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ABSTRACT

This paper presents a new parameter estimation algo-
rithm based on the Extended Kalman Filter (EKF) for the re-
cently proposed statistical coarticulatory Hidden Dynamic
Model (HDM). We show how the EKF parameter estimation
algorithm unifies and simplifies the estimation of both the
state and parameter vectors. Experiments based on N-best
rescoring demonstrate superior performance of the (context-
independent) HDM over a triphone baseline HMM in the
TIMIT phonetic recognition task. We also show that the
HDM is capable of generating speech vectors close to those
from the corresponding real data.

1. INTRODUCTION

Hidden Dynamic models (HDMs) [1, 8, 9, 2, 3, 4] attempt to
model the intrinsic dynamics in the human speech produc-
tion system in an effort to address some of the known weak-
nesses of the current hidden Markov modelling (HMM) para-
digm when applied to acoustic modelling for unconstrained,
spontaneous speech recognition. Such weaknesses include
the HMM’s inability to adequately model coarticulation and
phonological variation without resorting to the use of very
large numbers of context-dependent models of an enumera-
tive type. There is an increasing demand for speech recog-
nisers to cope with larger vocabularies, less constrained task
grammars, large populations of speakers and backgrounds,
and different speaking styles. With the current HMM para-
digm this can only be achieved by using copious amounts of
training data and sophisticated clustering algorithms to reli-
ably estimate the many parameters. The very large number
of model parameters makes it difficult for a speech recog-
nizer to adapt to a new speaker, a new speaker style, and a
new environment. This is a direct consequence of the blind,
data-driven approach of the current HMM approach when
applied to acoustic modelling.

The HDM described in this paper adopts a more struc-
tured model of the underlying human speech production dy-
namics by describing the acoustic features as the observa-
tions measured from a state-space model description of the

speech production process. While describing the articula-
tory dynamics of speech production is in itself an unsolved
problem, a simpler alternative is to describe the known spec-
tral manifestations of the process. In this paper the statisti-
cal coarticulatory modelling of the vocal-tract-resonances
(VTRs) proposed by Deng [2, 1, 3] is further investigated.
The principal advantage of such a model lies in the com-
pact structure for representing long-term contextual depen-
dence in the observable speech acoustics. This is based
on the lower-dimensional, less variable, VTR feature space
compared to the higher-dimensional, highly variable MFCC
feature space. The compact structure also results in fewer
parameters that need to be estimated and less training data
needed to estimate the parameters reliably.

In this paper we present a new parameter estimation al-
gorithm based on the full use of the extended Kalman filter
(EKF) for both state and parameter estimation as an alter-
native to the use of the EM algorithm, where the EKF was
used only for state estimation in the E-step. [2]. Exper-
iments on the TIMIT phone recognition are performed to
evaluate the performance of the HDM based on rescoring
of the N-best lists generated by a baseline HMM. Investiga-
tion of the new learning algorithm demonstrates the conver-
gence of the model parameters to the corresponding realistic
acoustic observations.

2. MODEL FORMULATION

The hidden dynamic model presented in this paper is based
on the statistical coarticulatory model described in [2, 1].
The system model consists of a target-directed hidden dy-
namic state process coupled with a non-linear observation
process.

The hidden dynamic “state” equation is used to describe
the vocal-tract resonance (VTR) dynamics according to:

z(k + 1) = �jz(k) + (I ��j)T j + w(k) (1)

where z(k) is the three-dimensional state vector and T j and
�j are the phone target and diagonal “time-constant” sys-
tem matrix parameters associated with the phone regime



j. The process noise, w(k), is represented in this study
by an i.i.d, zero-mean, Gaussian process with covariance
matrix Q. A feature of this model is its ability to switch
state-space parameters when crossing over to new phone
dynamic regimes and continuity of the hidden state variable
z(k) across phone regimes. The latter provides a long-span
continuity across phone regimes and structurally models the
inherent context dependencies and coarticulatory manifes-
tations between adjacent phone regimes.

The observation equation is used to describe the map-
ping between the hidden state dynamic to the observable
acoustic features. The most general form of the observation
equation is a static, nonlinear mapping as follows:

O(k) = hr(z(k)) + v(k) (2)

where the acoustic observation O(k) is the set of Mel cep-
stral coefficients (MFCCs) at frame k, and v(k) is mod-
elled by an i.i.d, zero-mean, Gaussian process with covari-
ance matrix R and represents the additive observation noise
which captures the residual errors in mapping from z(k) to
O(k). The multivariate nonlinear mapping, hr(z(k)), is im-
plemented by a multi-layer perceptron (MLP) for each dis-
tinct manner of articulation r.

A three-layer feedforward multi-layer perceptron was
implemented for the nonlinear functionhr(z(k)) with linear
activation function on the output layer and the antisymmet-
ric hyperbolic tangent function:

g(x) = 1:7159 tanh((2=3)x)

on the hidden layer.

3. PARAMETER ESTIMATION BY EKF

The parameter estimation method for the hidden dynamic
model can be based on a generalised EM algorithm [2].
However due to the nonlinear equations in the M-step and
the crude approximation for estimation of the MLP weights
in this paper we propose to use the EKF algorithm for joint
state and parameter estimation. This is achieved by using
the appropriate augmented form of the state equation de-
fined as:

�(k) =

0
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1
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where ~�j(k) is the m2� 1 time-constant vector and m = 3

is the dimension of the state vector. ~�j(k) is related to the
time-constant matrix �j(k) as follows:
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i (k) is row i of �j(k). The new state equation

becomes

�(k + 1) = f(�(k)) + w(k); (4)

which is now non-linear in the state variable, �(k), and can
be decomposed as follows:
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The measurement equation becomes

O(k) = hr(�(k)) + v(k); (5)

where it is noted that the nonlinear mapping function h r(:)
is strictly dependent only on z(k).

The standard EKF algorithm recursion [7, 5] is used to
yield joint state and parameter estimates at each time-step.
This use of the EKF obviates the need for an additional EM
algorithm step for parameter estimation, and conveniently
estimates both the system dynamic and MLP weight param-
eters.

The expression for the (2m + m2) x (2m + m2) state

equation Jacobian matrix F�[�̂(kjk)] = @f(�)
@�
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used in the EKF recursion can be shown to be:
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where �̂j is the current estimate of the m�m time-constant
matrix and
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is the m � m2 partial derivative submatrix expression for
@f
@� .

The (n) � (2m + m2) observation equation Jacobian
matrix, H�[�̂(k + 1jk)] used in the EKF recursion, is only
dependent on z(k + 1jk) and is expressed as:

H�[�̂(k + 1jk)] =
�
Hz[ẑ(k + 1jk)] 0 0

�



where n is the dimension of the acoustic observation vector
and the elements of the n�m Jacobian submatrix,Hz[ẑ(k+
1jk)], at row j and column i are defined as:
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whereWlj is the MLP weight vector of node j in layer l and
g0(x) is the derivative of the activation function.

Use of the EKF for joint state and parameter estimation
requires initial values for both the augmented state vector,
�(0j0) = (z(0j0); ~�(0j0); T (0j0))

0

, state error covariance
matrix, P (0j0) and specification of the noise covariances
Q(k) and R(k). Selection of the covariance parameters is
crucial in guaranteeing convergence of the EKF recursion.

Evaluation of the HDM is based on a rescoring task
which requires the model to output a score (i.e. likelihood)
of a given utterance given the segmented phone transcrip-
tion. The log-likelihood scoring function used in this work
is identical to that reported in [3].

4. EXPERIMENTS

Due to the complexity of direct search and of lattice rescor-
ing with the HDM, the evaluation of the new HDM learning
algorithm was carried out performing N-best rescoring on
time aligned transcriptions produced by a baseline HMM
system [8]. Evaluation of the HDM in this paper was based
on the phone recognition task using the TIMIT corpus. Due
to the extremely large computational requirements of the
current implementation of the estimation algorithm, only
the speaker dr8 subset was used for training the HDM phone
models and performing the evaluations. To produce time-
aligned transcriptions a baseline context-dependent phone
HMM system was trained on the complete TIMIT training
data and tested on the dr8 test data subset.

The acoustic features used were 13 dimensional static
MFCC vectors for the HDM models and 39 dimensional
static, delta and delta-delta MFCC vectors for the HMM
models. The HDM hidden dynamic was a 3-dimensional
VTR state vector requiring a 3-input, 13-output MLP non-
linear mapping function,hr(z(k)) to map the VTR dynamic
to the observable MFCC observation vectors.

Two implementations of the HDM were evaluated. The
HDMm implementation used one 3-layer, 12 hidden node,
MLP per phone model for the nonlinear mapping in the ob-
servation process. The HDMc implementation used only
three broad class (Silence, Voiced, Unvoiced) 3-layer, 16
hidden node MLPs. For both implementations 5 iterations
of the EKF parameter estimation were used, the noise co-
variance Q(k) associated with the parameters was set to

zero and arbitrary values for state error covariance P (k)
were chosen to drive the EKF state and parameter estima-
tion updates. Identical initialisation of the state and param-
eter vectors was used for all phone models.

The HMM was used to generate the 100-best and 5-best
time-aligned transcription for the dr8 test data utterances
and the corresponding reference transcription. The HMM,
HDMm and HDMc rescored the 100-best, 100-best+ref, 5-
best and 5-best+ref transcriptions and the top score was used
to evaluated the WER and sentence error rate (SER) perfor-
mance of the system. The bounds on performance were pro-
vided by the Chance and Oracle systems. A random tran-
scription was chosen for Chance (lower bound) and the best
transcription was chosen for Oracle (upper bound). In addi-
tion to recognition performance the number of parameters
to be estimated for each system was also derived. The re-
sults of the evaluations obtained so far are presented in Ta-
ble 1. While the WERs are roughly the same for the HMM
and HDM when the recognizer is not exposed to the refer-
ence transcription, upon the exposure the WER drops sig-
nificantly for the HDM but not for the HMM. Further, such
error rate reduction is achieved with the use of much fewer
HDM model parameters than HMM. This is a highly de-
sirable property since it would make any adaptive learning
algorithm (to be developed) much more effective.

System Oracle Chance HMM HDMm HDMc
18.4 29.1 28.7 28.9 29.1100-best
94.6 100.0 100.0 100.0 100.0

100-best 0.0 28.4 28.7 22.4 22.2
+ ref 0.0 99.1 100.0 80.0 81.8

24.7 27.6 27.8 28.2 27.75-best
99.1 100.0 100.0 100.0 100.0

5-best 0.0 25.8 27.7 17.7 13.1
+ ref 0.0 90.9 99.1 65.4 51.8

Parameters N/A N/A 778245 11350 1115

Table 1. Analysis of WER (normal), SER (italics), and
number of parameters on the phone recognition task using
the dr8 subset from the TIMIT corpus. Evaluation was per-
formed on rescoring the 100-best and 5-best HMM time-
aligned transcriptions with and without the reference tran-
scription.

To investigate the generative properties of the HDM, we
show a typical plot in Figure 1 of the real MFCC acous-
tic feature vector, O(k), together with the corresponding
HDMm and HDMc outputs, h(z(k)). It is evident that the
HDMs attempt to converge to the observation output as a
consequence of the EKF parameter estimation being driven
by minimisation of the innovation sequence. Some evidence
of the target-directed nature of the underlying production
process can also be seen by the positioning of the phone



segment centers where there is a change in the target and
time-constant dynamics.
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Fig. 1. Plot of the first component of the MFCC acous-
tic observation and HDM model output vectors from frame
100 to 202. The phone segment centers are indicated by the
vertical lines.

5. SUMMARY AND CONCLUSION

The HDM approach represents an important new paradigm
for acoustic modelling based on a more structured and par-
simonious model of the human speech generation process.
The results presented in this paper indicate the superior per-
formance of the HDM, especially when exposed to the ref-
erence transcription. The HMM often failed to provide high
scores for the reference transcription while the HDM suc-
ceeded in this in most cases. The main contribution of this
paper is the novel EKF-based parameter learning algorithm
which enables such success.

Further work is needed to develop a lattice scoring al-
gorithm with optimal segmentation of the dynamic regimes
to properly evaluate the performance of the HDM and to
investigate alternative EKF and EM parameter estimation
algorithms that incorporate estimation of the phone bound-
aries.
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