the use of 
the Jordan normal form of a matrix. 

Any n Xn matrix B can be brought to the Jordan normal form, i.e., there exists an 
invertible matrix S such that 

(18) 

where ;1 i,...,IZ,are the eigenvalues of B, the mXm matrix J,(A) is defined by [J,(il)],=A6,i 
+S i+ I,j if m)2, and by (A) if m = 1. The columns of S are composed of the so-called Jordan 
chains of eigenvectors and generalized eigenvectors of B. That is, corresponding to the Jordan 
block J,,,(A) we have the “chain” of vectors ~o,...,&,-l with go # 0 satisfying 
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(19) 

BS1 =G, +&,, 

For m= 1 we only have the last equation to deal with. 
THEOREM 2.1: Let B be a G-symmetric matrix Then we have the following options: 
(I) B has the four real eigenvalues Azo, Al, A21 and A3 with the corresponding positive 

eigenvector go and negative eigenvectors gl, g2, and g3. We may normalize the eigenvectors in 
such a way that the matrix U=coZ(So,~l,~2,,~3)~~. 

(2) B has the real eigenvalues A, y and v but in not diagonalizable. The eigenvectors q 
corresponding to p and 6 corresponding to v are negative, whereas to the double eigenvalue A 
there corresponds one Jordan block of size 2 with corresponding Jordan chain <go,g,). We may 
choose the eigenvectors and generalized eigenvectors and the real constants c and d in such a way 
that the matrix U=c~Z(~~+c~~,~~+d~~,r),~)~~. 

(3) B has the real eigenvalues A and p but is not diagonalizable. The eigenvector q corre- 
sponding to ~1 is negative, whereas to the tn’ple eigenvalue il there corresponds one Jordan block 
of size 3 with corresponding Jordan chain (go,gl ,g2). W e may choose the eigenvectors and 
generalized eigenvectors and the constants a, 6, c, and d in such a way that the matrix U 
= coIG2 + agl + c&,(51 + bgo)/ ,6,g2 + ag1 + dgo,q) E Yfor some a<O. It ispossible 
to take a=b. 

(4) B has the two simple complex conjugate eigenvalues x + iy and the two real eigenvalues 
p and v. The eigenvectors E& pertaining to x + iy are neutral, and the eigenvectors q pertaining 
to p and cpertaining to v are negative. One may choose the eigenvectors and a complex constant 
c in such a way that the matrix U=coZ~(c~++c*~~)(i/2)(c~+-c*~~),~,~,LJ~3’. 

This theorem is easily derived by people familiar with the results of Refs. 21, 22. However, 
we seek a proof in terms of elementary matrix algebra aimed at a nonspecialist in indefinite 
inner product spaces and we are also interested in the explicit form of U. Hence some elabo- 
ration follows. 

Pro03 In the first case we simply normalize the eigenvectors such that 

L%,~J = C&,0- l)&,,, r,s=O,W,3. (20) 

Replacing some & by -&, we may choose them in such a way that Eo]i > 0 and the matrix 
~=~&$&,&,&3) E/i?* 

In the second case we easily verify the following: 

[ml co, km co, [%a =o, 

Koo,~ol =Q [~0‘0,~11#01 
(21) 

Koo,Bl= E19rll= Ko,Sl= K,,51 =o, 
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We then normalize q and c to get [q,q]=[Rc] = - 1, w h ere one may still change the signs of 
q and c. We then define ~={l-~i,~~])/2~~,~J and d= -{1+[51,~l])/2~o,~1] and check 
that ~I+c~~,~~+c~J=L &+dS,,&+d~J=--L ad [51+~6~,g,+dgJ=O. Replacing 11 by 
-q, S by -LT, and (&,gi) by (-&,-fi) if necessary, the matrix U=M~I+~O,~I 

+dgo,q,S) ~2. 
In the third case we easily verify the following: 

[q-,31 <Q [%gol= [s&l = [%521 =a 

[~ob,~ol= [SO9Sll =Q [519511= [go‘o,g21 <Q (22) 

BS2=%2+S19 BS1=@1+50, J%o=Go- 

We may normalize q to get [q,q]= - 1, where one may still change the sign of q. Now let us 

seek real constants a, b, c, and d such that 

[&+b~o,S2+a~~+c&d = &+bSo&+aSl+&l =O, 

(23) 

&+bS&+bhJ =a. 

Using Eo,&l=&,kT~l=~, [51&l=!% and E2,&j = y with a < 0 and /3, y real, we get the 
equations 

/!I+ (a+b)a=O, y+2aS+(c+d+a2)a=0, 

y+kS+ (2c+a2)a= 1, (24) 

y+2a#3+(2c+a2)a=1, y+2@+(2d+a2)a=-1. 

We can now find a, b, c, and d, while c-d= l/a. Changing the signs of some of the eigen- 
vectors and generalized eigenvectors if necessary, we find the matrix U = colg2 + agl 

+ cgc, (gi + bg,)/ ,&,g2 + agl + dgo,q) E 9. It is easy to see that a, 6, c, and d can be found 
in such a way that a = b. 

In the fourth case the eigenvectors and generalized eigenvectors are easily found to satisfy 

[g+ &+I = [&,&I =o, g+ &-I = [5- ,5+1*+0, 

[q,q] = [g,gl= -1, [q,ql <OS K951 <a [%a =a (25) 

E* PII = K* SC1 =Q 

where Bg, = (x~&)g, . By normalization we get [q,q] = [&Q = - 1, where one may still 
change the signs of q and 5. Now let c be a complex constant such that czg+ J-1 = 2. Then, 
changing the signs of (g+ ,g- ), q, and 6 if necessary, the matrix U=col(i( cg, +c*g- >, 
(i/2)(cS+-c*5-),q,S)E~. n 

J. Math. Phys., Vol. 34, No. 11, November 1993 

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



5076 C. V. M. van der Mee: Eigenvalue criterion for polarization matrices 

If B is G symmetric and there is a Jordan block of size 2 corresponding to the real 
eigenvalue A, then two situations occur. Indeed, if (go,gl) is a Jordan chain corresponding to 
this eigenvalue, then this Jordan chain may be replaced by (cgo,cgi +cdgo) for any pair of 
complex constants c and d where c # 0. Since 

(26) 

the sign of the nonzero real number [50,El] is independent of the choice of the Jordan chain 
(go,gl). We then call the Jordan block a block of positive or negative sign22 if go,cl] is positive 
or negative, respectively. Replacing B with U- ‘BU for some UE 9 does not change the sign 
of any Jordan block of size 2. Thus the sign of a Jordan block of size 2 is an invariant of the 
G-symmetric matrix B. 

Let us compute U- ‘BU in the four cases described by Theorem 2.1. Then we get the 
following: 

( 1) If B is diagonalizable with four real eigenvalues, we get 

(27) 

(2) If B has a Jordan block of size 2 at the real eigenvalue il and two more real eigenvalues 
p and v, then 

(28) 

where E= [so,gl]. Note that in Eq. (28) the sign of the Jordan block of size 2 is exactly the sign 
of e, since e=go,gl]. 

(3) If B has a Jordan block of size 3 at the real eigenvalue A and one more real eigenvalue 
p, then, putting s=(a-b)a and E = J-(r 

a+s E -6 0 

0 0 0 p 

(29) 

If a=b, we get 6=0 in Eq. (29). 
(4) If B has the two complex conjugate eigenvalues x~tiy and the two real eigenvalues ,u 

and v, then 

(30) 

III. THE STOKES CRITERION 

In this section, Eqs. (27)-( 30) are employed to 8nd necessary and sufficient conditions for 
a real 4X4 matrix M to satisfy the Stokes criterion. If M is G symmetric, these conditions will 
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be formulated directly in terms of the eigenvalues of M. On the other hand, if M is a general 
real 4X4 matrix, such conditions will be stated in terms of the matrix A=G%GM. 

THEOREM 3.1: Let M be a real G-symmetric matrix. Then M satisfies the Stokes criterion 
if and only if one of the following two situations occurs: 

( 1) M has the one real eigenvalue Ao corresponding to a positive eigenvector and three real 
eigenvalues a*, a2, and A3 corresponding to negative eigenvectors, and Ao>max( I& I, 

Ia2i9ia3i). 
(2) M has the real eigenvalues A, b and v but is not diagonalizable. The eigenvectors 

corresponding to p and v are negative, whereas to the double eigenvalue A there corresponds one 
Jordan block of size 2 with positive sign. Moreover, A)max( 1~1 I, I v I 1. 

Prrwj Let us discuss the four cases of Theorem 2.1 and the corresponding four identities 
(27)-( 30) [with M instead of B] in turn, and observe that M satisfies the Stokes criterion if 
and only if the left-hand side of the corresponding one of Eqs. (27)-(30) does. 

In the iirst case, Eq. (27) immediately leads to the necessary and sufficient condition 
;lo>max ( I a1 I, I a2 I, I a3 1) for M to satisfy the Stokes criterion. 

In the second case, U-‘MU satisfying the Stokes criterion implies that a +E)L --E and 
il+ e)e, so that one must have a>0 and E > 0 for the Stokes criterion to be satisfied. If a>0 and 
E> 0, we get for all real vectors lj= ( l,q,u,v) satisfying Eq. (5) 

(31) 

where p= max( I p I, I v I >. This expression is non-negative if and only if a-)p and E > 0, as 
claimed. 

In the third case, starting from Eq. (29) with 6=0, we find for all real vectors g= ( l,q,u,v) 
satisfying Eq. (5) 

which may become negative if we take q=O and u = 1. Hence, if M has a Jordan block of order 
3 at some real eigenvalue, it cannot satisfy the Stokes criterion. 

In the fourth case, starting from Eq. (30), we find for all real vectors g= (l,q,u,v) satis- 
fying Eq. (5) 

[U-‘MU&U-‘MU& = (x”-3-d) +2qxy+ (g-x2+$)8+ (d-P2)u2 

>(x2--+p2) +2qxy+ (p2-~+Jh?2, (33) 

which may become negative. Thus if M has complex eigenvalues, it cannot satisfy the Stokes 
criterion. n 

Let us derive necessary and sufficient conditions for an arbitrary real 4X 4 matrix M to 
satisfy the Stokes criterion. Starting from a given real 4X4 matrix M, let us define A by 

A=GfiGM. (34) 

Then it is easily seen that M satisfies the Stokes criterion if and only 

[A&I]>0 and [MIll>O, (35) 

whenever I is a real vector satisfying D,I]>O and m,>O. The second part of Eq. (35) is 
equivalent to the inequality [cf. Eq. (8)] 
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M*1>(#2+M:3+M*4) . 2 l/2 (36) 

THEOREM 3.2: Let M be a real 4x4 matrix satisfing Eq. (36). Then M satis$es the 
Stokes criterion tf and only tf one of the following two situations occurs: 

( 1) A has the one real eigenvalue Av corresponding to a positive eigenvector and three real 
eigenvalues AI, AZ, and ils corresponding to negative eigenvectors, and A.v)max(0,Al,A.z,A3. 

(2) A has the real eigenvalues A., b and v but is not diagonalizable. The eigenvectors 
corresponding to y and v are negative, whereas to the double eigenvalue A there corresponds one 
Jordan block of size 2 with positive sign. Moreover, A>max(O,y v). 

Prooj Let us discuss the four cases of Theorem 2.1 and the corresponding four identities 
(27)-( 30) [with A instead of B] in turn, and observe that one only has to verify that 
[u-‘AUI,I’j>O for all al re vectors I satisfying [I,I])O and m,>O, where U- ‘AU is the left- 
hand side of the corresponding one of I@. (27)-( 30). 

In the first case, Eq. (27) immediately leads to the necessary and sufficient condition 
ao~m~~o,al,a2,a3~, S~IUX ~-*m,rj=a~2-al@-a2u2-a3v2 for all real vectors 
I=C~,Q,~,v). 

In the second case, as in the proof of Theorem 3.1, M [and hence A] satisfying the Stokes 
criterion implies that a>0 and E> 0 in Bq. (28). Thus if this is indeed the case, for real 
g={l,q,u,v} satisfying Eq. (5), we get for p=max(v,y) 

w-*Aug,;gi = (a++v) -2eq- (a++)~+ (v--ru)u2 

)(a+E--p) -kq- (a--E--p)$ 

=(i--Q)[(aZ--)(l+q)+E(l-q)l, (37) 

which is non-negative if /z>p and E > 0, as claimed. 
In the third case, starting from Bq. (29) [with B replaced by A and with S=O] we obtain 

for real .$=(l,q,u,v) satisfying Bq. (5) and ~=max(v,p) 

[u-‘AU~,~]=(a-/.L)(1-~-u2)+2eq(l-u), (38) 

which may become negative. Hence, if A has a Jordan block of order 3 at some real eigenvalue, 
M cannot satisfy the Stokes criterion. 

In the fourth case, starting from Eq. (30) [with B replaced by A] we obtain for real 
g={l,q,u,v) satisfying Bq. (5) and p=max(v,p) 

VJ-‘AU&,51 =(x-v) +2w+ +xht+ by.h2>(x-pP) +&iv+ (p-x>$, (39) 

which becomes &2y for q= f 1 and hence may become negative. Thus if A has complex 
eigenvalues, M cannot satisfy the Stokes criterion. n 

If M is G symmetric, we have A=M2, as a result of Bq. ( 16). Then the eigenvalues of A 
are the squares of the eigenvalues of M. 

Apart from studying the Stokes criterion, it is useful to find, for a given constant SE (0, 1 ), 
necessary and sufficient conditions for a real 4X4 matrix to satisfy the Stokes criterion in the 
following strong sense: If I,, is a real vector satisfying Eq. (3), then I= {1,Q, V, 0 =MI, 
satisfies 

Any such real 4 X 4 matrix transforms the four-vector of Stokes parameters of an incident beam 
of light into a four-vector of Stokes parameters of an outgoing beam with degree of polarization 
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not exceeding S. Indeed, if M is G symmetric, it cannot have a Jordan block of size 2 with 
positive sign at the eigenvalue a and satisfy the Stokes criterion in the above strong sense [cf. 
Eq. (31)]. Similarly, ifM is a real 4X4 matrix satisfying IQ. (36), A defined by Eq. (34) 
cannot have a Jordan block of size 2 with positive sign at the eigenvalue a while M satisfies the 
Stokes criterion in the above strong sense [cf. Eq. (37) applied to M l GaG which has the same 
Jordan structure at ;1> 0 as GaG l M, including the sign of the Jordan block]. Hence, if M is 
to satisfy the Stokes criterion in the above strong sense for some SE (0,l ), then M satisfies 
Condition 1 of Theorem 3.1 with a0 > max ( 11, I, I ;1, I, I a3 ( ) if M is G-symmetric, or Condition 
1 of Theorem 3.2 with ;10>m~(0,~l,~2,~3). 

Factor&&ions of a given real 4 x 4 matrix M of the form ( 11) with U1, U2~ Z’ are not 
always possible, even if we allow U, and U2 to be different and M is a Mueller matrix. A 
counterexample is provided by the matrix 

M= (41) 

where - 1 <E< 1. Indeed, writing Ul=(U~j>:j=l, U,‘=(Vij)&=l, iik=~kl+Ua, and Fk=Vlk 

+EU~~ (k= 1,2,3,4), we obtain 

U~MIJ~‘={Z~~~)~~=~* (42) 

Requiring UIMUll to be G symmetric and using U1, UT ’ E 9 imply for certain real x, y, z 

(~~&,i3,uq) =Z*( 1,X&Z), (~1,~2,~3,~~)=~~(1,--x,--y,--z), 

E*2-iZ22-i132-E42=l-E2, iF*2-F22-F32-C42=0, E*F*>O, (43) 

which is a contradiction. Hence, there do not exist matrices U1, U2~ 9’ such that UIMUz’ is 
G symmetric for M as in Eq. (41). Hence, a factorization of the form ( 11) as proposed by 
Xing” for Mueller matrices is not always possible. 

IV. A CRITERION FOR MUELLER MATRICES 

Barakat” pointed out the relationship between pure Mueller matrices and the orthochro- 
nous Lorentz group, but did not make their connection precise. This will be the contents of 
Theorem 4.1. We will use Theorem 4.1 primarily as a tool to prove Theorem 4.2. 

THEOREM 4.1: A real invertible 4x4 matrix M is a pure Mueller matrix if and only ifit 
has the form M=cU for some c>O and UELY’. 

proof: The following six Jones and pure Mueller matrices correspond to each other [cf. 
Ref. 31 

1 0 0 0 

cos (a/2) -sin(a/2) 0 cosa -sina 0 
J,= 

sin( a/2) cos(a/2) 0 sina cos a 0 
I 

; (4) 
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1 0 0 0 

(45) 

0 sinp 0 cosp 

\o 0 silly cos Y I 

/coshx sinhx 0 O\ 

(46) 

(47) 

coshw 0 sinh o 

cosh(w/2) sinh(w/2) 0 1 0 0 
J3= 

sinh(w/2) cosh(o/2) sinho 0 coshw 
(48) 

0 0 0 

cash 6 0 0 sinh 6 

J6= 
cash (g/2 ) -isinh(c/2) 

i sinh(c/2) cosh( c/2) 
(49) 

sinh c 0 0 cash 4. 

Any element of the group 2 can be written as the product of the six matrices M1,...,M6 (in 
whatever order) for suitable a, fl, ‘y, x, w, c.23 For any of these six types of Lorentz transfor- 
mation, one may find a Jones matrix from which it is derived. Hence, any IJET is a pure 
Mueller matrix. Indeed, writing 

(50) 

we get U=MJ where for some arbitrary phase q 

J=ei~J1(a)J2(B)J3(r)J4(x)Js(W)J6(~). (51) 

Since a Jones matrix can always be written as a constant multiple of a matrix of determinant 
1, a real invertible 4 X 4 matrix is a pure Mueller matrix if and only if it is a positive constant 
multiple of an element of the group L?‘. w 

If M is a pure Mueller matrix and singular, it corresponds to a singular Jones matrix J. 
Since J is a limit of invertible Jones matrices, M is a limit of pure invertible Mueller matrices 
and hence a limit, as n + CO, of matrices M, = c,U, where c, > 0 and U, E 2 for every n E N. We 
will not dwell on the structure of singular Jones and singular pure Mueller matrices.24 

THEOREM 4.2: Let M be a real G-symmetric matrix. Then M is a Mueller matrix ifand 
only if one of the following two situations occurs: 

( 1) M has the one real eigenvalue A0 corresponding to a positive eigenvector and three real 
eigenvalues AI, AZ, and A3 corresponding to negative eigenvectors, and ;lo*AI) ~,12,~A2,~. 
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(2) M has the real eigenvalues A, CL, and Y but is not diagonalizable. The eigenvectors 
corresponding to p and v are negative, whereas to the double eigenvalue A there corresponds one 
Jordan block of size 2 with positive sign. Moreover, A>$[p+vj and p=v. 

Frucj Since a Mueller matrix satisfies the Stokes criterion and every UE L? is a pure 
Mueller matrix [cf. Theorem 4.11, we only have to consider the two cases of Theorem 3.1. In 
either case, we compute the coherency matrix T from the right-hand sides of Eqs. (27) and 
(28), respectively. From Eq. (27) we get [cf. EC+. (A12)-(A15)] 

(52) 

where to= (il,+&+i12+&)/4, tl= (&j+&--il,-d,)/4, tz=(ilo--;11+&-&)/‘t, and t3 
= (A,-& -A2+&)/4. Since its eigenValUeS IUUSt be non-negative, we obtain the tist part of 
the theorem. On the other hand, from Eq. (28) we get 

0 

2a-p-v 0 

2E+p--Y 
(53) 

2ie 

whose eigenvalues are (2,% +,u + v)/4, (2a --p - v) /4, and {2e * [(CL - v) 2 + 421 1’2}/4. Re- 
quiring these eigenvalues to be non-negative, one gets the second part of the theorem. n 

If one computes the eigenvalues of the coherency matrix from the right-hand side of Eq. 
(30), one gets (2x+p+v)/4, (2x-p-v)/4, and &[(~-~y)~+$j”‘/4. However, starting 
from the right-hand side of Eq. (29) with 6=0, one gets (3A+p)/4 and the three real roots 
of23-pZ2-(P2+242)z+p3=Owithp=(;1--y)/2andq=(E/2).Sincethethreerealrootsadd 
up to p and have -p3 as their product, not all three roots can be non-negative, unless p=O, 
which leads to z= 0, =t e/d. Thus in neither case the coherency matrix is non-negative and M 
is a Mueller matrix. 

V. CONCLUSIONS 

In this article we have given necessary and sufficient conditions for a real 4x4 matrix M 
to satisfy the Stokes criterion, in terms of the eigenvalues of the matrix A = G%IGM (Theorem 
3.2). For the physically relevant class of real 4x4 matrices M for which GM is symmetric, 
criteria have been provided, in terms of the eigenvalue structure of M, to satisfy the Stokes 
criterion (Theorem 3.1) and to be a Mueller matrix (Theorem 4.2). As a result, a real matrix 
M for which A has complex eigenvalues, or a real matrix M for which GM is symmetric and 
M has complex eigenvalues does not satisfy the Stokes criterion. Moreover, the result of each 
of these theorems has been derived in one of two cases: the first case in which there are four real 
eigenvalues ilo, &, L2, A3 one of which (1,) is dominant, and the second case in which there 
are three eigenvalues A, p, v where the one of multiplicity two (a) is dominant. 

It is not obvious how, in analogy to Theorem 3.2, to give necessary and sufficient conditions 
for a real 4X 4 matrix M to be a Mueller matrix in terms of the eigenvalue structure of 
A= GGGM. If M is a real 4~ 4 matrix and the two situations described in the statement of 
Theorem 3.2 are considered, then ;1,&&) j&hAz,I in the first situation and ,#I ,Q + v 1 and 
p=v in the second situation, i.e., one finds the same eigenvalue inequalities for A as obtained 
for M in Theorem 4.2. The reason is that A is a Mueller matrix if M is a Mueller matrix [cf. 
E& (A30)]. The converse is not necessarily true even if M were to satisfy the Stokes criterion, 
as exemplified by the case in which M=GU with UE LZ’. One strategy to solve the problem is 
to give necessary and sufficient conditions for a real 4X4 matrix M to be representable in the 
form M=UD, where UE L? and D is G symmetric, and then to relate the eigenvalue structure 
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of D to the eigenvalue structure of aGM, observing that aGM=&. Since Theorem 4.2 
applies to D, a result analogous to Theorem 3.2 would result for Mueller matrices. Research on 
the polar decomposition problem (writing M=UD with UE 9 and D being G symmetric) is 
in progress. 

Cloude’s criterion for a real 4 X 4 matrix to be a Mueller matrix can be applied to any such 
matrix, contrary to Theorem 4.2 which only applies to G-symmetric matrices. However, the 
eigenvalue structure can be used to determine if a given real 4X4 matrix satisfies the Stokes 
criterion, and here Cloude’s criterion cannot be applied. Moreover, checking a somewhat 
different eigenvalue inequality would tell one immediately if the matrix already found to satisfy 
the Stokes criterion is also a Mueller matrix. For G-symmetric matrices we can actually do it; 
for general real 4 X 4 matrices some work still is to be done. 
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APPENDIX: THE COHERENCY MATRIX 

In this appendix, we introduce the coherency matrix*3p25 and give an alternative proof of 
Cloude’s criterion for a real 4x4 matrix to be a Mueller matrix. We do not use group theory. 
A different matrix was introduced by Simon’* in a study of pure Mueller matrices, because 
apart from a positive constant factor this matrix is unitarily equivalent to Cloude’s coherency 
matrix. 

Consider the identity 2 X 2 matrix o. and the three Pauli matrices ut , 02, and o3 defined by 

uo=(; ;), cq=(; Jl), u2=(; ;), u3=(; ii). (Al) 

These matrices are Hermitian, form a basis of the vector space of complex 2 X 2 matrices, and 
satisfy do = 4 = o$ = 4 = identity; alo2 = iu3, ~2~3 = iu,, u30l= ia;!, uZU~= - iu3, ~3~2 = - iu,, 

ulu3= -iu2; f Tr(ui) =&. 
For any intensity vector I= {l,Q, U, v) we introduce the polarization density matrix26’27 

3 

w= z. PIP,= 
I+Q U-W 

U+iF’ I-Q 
(A21 

so that 

[I],=$Tr(Wu,)=fTr(u,W). (A3) 

Let us derive an expression for the pure Mueller matrix M delined by 

I=mJ, (A41 

where we have the dyadic products 

W=EE+, Wo=E&+ (A51 

and + denotes the Hermitian conjugate. The E fields are connected by the Jones matrix J 
defined by 

E=JE,,, E+=E,,+J+. (446) 
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Using Eqs. (A2), (A3), (A5), and (A6) we get 

[I],=~Tr(Wu,)=fTr(Jtu,JEoEot)=~Tr(Jtu~JWo)= % [I&*~Tr(J$r,Ju,) 

L47) 

so that [cf. Eq. (A4)] 

[Ml r+~,s+~=i WJtor Ju,). (A81 

Next, let us expand the matrix J in uj as follows: 

= jok-+ h-1 

Substituting Eq. (A9) and its Hermitian conjugate equation into Eq. (A8) we obtain 

where 

[Ml r+~,s+~= $ ~~o~Tr~u~u~u~u*~[Tl,, (Al01 

[T],=k,k,*. (All) 

It is immediate from Eq. (Al 1) that T is a Hermitian matrix with eigenvalues {,%.,O,O,O) where 
A. =I$,, I k,( 2. The matrix T is called the coherency matrix.13p2s 

Equation (AlO) is equivalent to a system of 16 linear equations with 16 unknowns, which 
reduces to four systems of four equations with four unknowns. Calculating those 256 coe5- 
cients with the help of the properties of the Pauli matrices and inverting each of the four 
ensuing systems of equations we get 

h,=t@h+&2+&3+&) 
\ 

r,,=t(~,,+M22-M33-M44) 
1 

T22=t(M11-M22+M33-M44) ’ 

‘33=t(Ml1-M22-M33+M44) , 

ro3=S(M14-iM23+iM32+M41) 

\ 

T12=a(iM*4+M23+M32-iM41) 

Tzl=$(--iM14+M23+M32+iM41) 
, 

T30=t(Mbt+iM23-iM32+M41) 
j 

Tol=f(M12+M21-iM34+iM43) 

\ 

T10=$(M12-t-M2,+iM34-iM43) 

T23=t(iM~2-iM2~+M34-t-M43) 
, 

T32=$( -iM12+iM21+M34+M43) 
, 

t-412) 

(A131 

(A141 
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TG2==(MM,3+33~+iM24-iM42) 1 
T20=f(M13+M31-iM24+iM42) 

I 
T13=b( -iM13+iM31+M2A+M42) ’ 

W5) 

T3l=t(iM13-iM314M24+M42) 1 
It turns out that the coefficients of the equations expressing T in M are exactly one quarter of 
the coe5cients of the equations expressing M in T. 

The following result is due to Cloude.‘3f14 
THEOREM A.1: Let M be a real 4x4 matrix, and dejne T by Eqs. (A12)-(A15). Then 

T ti a Hermitian 4~ 4 matrix, ie. Tt =T. Moreover, 
( 1) M is a Mueller matrix if and only if the eigenvalues of T are nonnegative; 
(2) M is a pure Mueller matrix ifand only if the eigenvalues of T are {A,O,O,O) with A>O. 
Proofi If M is a pure Mueller matrix and is given by Eq. (A8) for some Jones matrix J, 

then T is given by Eq. (Al 1) and the eigenvalues of T are {&O,O,O} where iz =k+k>O. Con- 
versely, if the eigenvalues of T are {L,O,O,O) with i1>0, let k be a nontrivial complex four-vector 
such that Tk=Ak. Then &SO being the only nonzero eigenvalue of T means that [Tl, 
= ke and A=Z~=oI k,12. If k={ko,kI,k2,k3}, define the Jones matrix J by Eq. (A9). Then 
[cf. Eq (All)] 

f’JXJbJd= i i ~Tr(u,a,u,u,)[Tl,=[Ml,+~,~+,, 
t=o u=o 

(A161 

which settles the pure Mueller part of the theorem. 
Next, let M be an arbitrary matrix of the form 

N 

M= Ig, YIMJ~ W7) 

where YI ,y2 ,-+,'>o and MJ~,..., MJ, are the pure Mueller matrices obtained from the Jones 

matrices J ,,..., JN. Applying Eqs. (A12)-(A15) 

(A181 

where TJr ,..., TJN are defined in terms Of h'fJ1 ,..., MJ, by Eqs. (A12)-(A15). Since every matrix 

TJr ,..., TJN is positive semidefinite and y, ,..., yN>O, T must also be positive semidefinite. 

Conversely, suppose the matrix T obtained from M using Eqs. (A12)-(A15) is positive 
semidefinite, then there exists a unitary 4x4 matrix U (i.e., Ut =U-‘) such that 

T=UAU+, A=diag(Ao,A21,,12,i23), (A19) 

where ilo, il,, A2, A3>0. Let us denote the four columns of U by kc, k,, k,, and k3. Then kc, 
ki , k2, and k3 form an orthonotmal basis and Tk,- -A2, k, for r=0,1,2,3. We then readily derive 

3 

T= c &k,k,t. 
r=O 

(MO) 

Writing 
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J,= i P&us 
s=o 

we get 

‘b,=k, k>, r=0,1,2,3. 

As a result 

M= i &MJ~, 
r=O 

with MJ, the pure Mueller matrix obtained from the Jones matrix J,. 

COROLLARY A.2.” A block-diagonal real 4x4 matrix M of the form 

M= 

(A211 

(A221 

(~23) 

n 

(~24) 

iv a Mueller matrix if and only if 

[(a3-a4)2+(b2+~2)2+(bl-c1)211’2<a1-a2, 

[(a3+a.d2+ (b2-cd2+ (bI+c1)211’2<al+a2. 

Further, M is a pure Mueller matrix if and only if 

aI=a2>0, a3=a4, bl=cl, b2=-c2, aI=[a:+bi+bi]1’2. 

Pm& We readily compute the eigenvalues of the coherency matrix. We find 

ao,1=f(uZ1+a2)ft[(a3+a4)2+(bl+c1)2+(b2-c2)211’2, 

(~25) 

(A261 

(A271 

(A281 

a2,3=f(a1-u2) h$[(a3-aJ2+ (bl-cl12+ (b2+c21211”. (A291 

Requiring all four eigenvalues to be non-negative, we get the result. n 
Using G=diag(l,-1,-l,- 1) and writing T(M) for the coherency matrix associated 

with the real 4 X 4 matrix M through Rqs. (A12)-( Al 5)) we easily find the following identity: 

T(GtiG) =G*T(M) l G. (A30) 

As a result, M is G symmetric whenever T(M) commutes with G. Moreover, since T(M) and 
G l T(M) l G are obviously unitarily equivalent, Gl%G is a Mueller matrix whenever M is a 
Mueller matrix. 

‘In this article we use the term “Stokes vector” for a four-vector {Z,Q,U,v) as above, where Z(Z>O) may be an 
intensity, source function or flux, and Q/Z, U/Z, and V/Z describe the state of polarization. 
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