
Mechanics of Materials 40(7), pp. 602-615 (2008) 

 

An Elastic Micropolar Mixture Theory for Predicting 

 Elastic Properties of Cellular Materials 
 
 

S. Elangovan 

Department of Mechanical Engineering – Engineering Mechanics 

Michigan Technological University 

931 R.L. Smith Building 

Houghton, Michigan 49931 

 

 

B.S. Altan 

Tiger Strategy LLC 

504 West Edwards Avenue 

Houghton, Michigan 49931 

 

 

G.M. Odegard
*
 

Department of Mechanical Engineering – Engineering Mechanics 

Michigan Technological University 

930 R.L. Smith Building 

Houghton, Michigan 49931 

 

 

ABSTRACT 

 

An efficient modeling approach is established to predict the elastic response of cellular materials 

with distributions of cell geometries. The approach does not require complex and time-

consuming computational techniques usually associated with modeling such materials. Unlike 

most current analytical techniques, the modeling approach directly accounts for the cellular 

material microstructure. The approach combines micropolar elasticity theory and elastic mixture 

theory to predict elastic response of cellular materials to a wide range of loading conditions. The 

modeling approach is applied to the two-dimensional balsa wood material.  Predicted properties 

are in good agreement with experimentally-determined properties, which emphasizes the 

model’s potential to predict the elastic response of other cellular solids, such as open cell and 

closed cell foams. 
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NOMENCLATURE 

 
( )n

ka    Acceleration vector component of the n
th

 constituent 

( )n

kla    Material derivative of 
( )n

klε  

( ) ( )n n

kl klmnA , A   Material moduli of the n
th

 constituent 

( )n
A    Cross-sectional area of the struts of the n

th
 constituent 

kla    Material derivative of klε  

( )n

klb    Material derivative of 
( )n

klγ  

( ) ( )n n

kl klmnB ,B   Material moduli of the n
th

 constituent 

klb    Material derivative of klγ  

C0   Constant relating temperature and free energy in the natural state 
( )n

klmnC    Material moduli of the n
th

 constituent 

D   Set of all dependent variables 
( )n

strutE    Young’s modulus of the strut material of the n
th

 constituent  

( )n
E    Young’s modulus of the equivalent continuum of the n

th
 constituent 

E   Young’s modulus of the mixture 
( )n

kf    Body force density vector components of the n
th

 constituent 

f 
(n)   

Volume fraction of the n
th

 constituent 
( )n

strutG    Shear modulus of the material of the struts of the n
th

 constituent 

( )n
G    Shear modulus of the equivalent continuum of the n

th
 constituent 

G   Shear modulus of the mixture 

h
(n)

   Internal energy source density of the n
th

 constituent 

h   Internal energy source density of the mixture 

I   Set of all independent variables 
( )n

I    Moment of inertia of the struts of the n
th

 constituent 

( )n
j    Microinertia density of the n

th
 constituent 

J   Set of all thermodynamic fluxes 

K   Classical Fourier constant 
( )n

il    Body couple density vector components of the n
th

 constituent 

( )n
l    Length of the struts of the n

th
 constituent 

( )n

klm    Couple stress tensor components of the n
th

 constituent 

( )n

km̂  Internal couple vector components exerted onto n
th

 constituent by the other 

constituent 

klm    Couple stress tensor components of the mixture 

( )n

kp̂  Internal force density vector components exerted onto n
th

 constituent by the other 

constituent 
( )n

kq    Heat flux vector components of the n
th

 constituent 
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qk   Heat flux vector components of the mixture 

Q
(n)

   Grid structural parameter 

R(n)
   Region occupied by the n

th
 constituent in the mixture 

( )n
R    Grid structural parameter 

S0   Free energy in the natural state 

s
(n)

   Cross-sectional thickness / equivalent continuum thickness of the n
th

 constituent 
( )n

S    Grid structural parameter 

t   Time at the end of constituent motion  
( )n

klt    Stress tensor components of the n
th

 constituent 

T   Change in temperature from ambient temperature 

T0   Ambient temperature 
( )n

T    Grid structural parameter 

klt    Stress tensor components of the mixture 

( )n

ku    Displacement vector components of the n
th

 constituent 

uk   Displacement vector components of the mixture 
( )n

kv    Velocity vector components of the n
th

 constituent 

vi   Velocity vector components of the mixture 
( )12

kv    Relative velocity vector components 

( )n

kX    Reference position vector components of the n
th

 constituent 

( )n

kx    Spatial position vector components of the n
th

 constituent 

Y   Set of all thermodynamic forces 
( )nα    Micropolar elastic constant of the n

th
 constituent  

( )n

0β    Thermal expansion constant of the n
th

 constituent 

( )nβ    Micropolar elastic constant of the n
th

 constituent 
( )n

kχ    Motion equation components of the n
th

 constituent 

δij   Kronecker delta 
( )n

klε    Linear strain tensor components of the n
th

 constituent 

εijk   Permutation tensor components 

ε(n)   
Internal energy density of the n

th
 constituent 

( )nε̂    Energy transferred to n
th

 constituent from the other constituent 

ε   
Internal energy density of the mixture 

εkl   Strain tensor components of the mixture 
( )n

iφ    Microrotation vector components of the n
th

 constituent 
Φ   Dissipation potential 

φi   Microrotation vector components of the mixture 
( )n

klγ    Linear microrotation gradient tensor components of the n
th

 constituent 

( )nγ    Micropolar elastic constant of the n
th

 constituent 

γkl   Linear microrotation gradient tensor components of the mixture 
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η   Entropy density of the mixture 

η0   Entropy density of the mixture in the natural state 
( )nκ    Micropolar elastic constant of the n

th
 constituent 

( )nλ    Micropolar elastic constant of the n
th

 constituent 
( )nμ    Micropolar elastic constant of the n

th
 constituent 

( )nν    Poisson’s ratio of the equivalent continuum of the n
th

 constituent 

ν   Poisson’s ratio of the mixture 

θ   Absolute temperature of the constituents and the mixture 

ρ   Mass density of the mixture 

ρ(n)
   Mass density of the n

th
 constituent 

( )n

relρ    Relative density of the grid of the n
th

 constituent 

( )n

iυ    Microgyration vector components of the n
th

 constituent 

( )12

kυ    Relative microgyration vector components 

ϖ    Momentum generation coefficient due to difference in gyrations 

ξ    Momentum generation coefficient due to velocity difference 

ψ   Free energy density of the mixture 

ζ    Heat generation for unit change in velocity 

 

 
1. INTRODUCTION                       

   

Cellular materials have a lattice architecture that in many cases results in high specific stiffness, 

specific strength, and good thermal insulation properties relative to many engineering materials. 

Cellular materials have been used in many structural engineering applications, including the core 

material in composite sandwich panels (Gibson and Ashby, 1999).  The design and 

implementation of cellular materials relies on accurate and efficient models to relate the lattice 

microstructure to the bulk mechanical properties.   

 

Cellular materials consist of a complex interconnected framework of either material struts only 

(open cell foams) or material struts and cell face membranes (closed cell foams) that yields a 

porous- or a closed-cellular material, respectively. For example, the open cell lattice of the 

polyurethane foam shown in Figure 1 has pores and material struts with a range of cell sizes and 

shapes distributed spatially in the material. This microstructural complexity poses significant 

problems for accurately modeling the mechanical behavior of cellular materials. Two modeling 

approaches that have been used to predict the mechanical response of cellular materials are finite 

element analysis (FEA) and analytical techniques. Numerous studies have been performed to 

predict the mechanical response of cellular materials using FEA techniques (Zhu et al., 2000; 

Roberts and Garboczi, 2002; Kanaun and Tkachenko, 2006; Li et al., 2006; Yoo and Jasiuk, 

2006). While this approach has the ability to accurately predict mechanical behavior for a wide 

range of cellular microstructures, the model building and solution procedures can be time-

consuming and expensive, making FEA techniques prohibitive where efficient material design is 

necessary. Analytical approaches have been developed that are much more efficient than FEA 

approaches (Gibson and Ashby, 1999). Although these methods are simple and efficient, they 



 5

often cannot directly incorporate the microstructural details on non-periodic geometries that are 

found in a majority of cellular materials without resorting to the use of empirical data. Therefore, 

there is a need to establish an efficient and accurate modeling approach to predict the mechanical 

response of cellular materials as a function of the random material microstructure.  

 

The objective of this study is to establish a linear-elastic constitutive modeling approach for 

cellular materials that accounts for distributions of cell size and geometry. The modeling 

approach consists of two steps. First, two individual lattice geometries with periodic 

microstructures are modeled as effective micropolar continua. The micropolar elasticity theory is 

used to enable the effective continua to represent the lattice geometry at the microstructural and 

bulk-level length scales. An example of this first step is shown in Figure 2 for two 2-dimensional 

triangular grids. In the second step the two effective micropolar continua are combined via 

mixture theory to create a micropolar continuum that effectively models a cellular solid with a 

distribution of cell geometries, as shown in Figure 2.  The proposed approach does not directly 

model a representative volume element of the material microstructure.  The effective behavior of 

the homogenized micropolar mixture represents the mechanical behavior of the conceptual 

combined grid shown in Figure 2.  The conceptual combined grid is composed of individual 

periodic grids; however, the periodicity of the conceptual combined grid is dictated by the 

overlay of the individual grids.  Therefore, the modeling approach is capable of modeling 

cellular materials with little or no periodicity. 

 

First, the general aspects of the micropolar elasticity theory and the elastic mixture theory are 

detailed, followed by a discussion of the kinematics of the proposed micropolar mixture 

framework. This is followed by a discussion of the balance laws for a micropolar mixture of two 

solid constituents. A brief development of the constitutive theory for a mixture of two micropolar 

solids is subsequently presented. Finally, the application of the proposed modeling approach to a 

two-dimensional cellular solid is presented.  

 

2. BACKGROUND 

 

A brief discussion of micropolar elasticity and mixture theory is presented in this section to 

facilitate the development of the proposed theory in the proceeding sections. 

 

2.1. Micropolar Elasticity 

 

In the theory of micropolar elasticity (Eringen, 1999), the points in a material continuum have 

six degrees of freedom: three translational components of the classical theory and three rotation 

components about the coordinate axes. Although the theory of micropolar elasticity has been 

applied to many fields of engineering, one of its primary uses is to provide a mathematical 

foundation to describe the mechanical behavior of lattice structures. The micropolar theory is 

necessary in the analysis of lattice structures because rotations at the strut joints play a 

significant role in influencing the overall behavior of the lattice at relatively small length scales. 

For example, a micropolar beam model was developed (Noor and Nemeth, 1980b) for four 

different types of planar lattice grids with rigid joints. In a subsequent study (Noor and Nemeth, 

1980a), the model was extended to model three-dimensional lattice structures. An energy 
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approach considering in-plane displacements as well as joint rotations was used (Sun and Yang, 

1973) to estimate the dynamic characteristic of a two-dimensional square grid.  

 

2.2. Mixture Theory 

 

Motivated by Maxwell's kinetic theory of gases, Truesdell and Toupin (Truesdell and Toupin, 

1960) presented an axiomatic mixture theory for interacting continua based on the premise that 

each point of space is simultaneously occupied by all constituents of the mixture. It has been 

used with profound success to model the mechanical behavior of composite materials (Bedford 

and Stern, 1972; Stern and Bedford, 1972; Hegemier et al., 1973; Nayfeh and Gurtman, 1974; 

McNiven and Mengi, 1979a; McNiven and Mengi, 1979b; McNiven and Mengi, 1979c). It is 

also assumed that the interactions between the constituents of a mixture are accounted for as 

interaction forces in the appropriate field equations. The mixture theory concept has been used to 

model the three-dimensional mechanical behavior of a binary mixture (Bedford and Stern, 1972). 

In a subsequent study (Stern and Bedford, 1972), the three-dimensional model predicted wave 

propagation phenomena in a composite material. It was concluded that in order to accurately 

predict wave propagation properties in a composite material, the material microstructure must be 

considered, which can be done with considerable ease by using the elastic mixture theory. An 

alternative version of the mixture theory was developed (Hegemier et al., 1973) for modeling the 

wave propagation in laminated and unidirectional fibrous composites. The theory was used to 

determine the distribution of displacements and stresses within individual constituents. This 

theory was subsequently applied (Nayfeh and Gurtman, 1974) for both transversely and 

horizontally polarized shear waves propagating in the plane of the laminate. A mixture theory 

was developed (McNiven and Mengi, 1979a) for two-phase materials which was implemented 

(McNiven and Mengi, 1979b; McNiven and Mengi, 1979c) to study the wave propagation in 

periodically-structured composites.  

 

3. KINEMATICS 

 

The following presentation of the kinematic theory of a binary mixture of micropolar solids is 

similar to that developed for a binary mixture of a solid and fluid previously (Eringen, 2003). 

Consider regions of two constituents of a mixture R(1)
 and R(2)

, which simultaneously occupy a 

common volume in the reference configuration (Figure 3). A material point of the n
th

 constituent 

in the reference configuration has a position denoted by
( )n

X . After a time t, due to a motion 

denoted by the mapping ( )nχ , the position of the point of the n
th

 constituent in the spatial 

configuration is given by the motion equation 

 

 
( ) ( ) ( )( ),x X
n n n

t= χ  (1) 

 

The corresponding velocity and acceleration vector components at time t are given by, 

respectively, 

 

 
( ) ( )n n

k kv x=        (2) 

  
( ) ( )n n

k ka x=  (3) 
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where the superposed dot denotes the usual material time derivative. The velocity vector 

components of the mixture are given by 

 

 
( ) ( ) ( ) ( )1 1 2 21

k k kv v vρ ρ
ρ

⎡ ⎤= +⎣ ⎦  (4) 

 

where ρ and ρ(n)
 are the densities of the mixture and the n

th
 constituent, respectively, and are 

related by 

 

 ( ) ( ) ( ) ( ) ( )1 2
x,t x,t x,tρ ρ ρ= +  (5) 

 

Because the cellular material is modeled as an equivalent, homogeneous continuum (Figures 2 

and 3) the density is not necessarily a function of position even though the density is a function 

of position in an actual cellular solid microstructure.  However, the density is generally modeled 

as a function of position in Equation (5).  The linear strain tensor components and the linear 

microrotation gradient tensor components of the n
th

 constituent are given by, respectively, 

 

 
( ) ( ) ( )n n n

kl l ,k lkm mu= +ε ε φ  (6) 

 
( ) ( )n n

kl k ,l=γ φ   (7) 

 

where 
( )n

ku  and 
( )n

kφ are the displacement and rotation vector components of a point of the n
th

 

constituent  and  lkmε  is the permutation symbol. In Equations (6) and (7), and throughout this 

paper, the usual summation and partial differentiation conventions are used.  For the linear 

theory, the microgyration vector of the n
th

 constituent is defined as (Eringen, 1999)  

 

 
( ) ( )n n

k kυ φ=  (8) 

 

The material derivatives of (6) and (7) are denoted by 

 

 

( ) ( )

( ) ( )

n n

kl kl

n n

kl kl

a

b

=

=

ε

γ
  (9) 

 

The motion of the material points of the mixture is influenced by forces and thermodynamic 

conditions that the mixture is exposed to.  The corresponding balance laws are described in the 

next section. 

 

4. BALANCE LAWS  

 

If it is assumed that microinertia is constant and isotropic, then the remaining balance laws of 

mass, linear momentum, angular momentum, and energy provide field equations which dictate 
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the kinetic response of the micropolar mixture. Each balance law is individually addressed in this 

section.  The balance laws are similar to those previously proposed by Eringen (Eringen, 2003). 

 

4.1 Balance of Mass 

 

The balance of mass for the n
th

 constituent is given by 

 

 
( ) ( ) ( )

0
n n n

k ,kvρ ρ+ =  (10) 

 

Summing over the two constituents and using Equations (4) and (5), the balance of mass of the 

mixture is  

 

 0k ,kvρ ρ+ =  (11) 

 

 

4.2 Balance of Linear Momentum  

 

The balance of linear momentum for the n
th

 constituent is 

 

 
( ) ( ) ( ) ( ) ( )n n n n n

l kl ,k l l
ˆx t f p= + +ρ  (12) 

 

where 
( )n

lx  is the acceleration of the n
th

 constituent, 
( )n

klt  are the components of the stress tensor, 

( )n

lf are the components of the body force density vector, and 
( )n

lp̂  are the components of the 

interaction force density vector which represents force exerted on the n
th

 constituent due to the 

interaction with the other constituent (terms that represent constituent interactions have the 

superposed caret). Summing over the two constituents produces the linear momentum balance of 

the mixture  

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2

l l kl ,k kl ,k l l l l
ˆ ˆx x t t f f p pρ ρ+ = + + + + +  (13) 

 

If it is assumed that linear momentum of the mixture is balanced solely by the stresses and body 

force densities in the constituents then Equation (13) becomes 

 

 
( ) ( )1 2

0k k
ˆ ˆp p+ =  (14) 

 

Equation (14) indicates that the two interaction force density vectors are of equal magnitude and 

opposite sign. 

 

4.3 Balance of Angular Momentum 

 

The balance of angular momentum is given by  

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n

l kl ,k lmn mn l l
ˆj m t l m= + + +ρ υ ε  (15) 
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where j
(n)

 is the microinertia density (resistance to microrotation), 
( )n

lυ is the microgyration 

(microrotation rate), 
( )n

klm  are the components of the couple stress tensor, 
( )n

ll  are the components 

of the body couple density vector, and 
( )n

lm̂ is the components of the interaction couple exerted 

on the n
th

 constituent due to interaction with the other constituent. Summing over the two 

constituents, Equation (15) becomes 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2 1 2 1 2 1 2 1 2

l l kl ,k kl ,k lmn mn lmn mn l l l l
ˆ ˆj j m m t t l l m mρ υ ρ υ ε ε+ = + + + + + + +  (16) 

 

If it is assumed that the angular momentum of the mixture is balanced by 
( )n

kl ,km , 
( )n

mnt , and 
( )n

ll , 

then Equation (16) reveals 

 

 
( ) ( )1 2

0l l
ˆ ˆm m+ =  (17) 

 

Therefore, the interaction couple vectors have equal magnitudes and opposite signs. 

 

4.4 Balance of Energy 

 

The conservation of energy for the n
th

 constituent is  

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n

kl kl kl lk k ,k
ˆt a m b q h= + + + +ε ε  (18) 

 

where
( )nε is the internal energy density of the n

th
 constituent, 

( )n

kq is the heat flux vector, 
( )n

h is the 

energy source density, and 
( )nε̂ denotes the transfer of energy density to the n

th
 constituent from 

the other constituent.  It has been shown (Eringen, 2003) that by summing Equation (18) over the 

two constituents and utilizing field equations (14) and (17) the following relationship is 

established 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12

k ,k kl kl kl kl kl lk kl lk k k k k
ˆ ˆq h t a t a m b m b p v mε υ= + + + + + − −  (19) 

 

where ε, h and qk are the components of the internal energy density, energy source density and 

heat flux vector of the mixture, respectively, 
( )12

kv  and 
( )12

kυ  are the components of the relative 

velocity and relative microgyration vectors, respectively, given by 

 

 

( ) ( ) ( )

( ) ( ) ( )

12 1 2

12 1 2

k k k

k k k

v v v

υ υ υ

= −

= −
 (20) 

 

and 
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( ) ( )

( ) ( )

1 2

1 2
h h h

ε ε ε= +

= +
 (21) 

 

The heat flux vector of the mixture is  

 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 2 2 2

k k k k k k kq q v v q v vε ε= − − + − −  (22) 

 

The free energy density of the mixture is defined by  

 

 = −ψ ε θη  (23) 

 

where θ  is the absolute temperature of the constituents and the mixture, and η is the entropy 

density of the mixture.  Substitution of Equation (23) into (19) yields 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12

k ,k kl kl kl kl kl lk kl lk k k k k
ˆ ˆq h t a t a m b m b p v mψ θη θη υ+ + = + + + + + − −  (24) 

4.5  Clausius-Duhem inequality 

 

The second law of thermodynamics is expressed as 

 

 
1 1

0,k

k ,k k 2
q q h− + − ≥

θ
η

θ θ θ
 (25) 

 

Substitution of Equation (24) into (25) yields the Clausius-Duhem inequality 

 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 1 2 2 1 12 1 12
0,k

kl kl kl kl kl lk kl lk k k k k k
ˆ ˆt a t a m b m b p v m q

θ
ψ θη υ

θ
− + + + + + − − + ≥  (26) 

 
 

5. CONSTITUTIVE MODELING 

 

The parameters associated with field equations (11), (14), (17), (24) and the Clausius-Duhem 

inequality of Equation (26) are related by the constitutive equations. The constitutive 

independent and dependant variables are the sets I and D, respectively, given by 

 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( )

1 2 1 2 12 12

1 2 1 2 1 1

kl kl kl kl m m

kl kl kl kl m m m

I , , , , ,v ,

ˆ ˆD , ,t ,t ,m ,m ,q , p , m

θ ε ε γ γ υ

ψ η

=

= − −
 (27) 

 

All the independent variables are frame-independent except 
( )12

mv  and 
( )12

mυ . The admissibility for 

using these quantities has been established (Eringen, 2003). The parameters ρ, 
( )2

mp̂ , and 
( )2

mm̂  are 

uniquely determined by Equations (11), (14), and (17), respectively, and thus are not included in 
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sets I and D. The free energy density is assumed to be a function of the static independent 

variables 

 

 
( ) ( ) ( ) ( )( )1 2 1 2

kl kl lk lk, , , ,ψ ψ θ ε ε γ γ=  (28) 

 

where the superposed ~ denotes a response function. Using the chain rule, the material derivative 

of the free energy is given by 

 

 ( )
( )

( )
( )

( )
( )

( )
( )1 2 1 2

1 2 1 2kl kl lk lk

kl kl lk lk

a a b b
ψ ψ ψ ψ ψψ θ
θ ε ε γ γ

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂
 (29) 

 

Substituting Equation (29) into Equation (26) yields 

 

 

( )
( )

( ) ( )
( )

( ) ( )
( )

( )

( )
( )

( ) ( ) ( ) ( ) ( )

1 1 2 2 1 1

1 2 1

2 2 1 12 1 12

2
0

kl kl kl kl kl lk

kl kl lk

,k

kl lk k k k k k

lk

t a t a m b

ˆ ˆm b p v m q

ψ ψ ψ ψη θ
θ ε ε γ

θψ υ
θγ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞∂

+ − − − + ≥⎜ ⎟⎜ ⎟∂⎝ ⎠

 (30) 

 

If Equation (30) is to be satisfied for arbitrary values of θ , 
( )n

kla , and 
( )n

lkb  then 

 

 
( )

( )
( )

( )
( )

( )
( )

( )
1 2 1 2

1 2 1 2kl kl kl kl

kl kl lk lk

t t m m
ψ ψ ψ ψ ψη
θ ε ε γ γ

∂ ∂ ∂ ∂ ∂
= − = = = =

∂ ∂ ∂ ∂ ∂
 (31) 

 

Substituting Equation (31) back into Equation (30) 

 

 
( ) ( ) ( ) ( )1 12 1 12

0,m

m m m m m
ˆ ˆp v m q

θ
υ

θ
− − + ≥  (32) 

The inequality of Equation (32) implies a set of thermodynamic forces Y and fluxes J (Eringen, 

1999) given by 

  

( ) ( )

( ) ( )( )

12 12

1 1

,m

m m

m m m

Y v , ,

ˆ ˆJ p , m ,q

θ
υ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

= − −

 (33) 

 

Using a similar approach to that used by Eringen (Eringen, 2003)  the constitutive equations 

associated with these quantities are 
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( )
( )

( )
( )

( )

1

12

1

12

k

k

k

k

k

,k

p̂
v

m̂

q

Φ

Φ
υ
Φ

θ θ

∂
= −

∂
∂

= −
∂
∂

=
∂

 (34) 

 

where Φ is the dissipation potential (Eringen, 1999).  

 

The specific free energy of the mixture is 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1 1 2 2 1 1 2 220
0 0

0

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2

2

1
2

2

1
2

2

kl kl kl kl kl kl kl kl

klmn kl mn klmn kl mn klmn kl mn

klmn kl mn klmn kl mn klmn kl mn

C
S T T A T A T B T B T

T

A B C

A B C

ψ η ε ε γ γ

ε ε γ γ ε γ

ε ε γ γ ε γ

= − − − − − −

+ + +

+ + +

 (35)  

 

where the subscript 0 denotes constants or variables in their natural state, that is, a state that is 

free of stress and couple stress. S0 is the free energy in the natural state, C0 is a constant relating 

temperature and free energy in the natural state, T0 is the ambient temperature, T is the change in 

ambient temperature resulting in the current temperature θ  (θ =To+T, where T  is much less 

than 0 0T ,T > 0), and 
( ) ( ) ( ) ( ) ( )n n n n n

kl kl klmn klmn klmnA ,B , A ,B ,C  are material moduli.  The dissipation potential of 

the mixture is given by 

 

 
( ) ( ) ( ) ( ) ( )12 12 12 12 12

2
2 2 ,k ,k ,k

k k k k kv v v K
θ θ θ

Φ ξ ζ ϖυ υ
θ θ

= + + +  (36)  

 

where ξ  is the momentum generation coefficient due to velocity difference, ζ  is the heat 

generation for unit change in velocity, K is the classical Fourier constant, and ϖ  is the 

momentum generation due to difference in gyrations. The linear constitutive equations are 

obtained by substituting (35) and (36) into (31) and (34), 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( )

1 1 1 1 2 2 2 20
0

0

1 12

0

1 12

12

0

kl kl kl kl kl kl kl kl

n n n n n n

kl kl klmn mn klmn mn

n n n n n n

kl kl lkmn mn klmn mn

,k

k k

k k

,k

k k

C
T A B A B

T

t A T A C

m B T B C

T
p̂ v

T

m̂

T
q v K

T

η η ε γ ε γ

ε γ

γ ε

ξ ζ

ϖυ

ζ

= + + + + +

= − + +

= − + +

= − −

= −

= +

 (37) 

 

For isotropic constituents (Eringen, 1999) 

 

 

( )

( )

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

n

kl kl

n

klmn klmn

n n

kl kl

n n n n n

klmn kl mn km ln kn lm

n n n n

klmn kl mn kn lm km ln

B

C

A

A

B

β δ

λ δ δ μ κ δ δ μ δ δ

α δ δ β δ δ γ δ δ

=

=

=

⎡ ⎤= + + +⎣ ⎦

= + +

 (38) 

 

where 0kl and 0klmn are the components of the second- and fourth-order null tensors, respectively;
( ) ( ) ( ) ( ) ( ) ( )n n n n n n

, , , , ,α β γ λ μ κ  are the six micropolar elastic constants; and 
( )
0

nβ  is a thermal 

expansion constant for determining micropolar isotropic behavior.  Substitution of Equation  (38) 

into Equation (37) yields 

 

 
( ) ( ) ( ) ( )1 1 2 20

0 0 0

0

kk kk

C
T

T
η η β ε β ε= + + +  (39) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

n n n n n n n n n

kl mm kl kl lkt Tβ λ ε δ μ κ ε μ ε⎡ ⎤ ⎡ ⎤= − + + + +⎣ ⎦ ⎣ ⎦  (40) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n

kl kl mm lk klm α δ γ β γ γ γ= + +  (41) 

 
( ) ( )1 12

0

,k

k k

T
p̂ v

T
ξ ζ= − −  (42) 

 
( ) ( )1 12

k km̂ ϖυ= −  (43) 

 
( )12

0

,k

k k

T
q v K

T
ζ= +  (44) 

 

Equation (39) - (44) describes the constitutive response of the constituents, the entropy density of 

the mixture, the interaction parameters, and the mixture heat flux vector.  The overall behavior of 

the constituents is governed by the constitutive response as well as the balance equations 
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discussed in Section 4.  Substitution of Equations (39) - (44) into Equations (12), (15), and (24) 

yield, respectively, 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 12

2 2 2 2 2 2 2 2 2 12

0

0

l mm,l kl ,k lk ,k l

l mm,l kl ,k lk ,k l

x v

x v

ρ λ ε μ κ ε μ ε ξ

ρ λ ε μ κ ε μ ε ξ

⎡ ⎤− − + − + =⎣ ⎦
⎡ ⎤− − + − − =⎣ ⎦

 (45) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1 1 1 1 1 1 1 1 1 12

2 2 2 2 2 2 2 2 2 2 2 2 2 2 12

0

0

l mm,l kl ,k lk ,k lmn mn nm l

l mm,l kl ,k lk ,k lmn mn nm l

j

j

ρ υ α γ β γ γ γ ε μ κ ε μ ε ϖυ

ρ υ α γ β γ γ γ ε μ κ ε μ ε ϖυ

⎡ ⎤− − − − + + + =⎣ ⎦
⎡ ⎤− − − − + + − =⎣ ⎦

(46) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )12 1 12 1 12 1 1 2 2

0 0 0k ,k k k k k kk kk
ˆ ˆv p v m T a T aζ υ β β− − − − =  (47) 

 

where isothermal conditions are assumed and body force densities, body couple densities, heat 

source densities, and temperature gradients have been neglected. 

 

The theory developed in this section models the interaction of the two grids as a dissipative 

mechanism, which is consistent with the original framework of the theory presented previously 

for a mixture of a solid and fluid (Eringen, 2003).  However, the interaction of the two grids does 

not necessarily need to be modeled as a dissipative process as this interaction may potentially be 

purely elastic in nature.  For such a case, grid interaction terms could be added to the strain 

energy function of Equation (35) instead of the dissipation function of Equation (36).  In this 

manner, a non-dissipative approach can be used to model the interaction of the grids. 

 

6. EXAMPLE: TWO-DIMENSIONAL CELLULAR SOLIDS 

 

The constitutive framework developed in Section 5 is for a general mixture of two micropolar 

elastic solids.  To demonstrate the application of the proposed theory, the constitutive response 

of a two-dimensional cellular material with a distribution of cell sizes is determined.  Although 

the typical honeycomb structure would be an excellent candidate for the application of this 

theory, honeycomb lattices usually have a very narrow distribution of cell sizes.  Structures with 

a significant distribution of cell sizes are found in many varieties of wood. For example, the 

microstructure of a cross-sectional slice of balsa wood is shown in Figure 4.  To determine the 

constitutive response of this two-dimensional natural cellular material, its cell size distribution is 

matched with the cell size distribution of the conceptual combined triangular grid (Figure2). The 

triangular grid was selected for this research because of its simplicity and because of the 

availability of a micropolar solution in the literature (Ostoja-Starzewski, 2002).  Alternatively, a 

hexagonal lattice could be used that may more accurately represent the geometry of the balsa 

wood cells; however, the micropolar solution to a hexagonal lattice must be established first.  

The conceptual triangular grid, which then represents the microstructure in Figure 4, is 

homogenized in two steps, namely, the micropolar homogenization step in which each individual 

grid is converted to an effective micropolar continuum and the micropolar mixture theory 

homogenization step where the individual micropolar continua are superimposed using the 

micropolar mixture theory. This yields the equivalent continuum whose mechanical behavior 

represents the mechanical behavior of the natural two-dimensional cellular material. It is 

important to note that since the micropolar mixture theory combines two equivalent micropolar 
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continua and not the individual lattices, the model does not directly model the conceptual 

combined triangular grid shown at the top of Figure 2. In the current section, the micropolar 

homogenization of a single triangular grid is discussed followed by the details of the micropolar 

mixture theory homogenization and the resulting constitutive response of the mixture. 

 

 

6.1 Triangular Lattice Homogenization  

 

The equivalent micropolar continuum for a single triangular grid composed of Timoshenko 

beams has been previously established (Ostoja-Starzewski, 2002). In this formulation, given the 

length of the strut of the n
th

 constituent l
(n)

 (Figure 5), cross-sectional width and height of the 

strut  of the n
th

 constituent s
(n)

, the Young’s modulus of the material composing the struts of the 

n
th

 constituent 
( )n

strutE , and the shear modulus of the material composing the struts of the n
th

 

constituent 
( )n

strutG , the equivalent in-plane isotropic micropolar elastic moduli for a two-

dimensional equivalent continuum of thickness s
(n)

 are 

 

 

( ) ( )
( ) ( )

( )

( )
( )

( )

( )
( )

( )

( ) ( )

n n
n n

n

n
n

n

n
n

n

n n

3 Q R

8 s

3 R

2 s

3 S

2 s

0

−
= =

=

=

= =

λ μ

κ

γ

α β

 (48) 

 

where 

 

 

( )
( ) ( )

( )

( )
( ) ( )

( ) ( )

( )
( ) ( )

( )

( )
( )

( )

( )

( )

n n
n strut

n

n n
n strut

3 n
n

n n
n strut

n

2
n n

n strut

n n

strut

2E A
Q

l 3

24E I 1
R

1 Tl 3

2E I
S

l 3

E s
T

G l

=

=
+⎡ ⎤

⎣ ⎦

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (49) 

 

In Equation (49) A
(n)

 and I
(n)

 are the cross-sectional area and moment of inertia of the struts of the 

n
th

 constituent, respectively, given by 
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( ) ( ) ( )

( ) 4
n

2
n n n

s
A s I

12

⎡ ⎤
⎣ ⎦⎡ ⎤= =⎣ ⎦  (50) 

 

It is important to note that Equation (48) differs from the analogous equations of Ostoja-

Starzewski (Ostoja-Starzewski, 2002) by the strut thickness in the denominator.  The inclusion of 

the strut thickness serves to normalize Equation (48) with respect to an arbitrary thickness, 

similar to the classical plate theory (Christensen, 2005). These equations assume a plane state of 

stress in the plane of the triangular lattice, as shown in Figure 5.  The relative density of the 

triangular lattice is (Gibson and Ashby, 1999)  

 

 
( )

( )

( )

( )

( )

n n
n

rel n n

s 3 s
2 3 1

2l l

⎡ ⎤
= −⎢ ⎥

⎢ ⎥⎣ ⎦
ρ  (51) 

 

It is noted that it has been shown (Ostoja-Starzewski, 2002) that for relative densities of 80% and 

higher, the strut width becomes too large for Equation (48) to accurately predict the elastic 

properties of the equivalent micropolar continuum. 

 

Consider the case of the equivalent micropolar continuum loaded in uniaxial tension parallel to 

the e1 basis vector shown in Figure 5, in which the strains are 

 

 
( ) ( ) ( ) ( ) ( ) ( )
11 22 33 23 13 12 0

n n n n n nε ε ε ε ε ε= = = =  (52) 

 

where 
( )
11

nε  is the applied uniaxial strain.  The transverse stresses are 

 

 
( ) ( )
22 33 0

n n
t t= =  (53) 

 

The in-plane Young’s modulus E
(n)

 and the Poisson’s ratio ν(n)
 of the n

th
 constituent are defined 

as, respectively, 

 

 
( )

( )

( )
11

11

n
n

n

t
E

ε
≡  (54) 

 
( )

( )

( )
22

11

n
n

n

εν
ε

≡ −  (55) 

 

Isothermal conditions are assumed. Substitution of Equation (52) into the 
( )
11

n
t  component of 

Equation (40) yields 

 

 
( ) ( )

( )

( )
( ) ( ) ( )22

11 11

11

2 2

n
n n n n n

n
t

ελ μ κ ε
ε

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 (56) 
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Substituting Equations (52) and (53) into the 
( )
22

n
t  component of Equation (40)  

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
22 11 220 2 2

n n n n n n n
t λ ε μ λ κ ε⎡ ⎤= = + + +⎣ ⎦  (57) 

 

Substitution of Equations (56) and (57) into (54) establishes the Young’s modulus of the 

equivalent continuum of the n
th

 constituent 

 

 
( ) ( )( )( n ) ( n ) ( n ) ( n ) ( n )

n

( n ) ( n ) ( n )

2 3 2
E

2 2

+ + +
=

+ +

μ κ λ μ κ

λ μ κ
 (58) 

 

Substitution of Equation (57) into (55) provides 

 

 
( )

( )

( ) ( ) ( )

n
n

n n n
2 2

=
+ +

λν
μ λ κ

 (59) 

 

Now consider the case of pure shear in the e1-e2 plane of the equivalent micropolar continuum.  

Again, isothermal conditions are assumed to exist.  The corresponding strain field is 

 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )
12 21 11 22 33 13 23 0

n n n n n n nε ε ε ε ε ε ε= = = = = =  (60) 

 

where γ is the engineering shear strain. The in-plane shear modulus of the equivalent continuum 

of the n
th

 constituent is defined as 

 

 
( )

( )

( )
12

122

n
n

n

t
G

ε
≡  (61) 

 

Substitution of Equation (60) into (40) for the 1-2 component of stress 

 

 
( ) ( )

( )

2

n
n n

G
κμ= +  (62) 

 

It is noted that Equations (58), (59), and (62) are consistent with those reported elsewhere  

(Nowacki, 1974; Gauthier and Jahsman, 1975; Gauthier and Jahsman, 1976; Eringen, 1999) 

 

6.2 Micropolar Mixture of Triangular Lattices 

 

Although the constitutive and field equations govern the response of the micropolar mixture, the 

nature of the interactions, as represented by 
( )1

kp̂  and 
( )1

km̂  have yet to be determined.  For 

simplicity, it is assumed here that  
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( ) ( )

( ) ( )

1 2

1 2

k k k

k k k

u u u

φ φ φ

= =

= =
 (63) 

 

Therefore 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

kl kl kl kl kl kl

kl kl kl kl kl kl

a a a

b b b

ε ε ε

γ γ γ

= = = =

= = = =
 (64) 

 

where  uk, φk, εkl, γkl, akl, and bkl are the kinematic quantities associated with the mixture.  Hence 

by virtue of Equation (63) and in the absence of temperature gradients 

 

 
( ) ( ) ( ) ( )12 1 12 1

0 0k k k k k k
ˆ ˆv p mυ= = = =  (65) 

 

The elastic mixture theory assumes that the stress tij and couple stress mij of the mixture are given 

by 

 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

ij ij ij

ij ij ij

t f t f t

m f m f m

= +

= +
 (66)  

 

where f 
(1)

 and f 
(2)

 are the volume fractions of constituents 1 and 2, respectively, in the mixture.  

For the binary mixture considered in this study f 
(1) 

+ f 
(2)

 = 1. 

 

The assumptions of Equations (63) and (66) are the simplest assumptions for the interaction of 

the constituents.  In fact, Equations (63) imply that no internal interactions exist between the 

micropolar constituents.  A possible physical interpretation of this assumption with regards to the 

conceptual combined triangular grid shown in Figure 2 is that there are no locations in which the 

two grids are bonded together.  If on the other hand, the grids are “welded” at their junction 

points, then the assumption of Equation (63) must be modified appropriately.  

 

Consider again the uniaxial deformation described by Equations (52) and (53).  If the same 

deformation field (here εij are the components of strain of the mixture) is applied to the binary 

mixture, the Young’s modulus E and Poisson’s ratio ν of the mixture are, respectively, 

 

 11

11

t
E

ε
≡  (67) 

 22

11

εν
ε

≡ −  (68) 

 

Substitution of Equations (58) and (66)1 into (67) reveals 
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( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

1 1 2 2

1 1 1 1 1 2 2 2 2 2

1 2

1 1 1 2 2 2

2 3 2 2 3 2

2 2 2 2

E f E f E

f f
μ κ λ μ κ μ κ λ μ κ

λ μ κ λ μ κ

= +

+ + + + + +
= +

+ + + +

 (69) 

 

Since the normal strains in the constituents are equal to those in the mixture, Equation (59) is 

equal to Equation (68)  

 

 

( ) ( )

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1 2

1 2

1 1 1 2 2 2
2 2 2 2

ν ν ν

λ λ
μ λ κ μ λ κ

= =

= =
+ + + +

 (70) 

 

When the strain field described by Equation (60) is applied to the mixture for the case of pure 

shear, the shear modulus of the mixture G is 

 

 12

122

t
G

ε
≡  (71) 

 

Substitution of Equations (61), (62), and (66)1 into (71) 

 

 
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )1 2
1 1 2 2 1 1 2 2

2 2
G f G f G f f

κ κμ μ
⎡ ⎤ ⎡ ⎤

= + = + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (72) 

 

In a similar manner, the micropolar moduli of the mixture can be determined.   

 

6.3 Application of Model to Balsa Wood 

 

A cross sectional slice of balsa wood closely approximates a two-dimensional cellular structure 

with a distribution of cell sizes.  Figure 4, which is an image of an axial cross-section of balsa 

wood, shows three types of cells.  Most of the volume is occupied by nearly hexagonal normal 

cells, with parallel bands of rectangular ray cells.  The larger sap cells occupy a much smaller 

volume than the normal and ray cells over the entire cross section (Figure 4 is focused on an area 

crowded with sap cells), thus their relative volume fraction is insignificant compared to those of 

the normal and ray cells.   

 

A binary mixture model was constructed in which the 1
st
 and 2

nd
 constituents were the equivalent 

continua of the normal and ray cells, respectively.  The structural and mechanical parameters for 

the two lattices are shown in Table 1. The values of s
(n)

, E
(n)

, and f
(n)

 were previously determined 

by Easterling et al. (Easterling et al., 1982).  The values of l
(n)

 were determined by equating the 

average cell areas reported by Easterling et al. (Easterling et al., 1982)  with triangular cell areas 

for the triangular lattice.  The values of G
(n)

 were calculated assuming a cell wall Poisson’s ratio 

of 0.33.   
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Using Equations (48) - (50), (58), (59), (62), (69), (70), and (72), the in-plane Young’s modulus, 

Poisson’s ratio, and shear modulus of balsa wood were predicted to be 376 MPa, 0.25, and 150 

MPa, respectively.  It is important to note that, as stated earlier, these equations assume a plane 

state of stress, and a specimen of balsa wood tested experimentally is likely to have struts that 

experience plane strain as the strut thicknesses are much large than strut widths.  However, the 

effect of the plane stress assumption on the final predicted values of the mechanical properties is 

likely quite small (Ostoja-Starzewski, 2002).  Experimental measurements of in-plane Young’s 

modulus of balsa wood range from 10 – 300 MPa (Easterling et al., 1982) .  Therefore, the 

predicted Young’s modulus is in rough agreement with the measured value.  The model did not 

take into consideration the presence of sap channels and imperfections in the material, which 

may explain the overestimate of the predicted properties. 

 

7.  SUMMARY 

 

An analytical modeling approach has been developed to predict the elastic properties of cellular 

materials without the need for complex and inefficient FEA modeling.  The modeling approach 

directly accounts for the distribution of cell geometries that are present in most cellular materials, 

and provides for the opportunity for efficient analysis, optimization, and design of cellular 

materials.  The approach combines mixture theory and micropolar elasticity theory to predict 

elastic response of cellular materials to a wide range of loading conditions.  It is important to 

note that despite the inefficiency of FEA modeling, it has the potential to be more accurate than 

analytical modeling. 

 

The modeling approach was applied to the two-dimensional balsa wood material.  Predicted 

properties were in good agreement with experimentally-determined properties.  This agreement 

demonstrates that the model has the potential to predict the elastic response of other cellular 

solids, such as open cell and closed cell foams. 
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TABLE CAPTIONS 

 

Table 1 – Properties of balsa wood lattices 

 

 

FIGURE CAPTIONS 

 

Figure 1 – Open cell polyurethane 

Figure 2 – Modeling approach for cellular materials 

Figure 3 – Motion of the mixture of two-constituent continua 

Figure 4 – SEM image of a longitudinal cross-section of balsa wood (Image copyright Dennis 

Kunkel Microscopy, Inc., used with permission) 

Figure 5 – Triangular lattice strut dimensions 
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Table 1 – Properties of the equivalent lattices of balsa wood 

 

 Normal cells Ray cells 

n 1 2 

s
(n)

 1.5 μm 1.5 μm 

l
(n)

 44 μm 29 μm 

f
(n)

 86% 14% 
( )n

strutE  10 GPa 10 GPa 

( )n

strutG  3.8 GPa 3.8 GPa 
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Figure 1 - Open cell polyurethane 

5 μm5 μm5 μm
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Figure 2 – Modeling approach for cellular materials 
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Figure 3 – Motion of the mixture of two-constituent continua 
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Figure 4 – SEM image of a longitudinal cross-section of balsa wood (Image copyright Dennis 

Kunkel Microscopy, Inc., used with permission) 
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Figure 5 – Triangular lattice strut dimensions 
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