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Abstract

Deformable Parts Models (DPM) are the current state-

of-the-art for object detection. Nevertheless they seem

sub-optimal in the representation of deformations. Ob-

ject deformations are often continuous and not confined to

big parts. Therefore we propose to replace the DPM star

model based on big parts by a deformation field. This con-

sists of a grid of small parts connected with pairwise con-

straints which can better handle continuous deformations.

The naive application of this model for object detection

would consist of a bounded sliding window approach: for

each possible location of the image the best part con-

figuration within a limited bound around this location is

found. This is computationally very expensive. Instead,

we propose a different inference procedure, where an iter-

ative image-level search finds the best object hypothesis.

We show that this approach is faster than bounded slid-

ing windows yet produces comparable accuracy. Exper-

iments further show that the deformation field can better

approximate real object deformations and therefore, for

certain classes, produces even better detection accuracy

than state-of-the-art DPM. Finally, the same approach is

adapted to model-free tracking, showing improved accu-

racy also in this case.

1 Introduction

Current state-of-the-art object detection methods allow

for some deformations, in particular the successful de-

formable parts models (DPM) 1 introduced in [15]. DPM

is based on a star model (see Fig. 1a), that connects each

part to a center. It imposes a prior on the displacement

1In this work when referring to DPM we consider the specific imple-

mentation of [15].

  

  

(a) (b)

Figure 1: Star Model vs. Elastic Field. (a) The Star

model should be composed of big parts as they move in-

dependently and they can lose their structural meaning;

(b) the elastic field can be composed of small parts be-

cause the global regularization is enough to maintain the

structure coherence. Notice that if some small parts have

strong connections (red lines) then they are equivalent to

a big part.

of a part w.r.t. its resting position or “anchor point” and,

given the object location, assumes that parts move inde-

pendently. This does not really hold for most real objects

and only works if parts can be chosen strategically. In fact,

in most of the cases the moving parts only approximate an

underlying continuous deformation, for instance due to a

perspective distortion. To obtain a more precise repre-

sentation of the object deformation it is then necessary to

split the object into many smaller parts. Yet, this would

not work in a star model, as small parts would have little

discriminative power and consequently little capacity to

be appropriately driven away from their anchor point.

Thus, we investigate the use of a different deforma-

tion structure when using many small parts: an elastic

deformation field . This elastic deformation field model

(EDFM) imposes a prior on the displacement of each part
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w.r.t. its local neighborhood. Each part has pairwise con-

nections with the neighboring parts, that determine the

local stiffness of the model (see Fig. 1b). The net dis-

placement of each part now depends on the global config-

uration of the model. Fig. 1b shows how EDFM can still

represent big parts if needed. Setting the pairwise costs

between some of the small parts to infinity yields big-

ger rigid parts. As these costs are learned during training,

the model ‘knows’ where parts should move together and

where independently. The deformation field can represent

a wide range of deformations, like those represented in

Fig. 3.

An intuition of the difference between the star model

and the deformation field when using many small parts is

given in Fig. 2. For a uniform stretching, the deformation

field has a uniform distribution of the deformation over

the parts (Fig. 2d). In contrast, in the star model (Fig. 2c),

parts that are far from the object center should take into

account the deformations of the previous parts, such that

the pairwise displacement is higher. Now, considering

that in our models the deformation costs are learned dur-

ing training, in order to be able to represent the same sam-

ples, the higher pairwise displacement of the star model

induces a lower deformation cost. Thus, this implies a

looser model that is more prone to false positive detec-

tions.

To apply this model for the problem of object detec-

tion a standard solution would consist in using a bounded

sliding window approach. That is, consider each possi-

ble location of the image and for each one find the best

part configuration within a bounded region. In practice, as

parts are connected with a loopy graph for an EDFM, for

each location a CRF optimization over the parts locations

is needed. This is too expensive for practical use. For

instance, in [28] a similar deformation field was studied,

but locally affine constraints had to be introduced to the

object part locations to simplify the inference and make

the model computationally feasible.

In contrast, here we propose to use a “real” loopy graph

CRF model where each part (node) can be placed virtually

in any possible location of the image (labels). Instead of

using a sliding window procedure, we consider an itera-

tive image-level approach where we repeatedly search for

the best parts placement on the entire image. As our CRF

optimization is based on alpha expansion, its computa-

tional cost is linear in the number of part locations. Un-

(a) (b)

(c) (d)

Figure 2: Cost of Deformation. We compare the cost

of a horizontal uniform stretching in case of a star model

and an elastic field with the same number and location of

parts. Colors of the pair-wise connections represent the

amount of deformation. (a) Star model at rest. (b) De-

formable field at rest. (c) Star model with deformation;

parts that are further from the center have a larger dis-

placement. (d) Deformable field with deformation; the

deformation cost is distributed uniformly over the edges.

In general, for any kind of perspective deformation a sim-

ilar behavior is expected.

der these conditions we show that the iterative image-level

approach is much faster and more flexible than bounded

sliding window and, equally important, does not compro-

mise the detection quality.

To summarize, the main contributions of this paper are

the following:

1. we propose the use of an elastic deformation field

model for object detection, where parts are small and

connected with a loopy graph which can better rep-

resent typical object deformations;

2. we show that by using a image-level optimization

strategy the new deformation model, even if more

complex than the commonly used star model, can be

used for detection with a comparable computation

time;

3. we experimentally prove that our deformation field

in most of the cases outperforms the star model; and
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(a) (b)

Figure 3: Elastic Deformation Field. (a) Detection,

parts center placement and pairwise distortion; (b) Recon-

structed object. As the elastic deformation field encodes

deformations locally, it is also able to explain unusual and

highly deformed object configurations.

4. we improve model-free tracking with the use of our

deformation field.

The paper is structured as follows. In section 2 we dis-

cuss how our work relates to various topics of computer

vision. Then, in section 3, we define our model and in-

troduce a fast inference for it. Finally, section 4 reports

on experiments comparing our model with the state of the

art, while in section 5 we draw conclusions.

2 Related work

The idea of using an elastic deformation field is not new in

vision. In this section we first compare our method with

other deformable detectors and second, we give a broader

overview of different methods that apply similar deforma-

tion models to different tasks of computer vision. Finally

we also present the related work for the application of our

deformable model to tracking.

Deformable Parts Models. We consider EDFM as a

natural evolution out of DPM. Besides the original DPM

of Felzenszwalb et al. [17], there are multiple refine-

ments [15, 33, 39]. Vedaldi and Zisserman [33] proposed

an alternative representation as a predefined set of part

configurations that can yield global affine deformations.

However deformations are often local, so global transfor-

mations may be less effective than the more general DPM.

Another interesting extension of DPMs is presented in

[39], where the star model is extended to a real tree with

a deeper structure. This hierarchical structure can bet-

ter approximate real object deformations because nearby

parts have the same parent and follow its displacements.

Yet, this structure has previously been used for image

restoration and optical flow, and there it is known to pro-

duce artifacts due to the spatially varying neighborhood

structure. That is, inside the ‘big’ parts there tends to be

over-smoothing, whereas their boundary regions tend to

be under-smoothed. A partial remedy is proposed in [30],

where the hierarchy of parts is enriched with local loops

of pairwise connections that dynamic programming can

solve efficiently. Although locally more consistent, there

are still disconnected parts that move independently. Fi-

nally, if the deformation structure of the model is known

a priori (e.g. for human detection), a simpler tree model

can suffice [36]. However, we deal with the more gen-

eral case where the deformation structure should also be

learned. The deformable model work most similar to ours

is probably that of Ladicky et al. [28], who propose a

locally affine deformation field to detect humans. After

introducing a complete CRF model for deformation, they

claim that it is too deformable and a per instance tuning

of the pairwise costs would be necessary. We show that,

by learning the pairwise costs during training a complete

CRF model can be used and yields better accuracy (see

section 4). The authors of [28] also claim that a CRF op-

timization sliding window style is computationally too ex-

pensive. We came to the same conclusion, but propose an

alternative that obtains the same detection accuracy with-

out sliding window and has a much smaller computational

cost (see section 4).

Random fields have been widely used for object de-

tection and segmentation. Usually, the MRF/CRF is

used to model the compatibility between object parts

[20, 23, 31], or to reason about multiple detections and

context [11, 27]. In the context of modeling object de-

formations, [9] uses a generalized star model (k-fans) and

shows that for certain classes it can improve the recogni-

tion accuracy. However, that model is more limited than

our array of parts and has a slower inference. In object
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recognition, loopy graphs with pairwise connections sim-

ilar to ours have been previously used to model the spa-

tial relationship among parts [5, 18, 26]. However, to the

best of our knowledge, our work is the first that can use

a loopy graph CRF to model object part deformations for

object detection, where multiple objects are to be found

at multiple scales and locations. Considering the task of

detecting multiple objects at multiple scales produces a

multiplication of the computational cost such that loopy

graphs have so far generally been considered too expen-

sive to use.

Graph matching kernel. Another recent paper with

some similarities is [12]. The authors use a deformable

model similar to EDFM for object classification. Whereas

in EDFM the deformation field is considered a latent vari-

able, they use it to build a kernel that measures a distance

between examples. Apart from the fact that this kernel is

not positive definite and the problems this can entail, the

approach is computationally costly. To evaluate an ex-

ample one has to evaluate the kernel with every learned

support vector (possibly thousands). This is feasible for

classification, where the number of samples is low, but

not for detection where for each training image there can

be many samples to evaluate. Instead of evaluating each

sample with the learned support vectors, our EDFM com-

pares each sample with the learned model. This is thou-

sands of times faster and can therefore also be used for

detection. Another advantage of EDFM is that pairwise

costs can be learned, which is difficult when using a ker-

nel.

Image registration. Image registration or alignment

has also some similarities with our approach. In [19] im-

age registration is accomplished with similar pairwise de-

formation constraints and an inference based on a gener-

alization of alpha expansion to the primal-dual formula-

tion [25]. Even if the inference is quite similar to ours,

the final task of image registration is to find a one to one

correspondence between images. In contrast our task is to

find a class model that is able to recognize and align pos-

sibly multiple objects in an image at any possible location

and scale. Also in this case the order of the computational

costs is very different because for detection we need to

align every possible location and scale to a model, which

makes a direct use of a CRF in a sliding window man-

ner computationally challenging, as will be shown in the

experimental results.

Optical flow. There is an interesting analogy between

optical flow techniques and our adaptation of DPM. The

Lucas-Kanade extraction of optical flow [29] splits the

initial image into patches and finds for each the displace-

ment that minimizes the least squares distance to the new

image. This is quite similar to the DPM approach [15],

where object parts are searched independently to best fit

the object model. In contrast, Horn and Schunck [21] use

a global approach, enforcing optical flow smoothness to

solve the aperture problem. This is similar to what we do

in EDFM, where we enforce global coherence on part dis-

placements. As a matter of fact, the global smoothness of

the optical flow often is too strong assumption, since the

objects in a scene can move independently. For object de-

formation this assumption makes more sense, especially

as we can learn the pairwise constraints of the field.

Model-free tracking. In model-free tracking, the only

information about the object to track is the location (gen-

erally a bounding box) of the object in the first frame of

the video. The most successful methods learn a discrimi-

native on-line classifier that separates the object from the

background. The classifier is updated to adapt to the lo-

cal changes of the scene. Examples of this scheme are

[3, 22]. However, updating the classifier is not always the

best strategy because it can introduce a drift in the model

representation. Instead, by modeling the variations that

the appearance of the object can assume, for instance by

considering an invariant or co-variant representation, can

reduce this drifting. This idea has been widely applied for

illumination changes by using features that are invariant

to linear or affine light changes, e.g. SIFT. The same con-

cept of invariance can be used also for the object structure.

In [38] for instance, the deformable structure of multiple

objects or object parts is used to improve the tracking ac-

curacy. We go further in this direction, considering a de-

formable representation based on the EDFM, which can

better represent local and perspective deformations.

3 Elastic Deformation Field Model

We define our deformable model, EDFM, as a set of parts,

each with their position (x,y) and scale s, yielding triples

in the location space L ⊂ N
3. The appearance score Ai

generated by the part i at location li = (x,y,s) ∈ L , is
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given by:

Ai(li) =
〈

wA
i ,H(li)

〉

, (1)

where H is a function that extracts the local features (e.g.

HOG features) of the part at li and wA
i is a vector of

learned weights. Applying a linear model, we define the

total model score as the sum of the N part scores:

A(l) =
N

∑
i=1

Ai(li), (2)

where l = [l1, l2, ..., lN ]. Spatial coherence comes from

the assumption that each part location li is displaced by

i) a fixed displacement ai relative to an object location

p and ii) a further distortion/deformation di. This yields

li = p+ ai + di, where p+ ai is the anchor position (in-

cluding the scale) for the part i. Setting the distortions di

to 0, but varying p, would correspond to sliding around

a rigid template (e.g. the Dalal and Triggs detector [10]).

Yet, we allow for the distortions as just introduced. In

order to avoid parts moving independently – thereby in-

creasing the risk that they do so incoherently – we need to

set a cost D on the part distortions from their fixed anchor

position a. This then yields the following overall score for

a hypothesis on the position of an object and its parts:

S(p, l) = A(l)−D(l−p−a), (3)

where p = [p, p, .., p], i.e. all parts are displaced w.r.t.

the same object center and a = [a1,a2, ...,aN ]. The final

detection (maximal score) thus yields a trade-off between

deformation and appearance.

In DPM [15] the prior is set as:

DS(d) =
N

∑
i=1

〈

wD
i , [di,d

2
i ]
〉

, (4)

where wD
i is a vector of positive weights applied to the

absolute values of the displacements di = li − p− ai of

the part i and its squared values d2
i . This prior says that

the larger a distortion is, the larger its penalty. It limits

the distance a part can move away from its anchor, but

allows parts to move independently given the object cen-

ter p. This model works properly when 1) parts are big,

so that each part’s appearance is discriminative enough to

not get confused by local distractors (other parts provide

no localization support), and/or 2) part displacements are

small so that their independence is almost true.

Our EDFM aims at large deformations, which can be

gradual/non-rigid over the object. Therefore parts need to

be small. With those goals in mind, we do not penalize

part distortions per se, but the differences with the distor-

tions of their neighbors. Thus, the elastic stretching of a

pattern comes at a cost, while parts moving together is for

free. The new deformation cost is therefore:

DF(d) = ∑
(i, j)∈E

〈

wD
i , [|di−d j|,(di−d j)

2]
〉

, (5)

where E are the edges of a graph defining the neighbor-

hood (in our experiments a 4-connected neighborhood as

shown in Fig. 1b).

3.1 Inference

In this section we analyze the different methods that are

generally used for finding the best ”deformable“ detec-

tion in an image and compare their corresponding costs.

Finally we present our approach based on an iterative

image-level optimization.

Given an image, we are interested in finding the max-

imum a posteriori (MAP) solution of the probabilistic

problem associated to our scoring function, i.e. the best

detection. In DPM the score of a configuration of parts

depends on both the position of the object p and the loca-

tions l of its parts. The best detection corresponds to the

best scoring location:

p∗, l∗ = argmax
p,l

(A(l)−D(l−p−a)). (6)

If the deformation connections form a star, as defined

by DS in Eq.(4), then the problem can be solved using

dynamic programming with a computational cost that is

O(N|L |2), which is in general too expensive.

In [16], the use of particular deformation costs that only

depend on the deformation (l−p−a) and not on the abso-

lute object location p is promoted such that a generalized

distance transform can be used. In this case the optimiza-

tion is first computed at each p and for each part li inde-

pendently with a linear cost and then the best location p

is found as the best sum of the parts scores:

argmax
p

(
N

∑
i=1

argmax
li

(Ai(li)−Di(li− p−ai))). (7)
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As the distance transform can be computed in linear time,

the optimization has a cost that is proportional to N|L |.
In contrast to the star model, the deformation field defined

in Eq.(5) composes a loopy graph. The solution based on

a distance transform can therefore not be applied.

Another way to optimize it is to use a bounded sliding

window approach. It is based on the assumption that the

deformation of the parts is limited and therefore we can

search for the best parts configuration in a local region P

around the object center (predefined in [28, 30] or learned

in [14]):

argmax
p

(argmax
l∈P

(A(l)−D(l−p−a))). (8)

As the optimization of each local region has a

bounded cost |P|, the total computational cost is now

O(N|P||L |), which is affordable if |P| is small enough.

Unfortunately, as we will show in section 4, this approach

still is computationally too expensive when using a defor-

mation field. To reduce this cost, in [28] additional con-

straints (local affine deformations) are considered. This

allows for the use of bounded sliding windows together

with a loopy CRF, as the corresponging optimization can

be solved with efficient dynamic programming. Instead

we want to be able to use the complete deformation capa-

bilities of the EDFM model without limiting them to be

locally affine. We therefore use a different approach that

allows us to solve “real” CRFs in a faster manner.

Recent combinatorial methods for CRF optimization

such as alpha expansion [8] come with guarantees about

their optimality and at the same time have a computational

cost that is linear with the number of labels. Considering

the linear cost of the method, we can compute directly the

MAP solution over the entire label space L as:

argmax
l∈L

(A(l)−DF(l−p−a)). (9)

As DF computes differences of deformations, the solution

is independent of p and we do not need to optimize for it.

The MAP solution of the image-level optimization defined

in Eq.(9) has a cost that is proportional to N|L |, while

using the bounded sliding window approach has a cost

proportional to N|P||L |. Thus, the computation of the

MAP solution is |P| times faster than the sliding window

approach. On the other hand, it provides only the MAP

solution whereas a (bounded) sliding window approach

provides a solution for each p. Below, we describe how

an iterative application of the image-level optimization al-

lows to cope with multiple objects in an image.

3.2 Multiple hypotheses

In detection it is not really necessary to evaluate the score

of every possible window location p in the image. What

really matters is to find all the objects present in the scene.

In this sense, we can reshape our problem as finding the

K-best detections in the image. If K is large enough, this

can lead to the detection of all the objects in the image.

For finding the K-best detections, we add an extra scor-

ing term that penalizes configurations l with parts placed

similarly to a previous detection l∗:

∆g(li, l
∗
i ) =

{

−∞ i f |li− l∗i |< µP

0 otherwise
(10)

This term forbids part i to be placed closer than µP to a lo-

cation l∗i that has already been occupied by the same part

in a previous detection. Considering now a set of detec-

tions DK = {l1, · · · , lK}, the total potential is ∆G(l,D) =

∑l∗∈D ∑
N
i=1 ∆g(li, l

∗
i ). This is a particular instance of the

general problem proposed in [4]. As in our case ∆G de-

pends only on the part location, its score can be added

directly to the data term of Eq. (6). In this way, solving

for the K-best solutions boils down to solving the same

optimization K times, with varying data terms. Because

during the K iterations the generated graph is quite sim-

ilar (only the data terms are modified), reusing the pre-

viously computed flows in the graph-cut optimization (as

explained in [24]) can help to further speed-up the infer-

ence procedure.

Reconsidering now the computational costs, we can

see that computing the K best solutions takes O(NK|L |)
whereas the bounded sliding window approach takes

O(N|P||L |). Therefore in the bounded sliding window

approach, to speed-up the method we should consider

a reduced deformation |P|. In contrast, in our image-

level optimization (similarly to generalized distance trans-

forms) we do not need to limit a priori the object defor-

mation. Instead, we need to fix the number of detections

K that we want to obtain, knowing that the computational

cost of the method is linear in it. This allows for more

flexibility, and combined with additional considerations it
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can lead to quite high speed-ups. This is the topic of the

next section.

3.3 Multiscale detections

So far we have assumed the feature space L to be uniform

over the three dimensions (x,y,s). However our real space

of features (e.g. HOG features), for reasons of speed, is

not uniform over scales. This corresponds to moving from

a uniform grid of features to the usual pyramid of fea-

tures. As we want our model to be scale invariant (i.e.

the detection score should not depend on the scale), the

distances between parts are computed with respect to the

size of the parts: the scale. In this way the space of the

parts L becomes the space (x/s,y/s,s). In this space the

usual concept of distance is lost. The space is not metric

and, therefore, alpha expansion cannot be used. In order

to still optimize the CRF with fast alpha expansion we

force the parts to be all at the same scale. Thus, the dif-

ference between the two deformation vectors di − d j of

Eq.(5) on s are always set to zero. In this way we can op-

timize each scale independently and fixing the scale s = ŝ

the 2D space (x/ŝ,y/ŝ) is again a valid metric. With these

assumptions, we can split our image-level inference into

an independent inference for each scale.

In a naive implementation, to compute the K-best de-

tections it is then necessary to apply the CRF inference

at every scale K times. When considering S scales, this

would produce KS detections, whereas we are only inter-

ested in the best K. This is clearly sub-optimal. In order to

speed-up the procedure without losing detections, we use

a greedy search over the natural splits defined by scales.

For the first detection we apply the optimization of

Eq. (9) at each scale s and maintain a priority list of scores

vs. The best score is selected as best detection. Then, to

select the second-best detection we penalize the first de-

tection as explained in the previous section and we repeat

the optimization at the same scale. The new best detec-

tion is the maximum score of the updated list of scores.

Again, the found detection is penalized and a new de-

tection at the same scale is found. The procedure is re-

peated until the desired number of detections has been

obtained. Assuming that the optimization is exact 1 (i.e.

1Typically, using alpha expansion the solution will not be exact.

However, we experimentally found that still the algorithm works well,

Find the K best detections {detd}.
0 for s ∈ [1..S]
1 vs←maxl∈Ls

A(l)−D(l)
2 d← 0

3 while d < K

4 h← argmaxi vi

5 detd ← vh

6 d← d +1

7 A(l)← A(l)+∆G(l, lh)
8 vh←maxl∈Lh

A(l)−D(l)

Table 1: Algorithm for finding the K best detections in an

image.

it always gives the best scoring configuration), this pro-

cedure gives the K-best results computing only K +S op-

timizations. In Table 1 we formally define the algorithm

for finding the K-best hypotheses. To further speed-up the

algorithm, the priority list is initialized by computing an

upper-bound of the maximum score as sum of the unary

terms maxl ∑
N
i=1 Ai(li). This is a safe bound because the

pairwise terms are forced to be negative.

At this point we can see that the image-level optimiza-

tion defined in Eq. (9), in case of multiscale search, is

much faster than the bounded sliding window approach.

Now, the total cost for detecting at multiple scales with the

bounded sliding windows is proportional to ∑
S
s=1 |P||Ls|

where |Ls| is the number of locations at scale s. In-

stead, for the image-level optimization with our greedy

search the computational cost (without considering the

additional speed-up of the previously defined bound) is

∑
K
k=1 |Lsk

|+∑
S
s=1 |Ls| where sk is the selected scale for

the k-th detection. In practice, while sliding windows has

to search uniformly over all image scales, our image-level

inference can focus only on the scales where the object is

more likely to be.

Note, however, that the number of hypotheses K is not

exactly equal to the number of objects expected in an im-

age. In fact, the same object can be detected at multiple

scales, and therefore multiple hypotheses could be associ-

ated to it. Experimental results comparing detection ac-

curacy and speed-ups for the two methods are presented

which is a indirect observation that the found solution is generally very

close to the exact one. See Fig. 4 in the experimental results.
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in section 4.

3.4 Optimization Variants

As solving Eq. (9) boils down to solving a CRF problem,

standard techniques for CRF optimization can be used.

We have tested different algorithms for optimizing Eq. (9)

and found that a graph-cut with alpha expansion [8] works

best. Alpha expansion decomposes the difficult multi-

label problem into a sequence of simpler binary subprob-

lems [7]. Each subproblem iteration randomly chooses a

new label, and determines for each node to either accept

the new label or to stay with the old one. Such alpha ex-

pansion has completed a cycle when all possible labels

have been evaluated. Each binary subproblem is solved

with a graph-cut, so that its solution is exact. The energy

of the multi-label problem can only decrease throughout

the alpha expansion. As deformation costs are defined as

the application of a convex function over the part displace-

ments SD(l), this function is a valid metric and therefore

we are sure that alpha expansion can be used and that ev-

ery subproblem is sub-modular.

Alpha expansion is also efficient. With the maximum

number of cycles fixed, the optimization is linear in the

number of labels (i.e. locations where to place a part).

If the complexity were more than linear, a image-level

optimization would make little sense because a sliding

windows approach using a subset of all possible labels

would at some point become faster. The worst-case com-

putational cost is polynomial in the number of nodes, but

our experiments have shown a linear behavior in practice.

This allows us to use models with a relatively high number

of parts. Finally, the algorithm can be speeded up using

dynamic graph-cut optimization in the alpha expansion,

as shown in [1].

We also tried to optimize our score function with other

methods, but the results were inferior in terms of both

speed and quality. Loopy belief propagation constantly

gets stuck in poor local minima, that depend on the label

initialization. Sequentially reweighted trees usually give

the correct solution, but are still based on belief propa-

gation on subtrees of the graph. Therefore the computa-

tional time is of the order of O(|L |2) and the image-level

optimization is very slow for normally sized images. One

can combine sequentially reweighted trees with a distance

transform, reducing the computational time to O(|L |),

but in practice the constant factor for this inference is

much higher than for graph cuts with alpha expansion.

Neither would the fast method of [12] work, because it

searches for the best expansion only in orthogonal direc-

tions. In general the best detection is not orthogonal to the

initial solution. Therefore also this method tends to get

stuck in a poor local minimum. Increasing the number

of search directions can mitigate the problem, but slows

down the algorithm.

3.5 Learning

Given a set of positive and negative images and the object

bounding boxes B, we want to learn a vector of weights

w∗ such that:

w∗ = argmin
w
{

1

2
|w|2

+C
M

∑
n=1

K

∑
k=1

max(0,1+max
l
(S(l,xn,k,w)+∆G(l,D

(n)
k−1)))

+C

|B|

∑
n=1

max(0,1−max
l
(S(l,xn,w)+∆H(l,Bn)))}.

(11)

This minimization is an instance of the latent SVM prob-

lem [15]. The locations of the object parts l are the la-

tent variables. For negative examples, as we are inter-

ested in ranking detections, we select the first K best

detections generated from M negative images. For do-

ing that we use the potential ∆G defined in section (3.2)

that forces the optimization to search for different solu-

tions. As the hinge loss has zero loss for correct classi-

fications with margin higher than one, the search for the

best K detections can safely stop when the detection score

is smaller than −1. This speed-ups the training signifi-

cantly while maintaining the same accuracy. For positive

examples we want them to be inside the bounding box

Bn ∈B. For this we add to S(l,x,w) 2 another potential

∆H(l,Bn) = ∑
N
i=1 ∆h(li,Bn) that assigns a score of −∞ to

parts outside the object bounding box Bn.

As opposed to binary SVMs, here the problem is not

symmetric. Due to the maximization of the latent vari-

ables, the loss for the negative samples is convex, while

2S(l,x,w) is the maximization defined in Eq. (9), where we make

explicit the dependency on the image x and w.
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the loss for the positive samples is concave. This is solved

using an iterative procedure. Given an initial w we find the

latent values l for the positive samples. Then, fixing those,

we find a new w optimizing the convex problem with stan-

dard SVM solvers. In practice, as we want to enforce

positiveness to the deformation parameters, we solve the

problem in the primal by using stochastic gradient descent

[32] and re-projecting the solution in the feasible space of

solutions with positive deformation coefficients.

In the ideal case, when we can find the optimal solu-

tion for Eq. (9), the loss of the positive samples can only

decrease at each iteration and, hence, the algorithm con-

verges [37]. Unfortunately, in our case the alpha expan-

sion algorithm puts only a weak bound on the quality of

the solution [8]. To keep the convergence, we slightly

modify the assignment of the positive latent variables. We

build a buffer with the previously assigned values. When

the new assignment is effectuated, we maintain it only if

it produces a lower loss (higher score); otherwise the old

assignment is restored.

3.6 Tracking

Improving the deformation model is not only useful for

detection, also other tasks can benefit. In this section

we show how to apply our deformation model for track-

ing. Using a more precise deformation model for tracking

leads to a more accurate and invariant object representa-

tion, which in turn can better follow the object of interest.

In tracking, the object of interest is annotated only at

the first frame of a video sequence. Then, the object

should be tracked throughout the rest of the video. This

is a challenging task because during the video the object

is seen from different points of view, there can be partial

or total occlusions, similar objects can confuse the tracker

and also light changes cause the loss of the object of in-

terest.

We argue that in tracking most of the changes in appear-

ance, apart from occlusions and illumination changes are

due to changes of viewpoint, which correspond to small

object deformations due for instance to out of plane object

rotations. Here we make the object observations more ro-

bust to viewpoint changes by using our deformation field.

As changes in the point of view often correspond to per-

spective distortions, our grid of small parts can approxi-

mate them properly and better than other approaches.

The tracker is initialized learning a model of the object

of interest. The model is learned using Eq. (11), where

there is only one positive sample, the object annotated in

the first frame of the video, and a set of negatives that are

all the other bounding boxes that do not overlap with the

annotated one. For localizing the object we consider the

image-level approach defined in Eq. (9). In this case the

problem is more constrained however, because the model

has only one component, and we know a priori the num-

ber of objects that should be found. In this way we can

reduce the number of hypotheses to generate and the al-

gorithm takes less than 1 second to compute a frame. The

update of the model is effectuated using an online version

of Eq. (11), where the object model is recomputed at each

new frame using stochastic gradient descent. The new

observation of the target in a new frame is the one that

produces the highest score and has at least 10% overlap

with the previous one. This enforces a minimum smooth-

ness on the target displacements. In all the experiments

for training we maintain a buffer with the last 100 best

positive detections and 1000 negative detections.

4 Experiments

After first introducing the used datasets and giving some

technical details of our implementation of the EDFM, we

then present several experiments that evaluate the dif-

ferent contributions of our method. In our first exper-

iment we compare the proposed image-level inference

with bounded sliding windows in terms of speed and ac-

curacy. Then we compare the performance of the field and

the star model varying the number and size of the parts.

Finally, we compare our method, based on a set of small

parts connected with a field, with the state-of-the-art.

Datasets. We compare our method to various baselines

on Pascal VOC 2007 [13]. This dataset contains 9,963

images separated into 20 different classes of objects. It is

well recognized for its difficulty and is the de-facto stan-

dard benchmark for object detection. Additionally, con-

sidering that the deformation field can also improve the

more specific task of human detection, we train and eval-

uate our method also on two challenging human datasets,

where people can be found in very different positions and

poses. The first one is the Buffy dataset [28] that contains

748 images of humans performing many different actions,

9



which makes it a good benchmark to evaluate deformable

models. The second one is the UIUC people dataset [35]

that contains 593 images of people playing badminton and

other sports. As the Buffy and UIUC people datasets do

not provide images to collect negative examples, we use

the negative images from the INRIA dataset [10]. Finally,

to test the EDFM for tracking we compare it to several

state-of-the-art trackers using the publicly available col-

lection of videos of [3].

Implementation Details. In this section we provide a

detailed description of the most critical parts of our imple-

mentation of the EDFM. For the initialization of the defor-

mation field we initially learn a rigid model (i.e. pairwise

costs wD =−∞). Then we use the appearance of the rigid

model and relax the pairwise constraints. In this way we

are able to iteratively and jointly refine the pairwise defor-

mation costs and the model appearance in the latent SVM

optimization.

We notice that for the robust learning of SVMs it is very

important to reach convergence during the harvesting of

negative examples. If not, the learned deformations are

too loose so that the next relabeling of the positive exam-

ples can be partially wrong and the model rapidly drifts to

a wrong configuration without any possibility to recover.

The detection time of the EDFM depends linearly on the

number of alpha expansion cycles. In general, as noticed

in [8], few cycles are already enough for convergence. In

our experiments we found 3 cycles to be sufficient. In all

experiments as inference strategy we use the image-level

CRF method specified in section 3.3, searching for the

first 200 detections.

We use a model with 2 components and their vertical

mirror for VOC 2007, and 3 for UIUC people and Buffy.

For VOC 2007, more than 2 components did not improve

the global performance. The number of parts for each

model is then established by the model resolution which

is estimated based on the size of the bounding boxes of the

training images as in [15]. The neighborhood size µP for

penalizing an already detected location is set to 2 HOG

cells. For evaluation, we estimate the final bounding box,

as the minimum bounding box containing all the object

parts. The local penalties ∆G of each part location allow

the method to find multiple detections at the same loca-

tion. This can be useful in very specific situations (e.g.

two distinct but highly overlapping objects), but in gen-

eral it can produce multiple detections of the same ob-

ject. How to use these hypotheses in a better way is left

as future work. For the moment, after the bounding box

estimation a standard bounding box based non-maximal

suppression is applied.

Image-level Inference vs. Sliding Window. First we

compare the EDFM with image-level optimization (with

different numbers of hyphotheses) vs. the bounded sliding

window scheme introduced in section 3. In Fig. 4 we draw

the precision-recall curves for the two configurations, re-

porting also in the legend average precision and average

time per image. As the bounded sliding window approach

is very slow, we only used Pascal VOC 2007 images con-

taining bicycles for the test. For bounded sliding window

approach we define the search region P to be half the size

of the object. The model used for this experiment has two

components each with 24 parts and each part composed of

3×3 HOG cells. By reducing the number of parts the in-

ference time can be further reduced (with a cost in terms

of AP, as shown in the next subsection), but the relative

speedups of the different configurations are similar. The

bounded sliding window approach has a higher recall but

lower precision and it has a computational time that is

almost 2 orders of magnitude higher than our approach.

For the image-level optimization, varying the number of

hypotheses corresponds to a different trade-off between

precision and recall. Notice that already with as few as 10

hypotheses our image-level inference obtains results very

close to sliding windows at just a fraction of the compu-

tation time needed for the bounded sliding window ap-

proach. The best results are obtained using 500 hypothe-

ses. More slightly reduce the AP due to additional false

positives.

The fact that the bounded sliding window approach

yields a score inferior to our approach is an indication

that: i) our image-level inference works well and does

not get stuck in poor local minima (otherwise its AP

would be much worse than sliding windows), and ii) the

bounded sliding window, searching everywhere, commits

to many more high-scoring errors. In the rest of the exper-

iments we always use image-level inference with K = 200

since it is a good trade-off between speed and accuracy.

EDFM with image-level inference has a detection time

that is comparable with other state of the art methods like

DPM [15], running at around 8 seconds per image, or

LADF [28] that takes around 50 seconds to run with 10

components.
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Figure 4: Image-level Inference vs. Bounded Sliding

Window. We compare EDFM with image-level inference

(with different number of hypotheses) with bounded slid-

ing window in terms of AP and average computational

time on Pascal VOC 2007 bicycles. In the image-level in-

ference, when varying the number of hypotheses we ob-

tain a different trade-off between precision and recall. In

terms of time, our method is always much faster than the

bounded sliding window.

Elastic Field vs. Star Model. To contrast the elastic

field with a star model we compare both of them using

exactly the same parameters for the two configurations,

but varying the size of the parts (and thus the number of

such parts in each component).

In Fig. 5 we plot the performance (in terms of AP) of

detectors trained with different part sizes using either a

star model or a deformation field. Visualizations of the

EDFM with different part sizes for the class bicycle are

presented in Fig. 7. In general, when using big parts the

two models have a similar performance. When reducing

the part size the deformation field improves its perfor-

mance while the star model remains the same or becomes

worse. This is due to the global coherence enforced by

the pairwise connections that permits to better represent

deformations with many small parts. For the deformation

field the best trade-off between part size and performance

is in general found for parts of 3×3 HOG cells, which is

the part size used in the rest of the experiments.

(a) (b)

Figure 6: Star vs. Elastic Field detection. (a) Star model

detection. (b) Deformation field detection. Nodes repre-

sent the location of the parts center while edges represent

the local distortion between two neighbor parts. The de-

formation field tends to maintain more coherence among

neighbor parts and therefore can represent global distor-

tions better than the star model.

In Fig. 6 we show two examples of detections with the

relative position of the parts for a star model (a) and a de-

formation field (b). Whereas in the star model each part

moves independently, for the deformation field the loca-

tions of the parts follow a global structure enforced by the

pairwise constraints.

Human detection on Buffy. Next, we evaluate the

EDFM on the Buffy dataset. Based on the validation set

we build a model with 3 components, each one composed

of parts of 3× 3 HOG cells. For the evaluation we use

the same protocol as in [28]. In Table 2 we compare our

EDFM with the standard DPM and the locally affine de-

formation field (LADF) introduced in [28].

Our model outperforms the DPM with more than 5%.

This shows that deformations are important for detection

and that a finer grid of parts and a better prior on the de-

formations are effective ways to improve detection.

As to LADF, both methods use a field of small parts.

However, there are several differences between the two

methods. First, in LADF, to better adapt to the differ-
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(a) (b)

Figure 7: Bicycle models with different parts size.

Models used in Fig. 5. The models have a similar res-

olution but a different number of parts (Top 6×6, middle

4× 4, and bottom 2× 2 ). (a) Lateral model. (b) Frontal

Model.

ent poses in the dataset, the data is split into 10 different

clusters (components) using a distance based on the de-

formable field. In contrast, our EDFM uses a much sim-

pler split into 3 components based on the aspect ratio as

in DPM, because we believe that our elastic deformation

field can cope with the deformations introduced by differ-

ent human poses without the need of many components.

Despite the smaller number of components our EDFM

outperforms LADF with a margin of almost 2%. We be-

lieve that our model performs better than LADF due to the

different deformation field used. In LADF the deforma-

tion field is restricted to locally affine deformations with

a predefined and uniform cost which limits the amount

of configurations that can be represented. In our model

implementation def. model components AP(%)

DPM [15] star model 3 72.3

LADF [28] loc. aff. field 10 76.0

EDFM(ours) elastic field 3 77.8

Table 2: Human detection on Buffy. We compare DPM,

LADF and our EDFM on the Buffy dataset. Because of

the high variation of poses of the humans in the dataset

EDFM clearly outperforms DPM. Also, our EDFM with

only 3 components outperforms the LADF trained with

10 components.

Ours HPos[35] PS rev.[2] DPM[15] Poselet[6]

Acc. 78.0 66.8 50.6 48.6 45.8

Table 3: Human detection on UIUC people. As is stan-

dard for this dataset we compute the accuracy of the best

detection in each image. A detection is considered valid if

it has an overlap higher than 50% using the Pascal overlap

criteria [13].

instead, we use a complete CRF model, where the more

probable deformations are learned in a discriminative way

through the joint learning of the pairwise costs and the

model appearance in the latent SVM procedure.

Human Detection on UIUC people. As for Buffy,

also here we built a human detector based on 3 compo-

nents, each one containing parts of 3× 3 HOG cells. We

compare our detector based on the deformation field with

other state-of-the-art methods, some of them ([6],[2],[35])

also using parts annotations for training (see Table 3).

Also in this case our method outperforms the other ap-

proaches. In Fig. 8 we show the 3 components of the

model learned by our approach (parts are omitted for clar-

ity).

Object detection on PASCAL VOC 2007. We also

evaluate our model on the 20 object classes of the chal-

lenging PASCAL VOC 2007. For all the classes we use

2-component models and parts of 3×3 HOG cells. In Ta-

ble 4 we compare our EDFM with DPM based methods.

It outperforms the others on 10 out of 20 classes.

From the table we see that our model outperforms the
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(a) (b) (c)

Figure 8: UIUC people model components. The three

components represent the main poses that a person as-

sumes in the dataset.

others in 6 classes. For classes like “bird”, “cat”, “dog”,

the appearance is extremely variable due to the very dif-

ferent poses these animals can assume. In these case, as

there is no distinctive appearance, it becomes very dif-

ficult to learn a proper deformation model and therefore

simpler assumptions about the deformations, as in a star

model, can work better. Another interesting case is “per-

son”. Here our performance is quite inferior to the other

DPM models in spite of the good results obtained in the

other datasets. This is probably due to the high variabil-

ity in appearance present in these images, that again does

not let the model to properly learn the correct deforma-

tions. Also, it is important to mention that our model is

composed of a single layer of HOG features, while all the

others use two or more HOG resolutions. Fig. 9 shows

some examples of detections with the inferred deforma-

tions for different object classes.

Tracking. Finally, we evaluate the extension of our de-

formation field for tracking, as explained in section 3.6,

on the publicly available collection of videos introduced

in [3]. Table 5 reports the performance of our deforma-

tion field tracker compared with other methods such as

the MILboost tracker [3], the TDL tracker [22] and the

structure preserving object tracker [38]. The evaluation is

presented in terms of average distance in pixels between

the predicted bounding box and the ground truth annota-

tions and as precision. For precision we consider a detec-

tion as correct if its overlap with ground truth is more than

50% as in [38].

In the videos where the main challenge is a change of

view or an out of plane rotation, as in Sylvester or Tiger,

Ours MIL[3] TLD[22] Star[38] MST[38]

Err. PrecErr. PrecErr. Prec Err. PrecErr. Prec

Sylvester 5.5 0.9910.90.7320.00.91 9.3 0.907.1 0.93

David 5.6 1.0022.90.614.5 1.00 4.5 1.003.5 1.00

Cola Can 9.3 0.7620.90.2216.30.52 21.40.377.1 0.75

Occl. Face 1 16.60.8527.20.7816.80.99 5.5 1.004.6 1.00

Occl. Face 2 14.60.8720.20.8222.10.77 12.10.857.4 1.00

Surfer 5.5 0.789.2 0.767.9 0.84 189.20.2613.40.43

Tiger1 5.7 0.9315.30.5828.70.13 22.10.376.1 0.89

Tiger2 6.5 0.9017.10.6437.50.27 26.50.397.6 0.88

Dollar 4.5 1.0014.80.953.9 1.00 4.5 1.005.5 1.00

Cliff bar 6.7 0.7611.60.7712.30.36 67.60.3512.10.79

Tea Box 19.00.4810.20.8639.00.18 28.60.4341.90.40

Girl 18.80.7132.00.5724.70.78 10.51.0010.41.00

Avrg. Rank 1.921.833.5 3.083.663.00 3.252.912.161.83

Table 5: Performance of different trackers in terms of

average distance in pixels (Err) and precision (Prec). Our

method is markedly better than the others for those videos

where the object deformation is the main difficulty.

our detector clearly outperform the previous methods be-

cause it can represent the appearance distortion better.

This shows that the deformations induced by the defor-

mation field are also useful for tracking. Note that [38] is

based on DPM models where parts are connected in a star

(Star in Table 5) or with the minimum spanning tree (MST

in Table 5), based on the initialization frame. In contrast

to these models where the structure of the connected parts

should be defined as a tree to optimize it with dynamic

programming, with our model we can connect each adja-

cent part avoiding the problem of defining a priori the best

deformation structure.

In the last row of Table 5 we report a global estimation

of the quality of each method as average ranking over the

12 videos. Our method obtains the lowest pixel error and

(on par with MST) the best precision. Finally, in Fig. 10

the detections obtained by our tracker (dotted red line) are

compared with the ground truth (green line) on several

frames.
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plane bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

DPM [15] 29.0 54.6 0.6 13.4 26.2 39.4 46.4 16.1 16.3 16.5 24.5 5.0 43.6 37.8 35.0 8.8 17.3 21.6 34.0 39.0 26.8

HDPM [39] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6

Vedaldi [34] 30.6 58.1 10.0 12.7 21.2 52.1 55.0 20.1 19.4 22.1 20.5 11.3 56.4 43.6 38.8 10.8 14.8 25.6 43.8 43.8 30.5

DPM V5.1 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 43.2 12.0 21.1 36.1 46.0 43.5 33.7

EDFM(ours) 36.4 60.5 9.5 15.7 25.7 47.8 54.4 12.2 20.5 31.2 22.5 10.5 58.9 45.5 28.4 11.7 27.9 28.0 44.1 41.1 31.6

Table 4: Object detection on PASCAL VOC 2007. Average precision results for each class for different DPM star-

based models and our EDFM. Our model with a single resolution HOG features is able to outperform previous DPM

models on 10 out of 20 classes.

5 Conclusions

In this paper we have presented a method for the detection

of deformable objects. This method is inspired by previ-

ous work on optical flow and image registration where

for a good estimation of the displacement field it is nec-

essary to enforce a global regularization. Following this

path, we have introduced an object model composed of a

regular grid of small parts the location of which depends

on their distance from neighboring parts. We have shown

that, in spite of the complexity of the problem, this can be

optimized in a reasonable time avoiding a sliding window

search. Finally we have empirically proved that our model

is able to better represent complex deformations showing

comparable or better performance than the state-of-the-art

for different applications and multiple datasets.
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to-fine approach for fast deformable object detec-

tion. In: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp.

1353–1360 (2011)

[31] Quattoni, A., Collins, M., Darrell, T.: Conditional

random fields for object recognition. In: Ad-

vances in Neural Information Processing Systems,

pp. 1097–1104. MIT Press (2004)

[32] Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter,

A.: Pegasos: primal estimated sub-gradient solver

for svm. Math. Program. 127(1), 3–30 (2011)

[33] Vedaldi, A., Zisserman, A.: Structured output re-

gression for detection with partial occulsion. In: Ad-

vances in Neural Information Processing Systems,

pp. 1928–1936 (2009)

[34] Vedaldi, A., Zisserman, A.: Sparse kernel approx-

imations for efficient classification and detection.

In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pp. 2320–

2327 (2012)

[35] Wang, Y., Tran, D., Liao, Z.: Learning hierarchical

poselets for human parsing. In: Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1705–1712 (2011)

[36] Yang, Y., Ramanan, D.: Articulated human detec-

tion with flexible mixtures-of-parts. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence

99(PrePrints), 1 (2012)

[37] Yuille, A., Rangarajan, A., Yuille, A.L.: The

concave-convex procedure (cccp). In: Advances in

Neural Information Processing Systems, pp. 1033–

1040 (2002)

[38] Zhang, L., van der Maaten, L.: Structure preserving

object tracking. In: Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition,

pp. 1–8 (2013)

[39] Zhu, L., Chen, Y., Yuille, A., Freeman, W.: La-

tent hierarchical structural learning for object detec-

tion. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1–8

(2010)

16



2 3 4 5 6 7

52

54

56

58

60

62

Parts Size (HOG cells)

A
P

(%
)

Bicycle

Star
Field

2 3 4 5 6 7
46

48

50

52

54

Parts Size (HOG cells)
A

P
(%

)

Car

Star
Field

2 3 4 5 6 7

4

6

8

10

12

Parts Size (HOG cells)

A
P

(%
)

Cat

Star
Field

2 3 4 5 6 7

20

25

30

Parts Size (HOG cells)

A
P

(%
)

Cow

Star
Field

2 3 4 5 6 745

50

55

60

Parts Size (HOG cells)

A
P

(%
)

Horse

Star
Field

2 3 4 5 6 7

30

32

34

36

38

40

42

Parts Size (HOG cells)

A
P

(%
)

Tv

Star
Field

Figure 5: Parts size vs. AP.We compare the performance of the star model and the deformation field varying the

parts size in HOG cells for some representative classes of Pascal VOC. With few and big parts, the two models tend to

perform similarly. However, when the parts are smaller the deformation field performs markedly better than the star

model. A special case is cat, where the learned appearance is quite poor and star or field deformation model do not

make any difference.
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Figure 9: Detections on the different datasets. The deformation field is used to handle perspective and point of view

distortions as well as intra-class variability. Red detections (last column) are false positives. Top row: Buffy; second

row: UIUC people; third and forth row: Pascal VOC 2007.
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Figure 10: Tracking. Bounding box obtained by our method (dashed red) and ground truth (green) on several frames

of Sylvester, David and Tiger1.
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