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1. Introduction

In this paper we study the eigenvalue problem for the Schrödinger operator
coupled with the electromagnetic field E,H. The case in which the electromag-
netic field is given has been mainly considered ([1]–[3]).

Here we do not assume that the electromagnetic field is assigned, then we
have to study a system of equations whose unknowns are the wave function
ψ = ψ(x, t) and the gauge potentials A = A(x, t), φ = φ(x, t) related to E,H.

We want to investigate the case in which A and φ do not depend on the time
t and

ψ(x, t) = u(x)eiωt, u real function and ω a real number

In this situation we can assume A = 0 and we are reduced to study the existence
of real numbers ω and real functions u, φ satisfying the system

(1) −1
2
∆u− φu = ωu, ∆φ = 4πu2

with the boundary and normalizing conditions

(2) u(x) = 0, φ(x) = g on ∂Ω, ‖u‖L2 = 1.
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Here g is an assigned function and ∂Ω is the boundary of an open subset Ω in
R3 (the methods we shall use extend to higher dimensions without any change).

Since the electrostatic potential φ is not assigned, (1) cannot be reduced to
a linear eigenvalue problem. Nevertheless (1) possess an interesting variational
structure. In fact, it is not difficult to see that (1) are the Euler–Lagrangian
equations of a functional F which is strongly indefinite (see Section 3); this
means that F is neither bounded from above nor from below and this indefinitess
cannot be removed by a compact perturbation.

We shall prove the following theorem.

Theorem 1. Let Ω be a bounded set in R3 and g a smooth function on the
closure Ω. Then there is a sequence (ωn, un, φn), with ωn ⊂ R, ωn → ∞ and
un, φn real functions, solving (1), (6).

2. The Schrödinger–Maxwell equations

In this section we deduce a system of equations describing a quantum particle
interacting with a electromagnetic field.

The Schrödinger equation for a particle in a electromagnetic field whose gauge
potentials are A, φ is

(3) i~
∂ψ

∂t
=

1
2m

(
− i~∇− e

c
A

)2

ψ − eφψ,

ψ(x, t) ∈ C is the wave function, m, e are the mass and the charge of the particle,
~ = h/2π, h being the Planck constant.

The Lagrangian density relative to (3) is given by

(4) L0 =
1
2

[
i~
∂ψ

∂t
ψ + eφ |ψ|2 − 1

2m

∣∣∣∣(− i~∇− e

c
A

)
ψ

∣∣∣∣2].
If we set

ψ(x, t) = u(x, t) eiS(x,t)/~, u, S ∈ R.

equation (4) takes the following form:

(5) L0 =
~2

2m
|∇u|2 −

[
St − eφ+

1
2m

(
∇S − e

c
A

)2]
u2.

Now we consider the lagrangian density of the electromagnetic field E,H

L1 =
E2 −H2

8π
.

E,H are related to A, φ by

(6) E = −1
c
At −∇φ, H=∇×A,
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then

L1 =
1
8π

∣∣∣∣1cAt +∇φ
∣∣∣∣2 − 1

8π

∣∣∣∣∇×A
∣∣∣∣2.

Therefore the total action of the system “particle-electromagnetic field” is given
by

S =
∫∫

L0 + L1.

Makig the variation of S with respecto to δu, δS, δφ and δA respectively, we get

− ~2

2m
∆u+

[
St − eφ+

1
2m

(
∇S − e

c
A

)2]
u = 0,(7)

∂

∂t

(
u2

)
− 1
m
∇ ·

[(
∇S − e

c
A

)
u2

]
= 0,(8)

1
4π
∇ ·

(
1
c
At +∇φ

)
= eu2,(9)

(10)
1
4π

[
∇×

(
∇×A

)
+

1
c

∂

∂t

(
1
c
At +∇φ

)]
=

e

cm

(
∇S − e

c
A

)
u2,

Using (6) and setting

ρ = −eu2, v = −∇S −Ae/c
m

, j =
e

m

(
∇S − e

c
A

)
u2 = ρv,

equations (8)–(10) take the form

∂

∂t
ρ+∇ · j = 0,(11)

∇ ·E = 4πρ,(12)

∇×H− 1
c

∂E
∂t

=
4π
c

j.(13)

Equation (11) is a continuity equation and (12), (13) are the Maxwell equations
for an electromagnetic field in the presence of a charge and current density given
by ρ and j.

3. The eigenvalue problem

We look for solutions u, S, A, φ of (7)–(10) of the type

u = u(x), S = −ωt, A = 0, φ = φ(x),

with this “ansatz”, the equations (8) and (10) are identically satisfied, while (7)
and (9) become

− ~2

2m
∆u− eφu = ωu,(14)

∆φ = 4πeu2.(15)
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We shall assume that the electrostatic potential φ is assigned on the boundary
∂Ω, namely we assume that

(16) φ = g on ∂Ω,

where g is a given continuous function on Ω. Since u is the amplitude of the
wave function representing a particle confined in Ω, we require that u satisfies
the normalizing and the boundary conditions

(17)
∫
u2 = 1, u|∂Ω = 0.

Constants ~, c, and m are positive so we set for simplicity ~ = c = m = 1.
Moreover, e2 = +1, then in (14)–(16) we can rename eφ again by φ. Then we
are reduced to solve the eigenvalue problem (1), (6), namely:
Find ω ∈ R, u ∈ H1

0 (Ω),
∫
u2 = 1, and φ ∈ H1(Ω), φ = g on ∂Ω such that

−1
2
∆u− φu = ωu,

∆φ = 4πu2.

Here H1
0 (Ω) and H1(Ω) are the usual Sobolev spaces and the laplacian ∆ is

meant in the sense of distributions.
If we set

ϕ = φ− g ∈ H1
0 (Ω)

the above equations become

−1
2
∆u− (ϕ+ g)u = ωu,(18)

∆ϕ = 4πu2 − g∗,(19)

where g∗ is the defined by

〈g∗, v〉 =
∫

Ω

g∆v dx for v ∈ C∞0 (Ω).

Clearly, g∗ can be continuously extended to H1
0 (Ω).

Now consider the functional

(20) F (u, ϕ) =
1
4

∫
Ω

|∇u|2 − 1
2

∫
Ω

(ϕ+ g)u2 − 1
16π

∫
Ω

|∇ϕ|2 +
1
8π
〈g∗, ϕ〉

on the manifold

M = {(u, ϕ) ∈ H1
0 (Ω)×H1

0 (Ω) | ‖u‖L2(Ω) = 1}.

It is easy to verify that F is a C1-functional on M . Moreover, the following
proposition holds
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Proposition 2. ω ∈ R, (u, ϕ) ∈M solve the eigenvalue problem (18), (19)
if and only if (u, ϕ) is a critical point of F |M having ω as lagrangian multiplier.

Proof. (u, ϕ) ∈ M is a critical point of F |M with lagrangian multiplier ω
if and only if

(21) F ′u(u, ϕ) = ωu, F ′ϕ(u, ϕ) = 0,

where F ′u(u, ϕ), F ′ϕ(u, ϕ) denote the partial derivatives of F at (u, ϕ), namely,
for any v ∈ H1

0 (Ω)

F ′u(u, ϕ)[v] = F ′(u, ϕ)[v, 0] =
∫

Ω

(
1
2
(∇u | ∇v)− (ϕ+ g)uv

)
dx(22)

(23) F ′ϕ(u, ϕ)[v] = F ′(u, ϕ)[(v, 0)]

=
∫

Ω

(
− 1

2
u2v − 1

8π
(∇ϕ | ∇v)

)
dx+

1
8π
〈g∗, v〉.

Clearly (21) can be written as (18), (19). �

4. Proof of Theorem 1.1

In view of Proposition 2, Theorem 1 is an obvious consequence of the follow-
ing result

Theorem 3. Let Ω be bounded. Then there is a sequence {(un, ϕn)} ⊂ M

of critical points of F |M whose lagrangian multipliers ωn tend to ∞.

The proof of this theorem cannot be achieved directly and it requires some
technical preliminaries.

In fact the functional (20) is neither bounded from below nor from above.
Moreover, this indefinitess cannot be removed by a compact perturbation. Then
the usual methods of the critical point theory cannot be directly used.

To avoid this difficulty we shall reduce the study of (20) to the study of a
functional of the only variable u. Set

Γ = {(u,ϕ) ∈ H1
0 (Ω)×H1

0 (Ω) | F ′ϕ(u, ϕ) = 0},

where F ′ϕ, has been defined in (23). Consider the map

(24) Φ : u ∈ B → Φ(u) = ϕ ∈ H1
0 (Ω) solution of (19),

where B = {u ∈ H1
0 (Ω) | ‖u‖L2(Ω) = 1}. Clearly, Φ(u) = 4π∆−1u2 − g. Here

∆−1 denotes the inverse of the Riesz isomorphism ∆ between H1
0 (Ω) and its dual

H−1 defined by

〈∆u, v〉 = −
∫

(∇u | ∇v) dx, u, v ∈ H1
0 (Ω).
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Proposition 4. The map Φ is C1 and Γ is the graph of Φ.

Proof. Since H1
0 (Ω) is continuously embedded into L6 it is easy to see that

the map u 7→ u2 is C1 from H1
0 (Ω) into L3 which is continuously embedded into

H−1. Then, since ∆−1 : H−1 → H1
0 (Ω) is C1, we easily conclude that Φ is C1.

Let GΦ denote the graph of Φ, then clearly we have

(u, ϕ) ∈ GΦ ⇔ ∆ϕ = 4πu2 − g∗ ⇔ F ′ϕ(u, ϕ) = 0 ⇔ (u, ϕ) ∈ Γ. �

For u ∈ B, Φ(u) solves (19), then

∆Φ(u) = 4πu2 − g∗

from which, taking the product with Φ(u), we have

(25) − 1
8π

∫
Ω

|∇Φ(u)|2 dx =
1
2

∫
Ω

u2Φ(u) dx− 1
8π
〈g∗,Φ(u)〉.

Using (24) and (20) we define the functional J as follows

J(u) = F (u,Φ(u)) =
1
4

∫
Ω

|∇u|2 − 1
2

∫
Ω

(g + Φ(u))u2

− 1
16π

∫
Ω

|∇Φ(u)|2 +
1
8π

∫
Ω

〈g∗,Φ(u)〉 dx

for u ∈ H1
0 (Ω). Then, inserting (25), we easily get

(26) J(u) =
1
4

∫
Ω

|∇u|2 − 1
2

∫
Ω

gu2 − 1
16π

∫
Ω

|∇Φ(u)|2 +
1
8π

∫
Ω

|∇Φ(u)|2 dx

=
1
4

∫
Ω

|∇u|2 − 1
2

∫
Ω

gu2 +
1

16π

∫
Ω

|∇Φ(u)|2

By Proposition 4 J |B is C1 and, since g ∈ L∞, it is bounded from below.
The following proposition holds

Proposition 5. Let (u, ϕ) ∈ M and ω ∈ R. The following statements are
equivalent

(a) (u, ϕ) is a critical point of F |M , having ω as lagrangian multiplier.
(b) u is a critical point of J |B having ω as lagrangian multiplier and ϕ =

Φ(u).

Proof. Clearly, by Proposition 4, we have

(b) ⇔ F ′u(u, ϕ) + F ′ϕ(u, ϕ)Φ′(u) = ω u

and
(u, ϕ) ∈ GΦ ⇔ F ′u(u,ϕ) = ωuF ′ϕ(u, ϕ) = 0 ⇔ (a). �

By Proposition 5 we are reduced to prove the following result
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Theorem 6. There is a sequence {un} of critical points of J |B having la-
grangian multipliers ωn →∞.

In order to prove this theorem we need some technical lemmas.

Lemma 7. The functional J |B satisfies the Palais–Smale condition, i.e.

(27) any sequence {un} ⊂ B s.t. {J(un)} is bounded and J |′B(un) → 0

contains a convergent subsequence.

Proof. Let {un} ⊂ B s.t. {J(un)} is bounded and J |′B(un) → 0. Then
there are sequences {λn} ⊂ R, {vn} ⊂ H−1, vn → 0 in H−1 such that

(28) F ′u(un,Φ(un)) + F ′ϕ(un,Φ(un))Φ′(un) = λnun + vn.

By Proposition 4, (un,Φ(un)) ∈ Γ, then (28) becomes

(29) F ′u(un,Φ(un)) = λnun + vn.

{J(un)} is bounded, then by (26) we have that

(30)
{

1
4

∫
Ω

|∇un|2 −
1
2

∫
Ω

gu2
n +

1
16π

∫
Ω

|∇Φ(un)|2
}

is bounded. Since g ∈ L∞ and ‖un‖L2 = 1, we have

(31)
∣∣∣∣ ∫

Ω

gu2
n

∣∣∣∣ ≤ ‖g‖L∞ · ‖un‖2
L2 = ‖g‖L∞ .

From (30) and (31) we deduce that

(32) {un} and {Φ(un)} are bounded in H1
0 (Ω).

Moreover,

(33) {λn} is bounded.

In fact, multiplying (29) by un and since ‖un‖L2 = 1, we get

(34)
1
2

∫
Ω

|∇un|2 −
∫

Ω

gu2
n +

∫
Ω

Φ(un)u2
n = λn + 〈vn, un〉.

Now

(35)
∣∣∣∣ ∫

Ω

Φ(un)u2
n

∣∣∣∣ ≤ ‖un‖2
L4 · ‖Φ(un)‖L2 ≤ const‖un‖2

H1
0
· ‖Φ(un)‖H1

0
.

Then (33) easily follows from (32), (34) and (35). Now (29) can be written as
follows

−1
2
∆un − Φ(un)un − gun − λnun = vn

from which we have

(36) −1
2
un −∆−1(Φ(un)un)−∆−1(gun)− λn∆−1un = εn,
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where

(37) εn = ∆−1vn → 0 in H1
0 (Ω).

From (32) there are u, ϕ ∈ H1
0 (Ω) such that, up to a subsequence,

(38) un ⇀ u, Φ(un) ⇀ ϕ weakly in H1
0 (Ω).

Since H1
0 (Ω) is compactly embedded into Lp(Ω) for p < 6, we deduce that

(39) un → u, Φ(un) → ϕ strongly in Lp(Ω), p < 6.

Clearly, since g ∈ L∞, we have

(40) gun → gu strongly in Lp(Ω), p < 6.

Then we have also

(41) un → u, gun → gu strongly in H−1.

So, since ∆−1 : H−1 → H1
0 (Ω) is an isomorphism, (41), (33) and (37) imply

that, up to a subsequence,

(42) αn = ∆−1(gun) + λn∆−1un + εn converges strongly in H1
0 (Ω).

From (36) and (42) we deduce that

(43) −1
2
un −∆−1(Φ(un)un) = αn converges strongly in H1

0 (Ω).

Then, in order to prove that un converges strongly in H1
0 (Ω), it remains to show

that

(44) Φ(un)un → ϕu strongly in H−1.

Let 6 > p ≥ 2 and consider its conjugate 6/5 < q = p/(p− 1) ≤ 2. Clearly,

(45)
‖Φ(un)un − ϕu‖Lq ≤ An +Bn,

An = ‖Φ(un)un − ϕun‖Lq , Bn = ‖ϕun + ϕu‖Lq .

Moreover, by Hölder inequality,

(46) An ≤ ‖un‖L6‖Φ(un)− ϕ‖L6q/(6−q) .

By (38), {‖un‖L6} is bounded. Since 6q/(6− q) ≤ 3, by (39),

‖Φ(un)− ϕ‖L6q/(6−q) → 0.

Then, by (46), we deduce that An → 0. Analogously, we have Bn → 0. Then,
by (45), we deduce

(47) ‖Φ(un)un − ϕu‖Lq → 0.

Since Lq is continuously embedded into H−1, (44) easily follows from (47). �
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It is easy to see that the functional J is even and we shall exploit this sim-
metry property in order to get multiplicity results for the critical points of J |B .
To this end we recall the definition of genus. Let A ⊂ B be a closed subset
symmetric with respect to the origin. We say that A has genus m (denoted by
γ(A) = m) if there exists an odd, continuous map χ : A → Rm \ {0} and m is
the smallest integer having this property. If A = ∅ we write γ(A) = 0 and if
there is no finite such m we set γ(A) = ∞.

Lemma 8. For any integer m there exists a compact symmetric subset K ⊂ B

such that γ(K) = m.

Proof. Let Hm be an m dimensional subspace of H1
0 (Ω), and set K =

B ∩ Hm. Then, by a well known property of the genus (see e.g. [4] or [5]) we
have γ(K) = m. �

Lemma 9. For any b ∈ R the sublevel

Jb = {u ∈ B | J(u) ≤ b}

has finite genus.

Proof. This result is standard in critical point theory, nevertheless, for
completeness, we sketch the proof. We argue by contraddiction and assume that

D = {b ∈ R | γ(Jb) = ∞} 6= ∅.

Clearly, since J |B is bounded below, D is bounded below. Then

(48) −∞ < b = infD <∞.

Moreover, since J |B satisfies the Palais–Smale condition (see Lemma 7), the set

Z = {u ∈ B | J(u) = b, J |′B(u) = 0}

is compact. Then, by well known properties of the genus (see e.g. Lemma 1.1
in [4]), there exists a closed symmetric neighbourhood UZ of Z such that
γ(UZ) <∞.

Now, by a well known deformation lemma (see e.g. Theorem 1.9 in [4]), there
exists ε > 0 such that the sublevel Jb−ε includes a strong deformation retract of
Jb+ε \ UZ . Then, by using again the properties of the genus, we get

γ(Jb+ε) ≤ γ(Jb+ε \ UZ) + γ(UZ) ≤ γ(Jb−ε) + γ(UZ) <∞

and this contradicts (48). �

Now we are ready to complete the proof of Theorem 6. Let k be a positive
integer, then, by Lemma 9, there exists an integer n = n(k) such that

(49) γ(Jk) = n.
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Now consider the set

An+1 = {A ⊂ B, A symmetric, closed s.t. γ(A) = n+ 1}.

By Lemma 8, An+1 6= ∅ and, by the monotonicity property of the genus, any
A ∈ An+1 is not contained in Jk, then supJ(A) > k and, consequently,

(50) bk = inf{supJ(A) | A ∈ An+1} ≥ k.

By Lemma 7, J |B satisfies the Palais–Smale condition, then well known results
in critical point theory (see e.g. [4] or [5]) guarantee that bk is a critical value
of J |B . So we conclude that for any integer k there is ωk ∈ R and uk ∈ B such
that

(51) J ′(uk) = ωkuk and J(uk) = bk ≥ k.

So we need only to prove that

(52) ωk →∞ as k →∞.

By (51) and Proposition 5 we have that

F ′u(uk, ϕk) = ωkuk, where ϕk = Φ(uk).

This can be written as follows

−1
2
∆uk − (ϕk + g)uk = ωkuk

from which, we deduce

(53)
1
4

∫
Ω

|∇uk|2 −
1
2

∫
Ω

(ϕk + g)u2
k = ωk

∫
Ω

u2
k = ωk.

From (20) and (53) we have

(54) F (uk, ϕk) = ωk −
1

16π

∫
Ω

|∇ϕk|2 +
1
8π

∫
Ω

〈g∗, ϕk〉 dx.

Now the second equality of (51) can be written

(55) F (uk, ϕk) = bk.

From (54) and (55) we get

(56) ωk = bk +
1

16π

∫
Ω

|∇ϕk|2 −
1
8π
〈g∗, ϕk〉.

Since bk ≥ k (see (51)), from (56) we have

(57) ωk ≥ k + ck,

where
ck =

1
16π

∫
Ω

|∇ϕk|2 −
1
8π
〈g∗, ϕk〉.
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Since

(58)
1
8π
〈g∗, ϕk〉 ≤ const‖g∗‖H−1‖ϕk‖H1

0 (Ω)

we have
ck ≥

1
16π

∫
Ω

|∇ϕk|2 − const‖g∗‖H−1‖ϕk‖H1
0 (Ω).

Then we have that ck is bounded below. So, by (57), we deduce (52) and the
proof is complete. �
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