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Abstract. 
pack as a viscous-plastic material that flows plastically under typical stress 
conditions but behaves as a linear viscous fluid where strain rates are small 
and the ice becomes nearly rigid. Because of large viscosities in these 
regions, implicit numerical methods are necessary for timesteps larger than 
a few seconds. Current solution methods for these equations use iterative 
relaxation methods, which are time consuming, scale poorly with mesh 
resolution, and are not well adapted to parallel computation. To remedy this, 
we have developed and tested two separate methods. First, by demonstrating 
that the viscous-plastic rheology can be represented by a symmetric, negative 
definite matrix operator, we have implemented the much faster and better 
behaved preconditioned conjugate gradient method. Second, realizing that 
only the response of the ice on time scales associated with wind forcing need 
be accurately resolved, we have modified the model so that it reduces to the 
viscous-plastic model at these time scales, while at shorter time scales the 
adjustment process takes place by a numerically more efficient elastic wave 
mechanism. This modification leads to a fully explicit numerical scheme 
which further improves the model’s computational efficiency and is a great 
advantage for implementations on parallel machines. 
Furthermore, we observe that the standard viscous-plastic model has poor 
dynamicfresponse to forcing on a daily time scale, given the standard time 
step (1 day) used by the ice modeling community. In contrast, the explicit 
discretization of the elastic wave mechanism allows the elastic-viscous-plastic 
model to capture the ice response to variations in the imposed stress more 
accurately. Thus, the elastic-viscous-plastic model provides more accurate 
results for shorter time scales associated with physical forcing, reproduces 
viscous-plastic model behavior on longer time scales, and is computationally 
more efficient overall. 

The standard model for sea ice dynamics treats the ice 

1. Introduction model of the material strength of the ice. Nonuniform 
motion of the ice is responsible for the thickness and 
extent of the ice pack, which in turn influences the 
exchange of energy between the atmosphere and polar 

A model of sea ice dynamics predicts the movement 

of the ice pack based on winds, ocean currents, and a 
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oceans. The dynamic characteristics of sea ice thereby 
play an essential role in climate-related processes of 
the ocean and atmosphere. 

Many models have been developed to describe the 

ice dynamics. Some early studies focused on free 
drii descriptions with no ice interaction (Felzenbaum, 

1961; Bryan et al., 1975; Manabe et al., 1979; Parkin- 
son and Washington, 1979); others included more 

complex sea ice rheologies, treating the ice as a New- 
tonian viscous fluid (Campbell, 1965)) a linear vis- 
cous fluid (Hibler, 1974; Hibler and Tucker, 1979)) or 
a plastic material. The Arctic Ice Dynamics Joint 
Experiment in the 1970’s proposed an elastic-plastic 
rheology for the sea ice pack (Coon et al., 1974)) and 
several other nonlinear plastic rheologies have been 
studied since then (e.g. Pritchard et al., 1977; Flato 
and Hibler, 1990; Ip et al., 1991). A nonlinear viscous- 
plastic (VP) rheology proposed by Hibler (1979) has 
become the standard sea ice dynamics model and the 
basis for many recent sea ice studies. 

The VP model suffers from numerical difEculties 
related to the enormous range of effective viscosi- 
ties present in the model, and requires large compu- 
tational resources that become particularly cumber- 

some when the model is coupled to an ocean or at- 
mophere model (Hibler and Bryan, 1987; Oberhuber, 
1993a, b). To avoid the stringent time step restric- 
tion for stability of an explicit numerical scheme in re- 
gions where the ice is relatively rigid, the model equa- 

tions are typically solved with implicit methods such 
as successive overrelaxation (Hibler, 1979) and line 
relaxation (Oberhuber, 1993a; Holland et al., 1993). 
However, these methods suffer from poor convergence 

characteristics as the mesh resolution is increased. 
Attempts to overcome the inherent problems of the 

model have included improved numerical methods as 
well as simplifications of the model itself. As part of 
this paper, we present a more efficient implicit numer- 
ical method for solving the VP model equations- that 
uses preconditioned conjugate gradients. 

Simpler versions of the VP model, such as free 
drift descriptions with no ice interaction and cavi- 

tating fluid models in which the ice has no resistance 
to shear forces (Nikiforov et al., 1967; Flato and Hi- 
bler, 1989, 1990, 1992)) are more tractable numer- 
ically, but the model behavior is sensitive to these 
simplifications (Holland et al., 1993). Likewise, sim- 
ulations with more complicated rheologies than the 
standard elliptical yield curve (Hibler, 1979)) such as 
teardrop (Coon et al., 1974), sine wave lens (Bratchie, 
1984), Mohr-Coulomb and square (Ip et al., 1991) 
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shapes, show that the rheology can have a signifi- 
cant effect on long-term simulations of ice drift (Ip 
et al., 1991). Since an ice model need only simulate 

a viscous-plastic material at time scales on the or- 
der of those imposed by wind forcing (days), we also 
present a modification of the model, the addition of 
elastic behavior, that realizes significant gains in nu- 
merical efficiency, reduces to the original VP model 

behavior at long time scales, and is more accurate for 
transients. Our model avoids the daculties of the 
early elastic-plastic models (Pritchard, 1975; Colony 
and Pritchard, 1975)) because the elastic-like behav- 
ior is not intended to be physically realistic and is 
introduced for numerical expediency. 

The VP model also suffers from inaccuracies in cal- 
culating transient behavior. For example, given daily 
time steps, the VP model behavior is acceptable only 
for surface stresses that vary on the order of a week or 
more. Hibler (1979) states that several time steps are 
needed between changes in the forcing (he uses &day 
averaged winds with a 1-day time step), and more re- 
cently, Stossel et al. (1994) have noted that the sea 
ice components of some ice-ocean coupled models are 
slow to converge, especially under daily forcing. The 
VP numerical model does produce correct transient 
behavior if the time step is taken sufkiently small, on 
the order of minutes for 1-day forcing time scales. Our 
implementation of the elastic-viscous-plastic (EVP) 
model is more accurate in resolving transients, even 
using relatively large time steps, and therefore will 
produce more accurate ice behavior. 

The VP ice dynamics model is not well suited to 
parallel architectures. Implicit methods required for 
larger time steps typically entail a great deal of com- 
munication between processors, making parallel com- 
putation less attractive. Therefore, explicit models 
are generally preferable for parallel implementations. 
Ip et al. (1991) optimized the VP model for multi- 
processor computers using an explicit, Euler time- 
stepping scheme, but stability requirements of the nu- 
merical method severely limited the time step. The 

new EVP model presented in this paper permits a 
fully explicit implementation with an acceptably long 
time step. Its efficiency is compared with three meth- 
ods of solving the viscous-plastic equations: the pre- 
conditioned conjugate gradient method and two relax- 
ation schemes (Hibler, 1979; Zhang and Hibler, 1994). 

The present work is part of an effort to develop 
a computationally efficient sea ice component for 
a fully coupled atmosphere-ice-ocean global climate 
model. The sea ice model, which also includes ther- 
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modynamic and transport components, is designed 
to be compatible with the Parallel Ocean Program 
(POP), an ocean circulation model developed at Los 
Alamos National Laboratory for use on massively par- 

allel computers (Smith et al., 1992; Dukowicz et al., 
1993, 1994). 
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2. The Ice Dynamics Model 

2.1. Viscous-plastic model equations 

Pack ice typically consists of rigid plates which may 

drift freely in areas of relatively open water or be 
closely packed together in regions of high ice concen- 
tration. Although individual ice floes range from tens 
of meters to several kilometers across, the ice pack is 
considered to be a highly fractured two dimensional 
continuum, to make modeling it tractable (Pritchard, 

1975; Rothrock, 1975b; Hibler, 1980; Gray and Mor- 
land, 1994). b e d  and O’Brien (1983) assert that the 
continuum hypothesis is valid for grid lengths as short 
as lkm. 

The force balance per unit area in the ice pack is 
given by a two-dimensional momentum equation (Hi- 
bier, 1979)) obtained by integrating the 3D equation 
through the thickness of the ice in the vertical direc- 
tion and averaging in the horizontal directions: 

where ?a = ( ~ ~ i , + ~ j )  and TW = ( ~ ~ i , + ~ j )  are wind 
and ocean stresses, respectively, assumed to be of the 
form 

+i x (ow - C) sine] . 

The strength of the ice is represented by the internal 
stress tensor aij. Definitions of the other variables 
and constants are given in Tables 1 and 2. 

There has been a great deal of disagreement about 
the relative importance of the various terms in (1) 
(Parkinson and Washington, 1979). The primary 
components are the air and water stresses, Corio- 
lis force, and ice interaction effects (Hibler, 1986); 
the most predominant of these is wind stress (Coon, 
1980). Rothrock (1975a) demonstrated through scale 
analyses that the acceleration term is three orders of 
magnitude smaller than the stress terms. In contrast 

to Hibler (1979) and following Oberhuber (1993a), we 
neglect nonlinear advection, which is a t  least an or- 
der of magnitude smaller than the acceleration term. 
The ice interaction term is essential in balancing the 

stresses in much of the ice field (Hibler, 1979; Parkin- 

son and Washington, 1979; Coon, 1980; Hibler, 1986), 
and although they are smaller in magnitude, current 
and tilt effects are significant over long periods of time 
(Hibler, 1986; Warn-Varnas et al., 1991). 

The momentum equation must be consistent for 
any combination of ice and open water in a grid cell. 
Our particular model differentiates between thick and 
thin ice and tracks ice concentration with compact- 
ness, c, the fractional area of the cell covered with 
thick ice. When c = 0 there is no thick ice (H  = 0)) 
and there may be either thin ice (h  > 0) or open wa- 
ter (h = 0). The mass m in (1) is the total mass of 

ice and snow per unit area, corresponding to J0 p dz: 

m = pi [cH + (1 - c) h] + p, [cH, + (1 - c) h,] . (3) 

Thin ice is assumed to have no strength. so that the 
internal stress tensor is nonzero only for thick ice. 
Since the surface stress terms ~~i and ~~i apply over 
the entire area, we see that thin ice in a cell that 
does not contain thick ice essentially exists in free 
drift, given by the momentum equation without ice 
interaction. In the special case when there is only 
open water, m = 0 and the “ice” velocity is that of the 

interface between atmosphere and ocean, calculated 
with + FW = 0. 

The viscous-plastic rheology proposed by Hibler 
(1979) is given by a constitutive law that relates 
the internal ice stress aij and the rates of strain Zij 

through an internal ice pressure P and nonlinear bulk 
and shear viscosities, C and q, such that the principal 
components of stress lie on an elliptical yield curve 
with the ratio of major to minor axes e equal to 2. 

The constitutive law is given by 

H 

aij = 2t&j + (c - 7)  <&j - P&j/2, (4) 

(5) 

Alternatively, this can be rewritten in the form 

which will be useful to us later. This rheology allows 
the ice pack to diverge with little or no stress, yet 
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Table 1. Constants and parameters used in the dynamics equations. 

C* 

Ca 

c, 

s i  j 

Eijk 

e 

9 
H o  

#& 

P* 
Pa 
Pi 
P S  

Pw 
8 
4J 

20 
air drag coefficient 0.0012 
ocean drag coefficient 0.0055 
Kronecker deltaa 

alternating tensorb 
yield curve axis ratio 2 
gravitational acceleration 980 m / s 2  
sea surface height 

vertical unit vector 

air density 0.0013 g / m 3  

snow density 0.33 g / m 3  

seawater density 1.03 g / m 3  
water turning angle 25' 
air turning angle 25" 

2.75 x 1O3dyne/cm2 

sea ice density 0.91 glm3 

~ 

"bi j  = 1 if i = j and 0 if i # j .  

b"jk = 0 if any two indices are the same, 1 if the indices are in cyclical order, 
and -1 otherwise. 

Table 2. Definitions of other symbols used in the dynamics equations, and their interdependencies. 

Variable Quantities Interdependence 

C 

E 
compactness 
Young's modulus 
strain rate tensor 
Coriolis parameter 
thickness of thin ice 
snow depth on thin ice 
thickness of thick ice 
snow depth on thick ice 
mass per unit area 
pressure 
damping coefficient 
shear viscosity 
bulk viscosity 

stress tensor 
wind stress 
ocean stress 
ice velocity 

geostrophic wind 

geostrophic ocean current 
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resist compression and shearing motion under con- 
vergent conditions. The pressure P, a measure of 
ice strength, depends on both thickness and compact- 

ness: P = P*cHe-C’(l-c), where P* and c* are con- 
stants given in Table 1. The viscosities increase with 
pressure and with decreasing strain rates: 

P C = -  
2A ’ 
P 

q = -  
2Ae2 ’ 

A = [(e:,  + ii2) (1 + e-2) (9) 

+4e-22;, + 2i11i22 (1 - e-211 1’2. 

These parameters represent an idealized visco-plastic 
material whose effective viscosities become infinite in 

the limit of zero strain rate. Hibler (1979) chose to 
regularize this behavior by bounding the viscosities 
when the rates of strain are small and the ice pack 
moves as an essentially rigid solid; the viscosities are 
set to large, constant values so that the ice pack is 
treated as a linear viscous fluid undergoing very slow 
creep. The maximum value for C is 2.5 x 108Pg/s; 
q is similarly bounded through equations (7) and (8). 
He also set minimum values to provide against non- 
linear instabilities, with Cmjn = 4 x 10l1g/s. For a 
sacient ly  small value of C, Cmw < Cmin, in which 
case C = Cmin. For a general account of constitutive 
laws for sea ice, see Hibler (1986). 

Equations (l), (2), (5 )  and (6) may be combined 
as follows. 

matu = 8, [(q + C )  aZu1 + 8, (qa,u) 

+ a, [(C - q)  a,v1 + 8, ( q b )  - azp/2 

+ c‘ [(U, - u)cose - (Vw - v)sine] 

+ Tai + mfv - mg8,Ho, 

+ a, [(C - 7)  az.1 + a, (l;ld,4 - a,p/2 

+ c/ [(vw - v) case + (vW - u)sine~ 

+ Taj - mfu - mgdyHo, 

(10) 

matv = a, [(q + C) a$] + 8, (qa,v) 

(11) 

where c’ = p,C, 1 -  U, -01. 
2.2. Motivation for alternative methods and an 
elastic formulation 

The difficulty in solving (10) and (11) is associated 
with the presence of shear strength (q # 0). The case 
q = 0 corresponds to the much simpler and easier 
to solve cavitating fluid model (e.g. Flato and Hibler, 

1990). This difficulty may be illustrated for the case of 
divergence-free velocity ( V 4  = 0) and constant 17 and 
m. Setting the pressure, surface stresses, Coriolis and 
tilt terms equal to 2, assumed known, the equations 
decouple to give 

az 
m-=qV2ii+2, at 

a simple parabolic equation. The onedimensional 
stability condition for an explicit discretization of (12) 

is 
m 

At 5 -Ax2. 
277 

Given the maximum value of viscosity allowed in the 
VP model, the time step is on the order of a second 
for a mesh spacing of about lOOkm (Ip et al., 1991), 
and a hundredth of a second at a resolution of about 
lOkm, which we anticipate in our application. This 
consideration led to the adoption of semi-implicit dis- 
cretization schemes so that the equations could be 
integrated with a much less stringent time step. The 
solution methods currently in use are typically iter- 
ative relaxation methods (Hibler, 1979; Oberhuber, 

1993a) whose rates of convergence scale asymptoti- 

cally as (1 - aAx2) for simple test problems, where 
cr is a positive constant and k is the number of itera- 
tions (Elman, 1994). Furthermore, iterative methods 
are usually recursive and therefore difficult to adapt 
to parallel machines. The conjugate gradient method, 
on the other hand, can be used successfully on paral- 
lel machines (Smith et al., 1992), and its convergence 
rate is linear with resolution (Elman, 1994). Use of 
a preconditioner further improves this method, but 
good preconditioners that are usable on parallel ma- 
chines are hard to fbd. 

k 

Now consider a hyperbolic equation of the form 

+damping. (14) 

We have constructed (14) so that it converges to the 
same steady state solution as (12), but by means of an 
adjustment process involving damped elastic waves. 
E is a parameter analogous to Young’s modulus. The 
onedimensional stability bound for an explicit dis- 
cretization of (14) is 

At 5 d i A x ,  

and it is possible to arrange the stability restriction 

due to damping to be subsumed in (15). Thus, one 
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might expect such an explicit scheme to converge to 

the steady state with a convergence rate proportional 
to (1 - ~ A z ) ~ ,  similar to that of optimum methods 
for parabolic equations. This provides a rationale for 
considering an elastic wave adjustment process while 
retaining the same steady or quasi-steady solution as 

A n  elastic-plastic model has been proposed previ- 
ously for sea ice on physical grounds, but it is not used 
in practice because of theoretical (Pritchard, 1975) 
and numerical (Colony and Pritchard, 1975) dif3cul- 
ties. The present model, on the other hand, uses an 
elastic-wave mechanism as a numerical artifice or a 
regularization method to overcome the stiffness of the 
viscous equations, and therefore it differs fundamen- 
tally from these previous models. In other words, we 
wish to retain the essence of the viscous-plastic rhe- 
ology but make it much easier to solve numerically. 

To construct such a model, it is usual to separate 
the strain rate into the sum of plastic and elastic con- 
tributions (Reuss, 1930). The plastic part has already 
been given by (6), and the elktic part is approxi- 
mated by 

in (12). 

where E, as before, corresponds to Young's modu- 
lus. Consistent with (1)) we have neglected nonlinear 
advection terms. Adding the elastic and plastic con- 
tributions, we obtain 

Note that the VP rheology (6) is obtained as the 

steady-state limit of (17) or alternatively in the limit 
E + co, while in the limit 7, C -+ co we recover the 
elastic equation (16). Equations (1) and (17) con- 
stitute the EVP model. These prognostic equations 
for the velocity and stress components, ui and cij re- 
spectively, are discretized explicitly, as described in 
the following section. The characteristics of this dis- 
cretization of the model are analyzed in Section 4, 
where we obtain the appropriate choice of E and At to 
permit efficient integration while maintaining viscous- 

plastic balance at slow time scales. 

3. NumericaI formulations 

In this section we outline our numerical tech- 
niques for both the preconditioned conjugate gra- 
dient method and the explicit elastic-viscous-plastic 
method. The spatial discretization is specialized for 

Figure 1. Triangular regions of a grid cell. Velocity 
components for cell (i, j) are in the upper right corner. 

a generalized orthogonal B-grid as in Smith et al. 
(1996) or Murray (1996), and each logically rectangu- 
lar grid cell is divided into four triangles, as illustrated 
in Figure 1. All of the thermodynamic and transport 
variables are given at the center of the cell, veloc- 
ity is defined at the corners, and the stress tensor is 
constant across each triangle. We assume contravari- 
ant velocity components (velocity components aligned 
along grid lines). Here, aij may take on four differ- 
ent values within a grid cell. This tends to avoid the 
grid decoupling problems associated with the B-grid. 
Note that the rates of strain Gi j ,  and therefore the 
viscosities 7 and 5, are also defined in each triangle. 
A land mask Mh is specified in the cell centers, with 
0 representing Iand and 1 representing oceanic cells. 
A corresponding mask Mu for velocity and other cor- 

ner quantities is given by Mu(i , j )  =   mi^ Mh(1), 1 = 

The velocity component equations (see (l), (5),  
(17), or (lo), (11)) are coupled through the strain 
rate iij, the viscosities, and the ocean stress -7'. We 
lag the viscosities and d to obtain a linear system, 

but leave the equations otherwise coupled. 

(48, (i + 1,8, (id + 11, (i + + 1)). 

3.1. Conjugate gradient solution of the viscous- 
plastic model 

as follows: if n indicates the previous time step, then 

Equations (10) and (11) are discretized semi-implicitly 

aun+l - a, [(q + C) a,un+l] - a, (qayUn+l) 

- a, [(C - 7) a,vn+'] - a, (71azvn+l) 

(18) 
m 

At, 
= -un +pun + r, - dzP/2, 

avn+l - a, [(q + C) ayvn+l] - a, (,a,vn*l) 
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Here, 

m 

At, 

p = mf +c‘sine 

r, = ~ ~ i + c ’ ( U ~ c o s e - ~ ~ s i n ~ ) - m g -  

aHo 
rv = 7aj+c‘(V~cose+Uwsine)-mg- 

aY 

CY = -+cfcose 

aHo 

ax 

c‘ = pwcw low -PI. 

All coefficients, including C and q, are evaluated at 
time level n. The viscous-plastic time step, At,, is 

typically on the order of hours. 

At time level n+l, spatial discretization of (18) and 
(19) produces a system of simultaneous equations that 
must be solved iteratively for the values of un+l and 

vnS1 at each grid point. The viscous-plastic rheology 
operator daij/dxj arises from a variational principle 
with the functional 

1(u, v) = -1 2 11 [q(avU + (20) 

+r)(d,u - 8 , ~ ) ~  + C(%u + a , ~ ) ~ ]  dx dy, 

where q and 5 are assumed constant for the purpose 
of the variation in u and v, and we have temporar- 
ily ignored the pressure term. Formulas for auilaxj 
are provided in Appendix A. We discretize I ,  then 

take its variation with respect to u and v discretely 
to obtain the second order derivative terms in (10) 
and (11). Thus, the coefficients of all “n+ 1 terms” 
in (18) and (19) translate into a banded matrix which 

may be represented by the symmetric operator 

[$: & I ,  
where 

A ~ A  = -a, (c + q) a, - a,$, + CY 

B = -a,qa, - a, (C - 7) a, 
BT = -a,qay - a, (C - q) a, 

CTC = -a,qa, - a, (C + q) a, + CY. 

The resulting matrix equation is solved iteratively 
with a preconditioned conjugate gradient method (El- 
man, 1994). The preconditioning matrix is given by 

where A’ is the tridiagonal matrix extracted from the 
coefficients of ATA which couples the u-velocity com- 
ponents along a line of constant j ,  and C’ is the cor- 
responding tridiagonal matrix extracted from CTC 
which couples v-velocity components along a line of 

constant i. 

Success of the method hinges on symmetry of the 
iterating and preconditioning matrices; for this rea- 
son we lag the terms k,&i during the solution of (18) 
and (19). This treatment of the Coriolis term, which 
restricts the time step to about 2 hours for accuracy, 
might be remedied by applying a predictor-corrector 
method to these terms as in Zhang and Hibler (1994). 
This and other improvements to the VP time stepping 
scheme are reserved for future work. 

We have employed a simple linearized Backward- 
Euler time discretization scheme for (18) and (19). 
Other methods for dealing with the nonlinearity, such 
as those employed by Hibler (1979) and Zhang and 
Hibler (1994), are somewhat more accurate but have 
their own difEculties. The numerical method of Hibler 
(1979), which we will refer to as “point relaxation,” 
iteratively solves the system (10) and (11) at each 
time step with successive overrelaxation, utilizing a 
predictor-corrector method to march the equations in 
time. Specifically, predicted velocities at time level 
n + 3 are used to compute the coefficients of the lin- 
earized terms (namely, C, q, CY and ,B) before advanc- 
ing to the next time level. Hibler and Ackley (1983) 
found a splitting problem with this procedure in cases 
of small nonlinear viscosities (free drift) which was 
corrected by a modified averaging procedure. 

As with the predictor-corrector scheme, problems 
also arise in methods which use numerical spatial 
splitting, and in particular, in those methods which 

do not treat the entire strain rate tensor implicitly. 
For example, Zhang and Hibler (1994) also use suc- 
cessive overrelaxation to solve (10) and (l l) ,  along 
with a predictor-corrector time discretization scheme 

similar to that of Hibler (1979). In this case, however, 
the cross derivative terms are treated at time level n 
instead of n + 1, and the equations decouple. Then 
the equations for uij are solved iteratively along an 
entire row (i.e., constant j) before continuing to the 
next row, and the equations for vij are solved sim- 
ilarly along columns. We will refer to this method 
as “line relaxation.” Stossel et al. (1994) found that 
treating the diagonal part of the strain rate tensor im- 
plicitly and the off-diagonal terms explicitly produced 

anomalous ice drifts of 6 cmls. For the conjugate gra- 
dient method described above, the strain rate tensor 
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remains w p l i t .  

3.2. The elastic-viscous-plastic model 

Discretization in time of the momentum equation 
(1) is analogous to that of (18) and (19), except 
that the stress tensor is determined prognostically, 
and both (1) and (17) are subcycled with an effec- 
tive EVP time step of length At, = At&V for some 

integer N > 1 and time interval At,. That is, N 
smaller timesteps are taken with (1) and (17), holding 

q and constant, for each time interval [t,, t,+Atc]. 
Typically, At, = At,, so that At, is often both the 
viscous-plastic implicit time step and the interval at 
which viscosity is updated in the EVP model. Subcy- 
cling maintains the time scale on which the viscous- 
plastic material characteristics are changing, ensuring 
that the VP and EVP formulations are equivalent in 
the limit Ate + 0. 

Denoting the subcycling with the index I C ,  we 
timestep (17) as follows, holding the viscosities con- 
stant at time level n: 

(Since they both depend on the thickness variables, 
E and P also change on the At, time scale, as will 
be seen.) This is a simultaneous equation for the 
three distinct stress tensor components, (~11, u12 and 

a22, which may be inverted directly. Incidentally, we 
found that computing ( ~ 1 1  and 1722 from formulas that 
have the same form is important for maintaining sym- 

metry of the numerical solutions in the x and y direc- 
tions, even at some computational expense. 

Given the updated stress tensor a&+1, the momen- 
tum equation (1) is marched as follows. 

+ C' [(vWi - $+l) cos8 - eij3 (vwj - UP') sine] 

where c' = pwCw - Z k l .  This equation may be 

solved for the velocity components as follows: 

m 
(2 + p') Uk+l = - (ouk + pvk) 

Ate 

where a = m/Ate + dcose and p, rz and ry are 

defined in Section 3.1. 

The proper spatial discretization of uij is deter- 

mined balogously to the variational principle method 
of (20). Given formulas for llui/dxj provided in Ap- 
pendix A, we demand that in each triangle, 

Taking the variation of (23) with respect to ui yields 
formulas for the spatial derivatives of uij. This is 
equivalent to the formalism used in the conjugate e a -  
dient solution of the VP model. Note that this spatial 
discretization is different from that in Hibler (1979). 

4. Heuristic analysis of the elastic-viscous- 
plastic model 

4.1. Simplified model description 

The sea ice model equations are strongly nonlinear 
and very difficult to analyze. In this section we will 
consider a simpsed one-dimensional version of the 
equations describing the EVP model in order to better 
understand the behavior of the model and as an aid 
in the selection of parameters. The simplified model 
assumes all spatial variation and motion occurs only 
in the x direction, all coefficients are constant, all 
forcing is absorbed into a single term T ,  the constant 
term P/4c is absorbed into (T = 011, and u12 = a22 = 
0. The model therefore is not an exact representation 
of the EVP model but is sufliciently similar to be 
useful for a heuristic analysis. The resulting equations 

are 

au au 
m- = - 

at 

(24) 

(25) 

where c is taken to be an effective constant viscosity. 
The VP model is recovered in the limit E += 03: 

which will be considered as the reference for later 
comparisons. Conversely, in the limit c + 03, (24) 
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Figure 2. Stability diagram for the 2D dynamics 
equations (1) and (17). Given Ax, we choose E 
and Ate SO that Ate/re lies to the left of the ver- 
tical asymptote. In this region the viscous-plastic 

timescale rv is irrelevant. 

and (25) reduce to a purely elastic model which sup- 
ports undamped elastic waves, 

where ce = is the elastic wave speed. It is 
convenient to introduce a viscous time scale 

m 
rv = - Ax2, 

c 
and an elastic time scale, 

Ax 
re = G A x  = -. 

Ce 

As discussed in Section 2, rv is on the order of a hun- 
dredth of a second for resolutions of 10 km. In con- 
trast, as we will see shortly, we may be allowed to 
choose re to be on the order of an hour. 

Equations (24)-(26) may be discretized analogously 
to the full set of equations given in Section 3. Since 
the equations are linear with constant coefficients, a 
von Neumann stability analysis may be performed; 
it is outlined in Appendix B for the one-dimensional 

EVP case described in Section 5. A two-dimensional 
stability analysis for the complete set of equations, 
analogous to that given in Appendix B and assum- 
ing Ax = Ag, is summarized in Figure 2 in terms of 
the time scales (28) and (29). It is remarkable that, 

provided At 5 r e d ,  the numerical scheme is stable 

irrespective of the value of the viscous time scale 7,. 
Had (26) been discretized explicitly, the stability limit 
would have been At 5 rv/2, implying a prohibitively 
small value of the time step. We will thus be able to 

integrate the EVP model with a time step 

Ate = (30) 

which is much larger than the shortest viscous time 
scale r,, without resorting to implicit discretization. 
The time discretization of the EVP model therefore 
subsumes the viscous stability limit as mentioned in 
Section 2. 

In what follows it is essential to understand the ef- 
fect of the time discretization and so, in the interest. of 
simplicity, we will consider a continuous spatial r e p  
resentation, keeping in mind that only wavenumbers 
k which satisfy k2Ax2 5 1 are meaningful on a grid. 
The time discretization of the implicit VP model is 

where un is the value of u at time level n, and the 
corresponding discretization of the EVP model is 

where Ate is given by (30)) and 

is the number of steps, or subcycles, that the EVP 
model takes for each step of the VP model. One of 
the objectives in this section is to estimate a suitable 
value for N ,  or in other words, to define an EVP time 
step Ate such that min(rv) << Ate << At,. In this 
section, At, = At,. 

4.2. Forced response 

Since (31)-(33) are linear with constant coeffi- 

cients, it is possible to do a rather complete analy- 
sis. However, it is suflicient for our purposes, since 
the ice is forced primarily by time-varying winds, 
to focus on the amplitude response to periodic forc- 
ing for solutions in the form of plane waves, i.e., 
(u, r )  = (0, .i) ei(kz--wt), where w is the angular fre- 
quency of the forcing. We characterize the response 
by a nondimensional parameter F, 

mO 
F = k2Ax2- 

r,?' 
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utilizing the damping factor 

Here, 8, = e-iwAte is the damping factor for an 

elastic time step Ate. For convenience, define x = 
k2Ax2At,/r,. Substituting plane wave solutions into 
the “exact” equation (26) and discretizations (31)- 
(33), we obtain the following response in the three 
cases: 

Exact: 

k2A x 2A t e 

L/% 

1 

Viscous-Plastic: 

0 1/N T V / %  1 
wAt, 

Figure 3. Domains of accuracy of the elastic- 
viscous-plastic and viscous-plastic models under im- 
posed forcing. We choose numerical parameters so 
that the domains are as common as possible. 

1 
F =  

1 + (6 - 1) (1  + 1 /x )  ’ 

Elastic- Viscous-Plastic: 

- 1 

Assuming wAte << 1, the EVP response parameter 
becomes 4.3. Choosing appropriate parameters 

Conditions (35)-(40) may be more easily under- 
stood graphically. Figure 3 illustrates the domains 
of accuracy for the two models, using k2Ax2Ate/Tv 
as the ordinate and wAte as the abscissa. In gen- 
eral, the EVP domain is larger than the VP domain: 

if 1/N < r,/re then the VP domain is entirely con- 
tained within the EVP domain. 

It is reasonable to choose parameters so that the 
domains of accuracy of the EVP model and the VP 
model are as common as possible. It is therefore de- 
sirable to have 

(34) 

We can deduce by inspection that the response in the 
viscous-plastic case is accurate (i.e., approximates the 
exact response) whenever 6 x 1, x << 1, and therefore 
the conditions for accuracy are 

(35) 

(36) 

wAt, << 1, 

In the elastic-viscous-plastic case, there are two pos- 

sibilities: n 

(37) In view of (30) , this is equivalent to 

and therefore E may be determined by means of (29): and 

(39) 
(43) 

<< 1, 
k2Ax2 

wrv It is interesting that (42) implies that a suitable 
subcycling time step Ate is proportional to the har- 
monic average of At, and the viscous time scale. This 
result highlights the benefits of the EVP model: the 

These 
obtain 

are consistent with the assumption made to 

(34). 
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EVP time step may be orders of magnitude larger 
than the explicit VP time step. Since there is an en- 

tire range of viscous time scales associated with the 
very large range of effective viscosity coefficients, it 
may be appropriate to choose some intermediate value 
of the viscous time scale to use in estimating E. The 

larger the value of E one chooses, the larger the role 
of the elastic versus the viscous-plastic strain rates 

and the shorter the time step At, must be. 

The parameter E cannot be considered a constant 

since then the EVP model would have dynamical ef- 
fects even under free-drift conditions (cH + 0) when 
the ice rheology should play no role. To avoid this 
problem, it is sufficient to assume that E has the form 

E = cHE, for some constant E,. Given suitable val- 
ues of I-,, and At, (At,), we calculate At, by (42), 
then calculate E for the two-dimensional problem as 

min (Ax2, Ay2) , 2E0picH 
E =  

At: 

where 0 < E, < 1. 

5. A one-dimensional test problem 

In this section we further compare the behavior of 
the elastic-viscous-plastic and viscous-plastic models 
for an essentially 1D test problem, but one which now 
includes nonlinear effects. Consider the more com- 
plete one-dimensional form of (1) and (17): 

1 doll all 7 - c  P au + - + - (all+ a22) + - = -1 (45) 
E at 2rl 417~ 4c ax 
-- 

1 dol2 ul2 

E at 27 
-- + - = 0, (46) 

0, (47) + - + - (all + a2n)  + - = 
1 a22 q - c  P 

E at 2rl drlc 4c 
-- 

au aall 
at ax 

m- = - + 7, 

where, as in Section 4, we have lumped all forcing into 
r and assumed that all motion and spatial variation 
occurs only in the x-direction. 

5.1. Steady state 

We now consider the associated steady-state prob- 
lem, which we can solve analytically with constant 
r and boundary conditions u = 0 on the domain 
0 5 x 5 L. At steady state, the stress tensor compo- 
nents are obtained from (45)-(47): 

(49) 

a12 = 0, 

Noting that q = c/4 for e = 2 in (49), we have 

5cau P 

4 a x  2 -  
011 = -- - - 

Equation (48) states that 

-- - -I-. doll 
ax (53) 

Combining (52) and (53), assuming P is constant, we 
have 

(54) 

Recalling (7) and (9) and noting that the strain rate 
has only one component, ell = au/ax, we obtain A = 
m I a u / a x l .  Therefore, the viscosity can have 
one of three possible values: emin, cmax, and 

P 
(55) 

Now, aall/ax cannot simultaneously be both a con- 
stant, as required by (53), and a delta function, as 

implied by (52) and (55); hence the solution must be 
composed of segments characterized by Cmjn and cmax. 

Each segment is of the form 

(56) 
5 1 

4 2 
-cu + - T X 2  + c1x + c2 = 0, 

where cl, c2 are constants. There will be three seg- 
ments: two boundary segments characterized by emin, 

and one in the middle characterized by emax. We 
therefore have a total of six undetermined constants, 
plus the location of the interior break-points. Bound- 
ary conditions and continuity of the solution at the 
two interior break-points provide four constraints. 
Because of the lack of slope continuity at the break- 
points, integral moments of (54) provide the addi- 
tional constraints: 

where n = 0, 1, 2 , .  . . This closes the system. 

This solution is confirmed by numerical results, to 
be shown shortly. We now present a series of simu- 
lations that explore and compare the behavior of the 
EVP and VP models. Unless otherwise noted, param- 
eter values for the simulations in this section are those 



E. C. Hunke and J. 

- 

- 

- 
_ _ _ _ _  Conjugate gradient 

_._._._._._. Line relaxation 

_..._..._..._ Point relaxation 

h 

\ 
ul 

0 
E 
W 

K. Dukowicz: Sea Ice Dynamics 

45c ' ' ' ' ' ' ' ' ' I ' ' ' ' I ' ' ' '4 

40 

35 

S 

30 

25 

12 

0 10 20 
X 

30 

Figure 4. Cross-sections of the velocity component u produced by the (2D) viscous-plastic and elastic-viscous- 
plastic codes as solutions of the 1D test problem, and the 1D numerical solution. 
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0 

Figure 5. Steady state velocity component u for the 1D problem, produced by the conjugate gradient VP model. 
The solution is inherently two-dimensional due to the boundary conditions. The cross-section shown in Figure 4 
lies at j = 50, halfway along the y axis. 
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Table 3. Initial values and parameters for the tests 

shown in Figure 4. The error tolerance on the residual 
for the VP implicit schemes is given by err. 

Initial Values Parameters 

c = 0.9 Eo = 0.25 

H = 60.0cm 
h = 1O.Ocm 

HB = 1O.Ocm 

At, = 21600s 

At, = 21600s 
At, = 300s 

.ii=ocm/s err = 10-~ 

h, = l.Ocm 7 = O.ogg/ ( C m S 2 )  

given in Table 3. The 1D solution was obtained with 
a simple numerical code that integrates (45)-(48) to  

steady state. 

As predicted by our analysis, the steady state solu- , 

tion is composed of line segments, illustrated in Fig- 
ure 4 (labeled “1D”). Figure 4 also presents corre- 
sponding numerical solutions of this problem from the 
2D models. Due to the imposed land mask, the nu- 
merical solutions remain fundamentally two dimen- 
sional, as illustrated in Figure 5, and therefore not 
exactly comparable to  the 1D solution. Implement- 
ing Neumann or periodic boundary conditions in the 

SOR viscous-plastic codes in order to make the solu- 
tion more one-dimensional would have been time con- 
suming and not necessary for our purposes. The four 
2D models produce remarkably similar steady state 
solutions. 

The 2D equations were solved on a 40 x 100 grid 
of square cells (Ax = Ay = 12.7km), and the cross- 
sections shown are centrally located in the y-direction 
(j = 50). The integration began with a uniform ice 
field at rest, no-slip conditions were maintained along 

all four boundaries, and all of the forcing terms were 
replaced by a single stress 7‘ = (T,O) .  The CPU 
times shown in Table 4 represent the time used for 
the dynamics calculation alone; for each case, 31s 
were spent in other sections of the calculation and 
are not included in the table. These calculations were 
performed by a CRAY Y-MP818128 supercomputer. 
The models were integrated for 2700 simulated hours, 
taking 450 time steps with At, = At, = 21600s. 
The EVP dynamics were subcycled 72 times for each 

viscous-plastic time step, thus taking an effective 
EVP time step of Iength At, = 300s. The EVP nu- 
merical model is nearly 40 times more efficient than 
the original VP code on this test problem. 

The conjugate gradient solution shown in Figures 4 

Table 4. Estimated total CPU times for the dynam- 
ics calculations by each of the four models and the 
corresponding average CPU time spent for each of 
the 4000 grid cells, for the tests shown in Figure 4. 

Model CPU CPU/cell 
Elastic 340 s 0.09 s 
Conjugate Gradient 520 s 0.13 s 
Line Relaxation 6083 s 1.52 s 

3.08 s Point Relaxation 12321 s 

and 5 is at steady state; the others are not, although 
the elastic model has reached a quasi-steady state. 
Since the corresponding EVP solution is essentially 
identical to Figure 5, it is not shown. Its magnitude 
oscillates by 32.5% around the steady state solution, 
illustrated in Figure 6. For a given domain size, de- 
creasing Eo decreases the oscillation frequency but 
increases the amplitude. Doubling the size of the do- 
main from 40 x 100 to 40 x 200, keeping the reso- 
lution the same, removes the oscillation altogether, 
indicating that it is due to  transverse effects. In this 
case the elastic velocity is about 4 cm/s less than the 
viscous-plastic steady state velocity in the center of 
the domain, closely approximating the 1D numerical 
solution. 

5.2. Transient behavior 

We investigate the transient behavior of the EVP 
and VP models using two one-dimensional numeri- 

cal codes, the 1D EVP code mentioned earlier and 
its viscous-plastic counterpart, which uses tridiagonal 
matrix inversion to implicitly solve the equation 

(57) 

Both 1D models are discretized as described in Sec- 

tion 3 for the 2D models. 

Although the steady state solutions of the VP and 
EVP models are the same, their transient behavior 

differs for typical values of At, and At,. First, con- 
sider the VP model transient behavior for different 

values of At,, shown in Figure 7. The very slow re- 
sponse of the VP model for large At, is due to the 

linearization used in the rheology operator. If the vis- 
cosity C is held at time tn during integration to time 

tn+l= tn + At,, the linearized ice rheology operator 
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E0=0.25, 4 0 x  1 00 
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Figure 6. The difference between the elastic velocity in the center of the domain and the corresponding steady state 
value of the viscous-plastic velocity. The magnitude of E controls the frequency and amplitude of the oscillation, a 
two-dimensional effect that disappears when the grid is extended in the transverse direction. On the larger domain, 
the 2D elastic solution agrees well with the 1D solution, about 4 cm/s below the steady state viscous-plastic value. 

Figure 7. Transient response of the VP model to constant surface stress, for different time steps. Because of the 
time lag inherent in the calculation of <, the viscous-plastic model requires numerous time steps to reach steady 
state. Thus, small time steps, on the order of 10 minutes for this test problem, are necessary to obtain a converged 
response to an implusively applied physical stress. Velocity at the center of the domain (i = 20) is shown. 
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in the viscous-plastic case (57) takes the form 

d 
aa: (% >.  

Steady state is reached when Cn+l = 5”. Conver- 

gence of this ‘Louter” iteration determines the effective 
time response. The adjustment process is described 
fully for this test problem in Appendix C, where we 
determine the steady state solution analytically and 

estimate the effective transition time to steady state, 
about 35 days for At, = 6 hr. Decreasing At, lessens 
the time lag between Cn and dun+l/dxC; time steps on 
the order of a minute produce the “true inertial lim- 

ited response)) (Hibler, 1979, Appendix B), illustrated 
in Figure 7. That is, in order to respond accurately 
to an impulsively applied 7, the viscous-plastic nu- 
merical model must be integrated with a time step of 
60 s or less. We refer to this solution (obtained with 

At, = 60 s) as the reference solution. 

Subcycling the EVP dynamics overcomes this dif- 
ficulty somewhat. In this case, the ice rheology term 
has the form 

da: ( snaa: ”7 ’ 
where k = 1, 2, . . . , N denotes the subcycling. The 
improved estimates of du/dx during the VP time 
step improve the adjustment of the solution. When 
Atc = At,, exceeds the stability limit, as it often 
does, the EVP results generally lie within an envelope 
bounded by the viscous-plastic solutions for At, + 0 
and At, -+ 03, as indicated in Figure 8. 

Without subcycling, At, = At, and the elastic 
waves do not damp out within the viscous-plastic 
time step. The EVP results are then quite energetic 

for larger time steps, as illustrated in Figure 9. As 
the time step approaches zero, however, the solutions 
converge to the reference solution. Furthermore, the 
two models produce identical results when At, and 
Atc are much shorter than the viscous-plastic stabil- 
ity limit, regardless of subcycling. 

Poor adjustment of the VP model has been noticed 
previously. Hibler (1979) remarks that the viscous- 
plastic rheology is slow to converge to  steady state 

and requires several time steps with constant forc- 
ing to respond accurately. Similarly, Flato and Hi- 

bler (1992) note that even the cavitating fluid model 
should be subcycled several times without changing 
the forcing. However, many numerical simulations 
that utilize the viscous-plastic rheology, including nu- 

merous sensitivity studies, use l-day time steps with 

daily varying winds (Hibler and Walsh, 1982; Hibler 

and Ackley, 1983; Walsh et al., 1985; Ip et al., 1991; 
Bedlinger and Preller, 1991; Chapman et al., 1994, 
to name a few). These wind stresses may vary signif- 
icantly on time scales of a day or so. For example, 
the wind stress imposed in this example is less than 

0.1 dyn/cm2. Since the initial change in wind stress 

occurs over the first time step (6 hr), this is equivalent 
to a change in the applied wind stress of 0.4 dyn/cm2 
per day. The physical wind stress may vary as much 
as 5 dyn/cm2 per day (Coon, 1980), an order of mag- 

nitude larger. Not surprisingly, we observe that when 
integrated with 1-day time steps, the VP numerical 
model exhibits a weak response to strongly varying 
winds. The improved transient behavior of the EVP 
model enhances its ability to capture the response 

of the ice to such variations in the stress. We will 
explore the models’ responses to more realistic, time- 
dependent forcing in the nex% section. 

Both the viscous-plastic transition to steady state 
and the magnitude of u at  steady state depend on 
ice concentration as shown in Figure 10, since the 
maximum viscosity Cmax varies with compactness as 
cec*(l-c) through the pressure P. Because of this ex- 

ponential dependence on c, P and c m w  are about two 
orders of magnitude less for ice concentrations of 0.8 
than for 0.9, and therefore the ice rheology is imma- 
terial for c < 0.8, and one cannot distinguish between 
elastic and viscous-plastic models. 

All of the calculations reported here were done 
with c = 0.9. Holland et al. (1993) point out that 
shear stress becomes significant for ice concentrations 
greater than about 0.9. Furthermore, while open wa- 
ter typically exists year round throughout. the Arc- 
tic, both Arctic and Antarctic ice concentrations are 
predominantly greater than 90% during the winter 
(Stossel and Claussen, 1993; Gloersen et al., 1992). 

6. A two-dimensional problem 

As a further test, we compare the results of the 
numerical formulations on a geometrically simple 2D 

problem in which the geostrophic ocean current and 
wind stress terms have physically realistic magni- 
tudes. Table 5 contains the parameter values used 
here. A circular ocean current is used which has an 
amplitude on the order of 10cmls: 

uz = +20 (2y - Ly) /2L,, 

v, = -20(2x-Lz)/2L,, 
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Figure 8. Response of the EVP model as a function of At,, compared to the W model response for At, = 60 s 
and 21600s. Elastic-viscous-plastic solutions At, = 60s ( N  = 360)) 100s ( N  = 216)) and 216s ( N  = loo), with 
viscosity updated every At, = 21600s) all give better transient response than the viscous-plastic solution with 
At, = 21600 s, but not as good as the converged viscous-plastic solutions with At, = 60 s. 
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Figure 9. Response of the EVP model without subcycling (viscosity updated on every step), as a function of time 
step. A substantial amount of elastic energy is excited, but the solution converges to the reference solution (solid) 
when At, = 60 s. 
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Figure 10. Response of the EVP and VP models for different ice concentrations. While both the VP and 

EVP solutions exhibit appropriate transient behavior for c 5 0.8, when ice rheology plays no role, the VP model - _  - 

response deteriorates as ice concentration increases. 
At, = At, = 21600 s and At, = 216 s. 

Table 5. Initial values and parameters for the 2D 

tests. 

Initial Values Parameters 

c = 0.9 
H = 200.0cm 
h = 1O.Ocm 

H, = 10.0cm 
h, = 1 . 0 m  
ii = Ocm/s err = 

E, = 0.25 
At, = 86400s 
At, = 21600s 
At, = 60s 

7- = 1.00 g/ (cm 2) 

where 0 5 x 5 L, and 0 5 y 5 L,. The ocean 
drag terms are computed as in (2). The wind stress 
is also specified analytically, but is based on Arctic 
data for the month of January, 1986, provided by the 

Naval Research Laboratory. Fourier analysis of data 
in the Greenland Sea (9.2W, 75.5N) indicates that 
the characteristic time scale of the wind forcing is 
generally between 1 and 5 days. Based on these data, 
we allow the wind stress to vary 33% from a divergent 
stress field whose average amplitude is 3 dyne/cm2, 
with a period T = 4 days: 

Ti = [..in(?) - 3 ] s i n ( z ) s i n ( z )  

Velocity at the center of the domain (i = 20) is shown; 

7-j = [Tsin (F) - 31 sin (2) sin (E) . 
Coriolis and ocean tilting effects have been omitted. 
Note that the time variation of this forcing occurs 
only in its magnitude. Although directional variation 

is not included, this (relatively quiescent) wind stress 
varies sufficiently to illustrate the difficulties one en- 
counters with the VP model. 

The model equations were integrated for 25 simu- 
lated days from rest with a time step At, = 1 day. on 
a 40 x 40 grid of square cells (Arc = Ay = 12.7km). 
Such a large time step is not feasible for the EVP dy- 
namics model; for this case, At, = 6 hr and At, = 
60s. These time steps were chosen to illustrate the 

VP model's inaccuracy for conditions under which it 
is often used, and the improvement offered by the 
EVP formulation. Strictly speaking, results from the 
various codes are comparable only for very small At, 
and At,, although we observe in Figures 11 and 12 

that the values of At, and At, used here are suffi- 
ciently small to produce comparable results. 

These results differ slightly from a time-accurate 

reference solution, which we define as that produced 
by the conjugate gradient method with a time step 
of 60s. In Figure 13 we present the differences of 

domain-averaged kinetic energies per unit mass for 
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0 

Figure 11. The VP velocity component u for the 2D test case at t = 25 days, produced with the point relaxation 
numerical model. 

t 

Figure 12. The EVP velocity component u for the 2D test case at t = 25 days. Comparison with the corresponding 
VP solution in Figure 11 shows that the EVP model produces solutions equivalent to those of the VP model and 
validates the 1D results of Sections 4 and 5. 
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Figure 13. The difference between the domain averaged kinetic energy per unit mass of the elastic, conjugate 
gradient and point relaxation methods, computed with At, = 1 day, and the domain averaged kinetic energy per 

unit mass of the conjugate gradient solution, computed with At, = 60s (the reference solution). For the elastic 
solution, At, = 6 hr. The viscous-plastic models require 4 days to reach a quasi-steady state, after which their 
response to the variable forcing tends to lag behind the exact response. 

each of the methods with that of the reference solu- 
tion. This comparison indicates that while all of the 
methods reach a quasi-steady state, the EVP model 
is much more accurate during the initial "spin up" 

from rest, and suggests that the EVP model will be- 
have significantly better under the severe wind forcing 
conditions observed in the polar regions. For example, 
Arctic winds have been observed to change as much as 

350% in a three day period (Reynolds, 1984), and the 
ice edge may move 35 kmlday under gale conditions 
(Roed and O'Brien, 1983). In general, geostrophic 
winds are responsible for 60-80% of the daily ice vari- 
ance (Serreze et al., 1989). On these time scales, it 
is essential that a numerical model for ice dynamics 

respond accurately to the imposed forcing. 

Furthermore, the magnitude of the differences be- 
tween the viscous-plastic model solutions and the ref- 

erence case in Figure 13 indicate that the VP models 
are slow to respond to more typical forcing variations. 

The kinetic energy of the line relaxation solution is 
better than the conjugate gradient solution by about 
a factor of b o ,  due to effectively two iterations of the 
linearization being taken in the predictor-corrector 

method used for the time stepping. Incorporating a 
predictor-corrector method into the time discretiza- 

Table 6. Estimated total CPU times for the 2D tests 
by each of the models and the corresponding average 
CPU time spent for each of the 1600 grid cells. 

Model CPU CPU/cell 
Elastic 45 s 0.028 s 
Conjugate Gradient 9 s 0.006 s 
Point Relaxation 107 s 0.067 s 

tion of the conjugate gradient numerical model would 
improve its accuracy to that of the point relaxation 
model, but degrade its efficiency. Regardless, neither 

VP model is as accurate as the EVP model. 

The CPU times given in Table 6 represent the 
time used for the dynamics calculation alone; the 4 s 

spent performing 1/0 for each case is not included in 
the table. Implementing a two-step time discretiza- 
tion scheme for the conjugate gradient VP numerical 
model would improve its forcing response to roughly 
the level of the point relaxation code and slow it 
down by approximately a factor of two. Note that 
for the At, = 60 s calculation, the conjugate gradient 
dynamics used 1379s CPU. We have not made the 
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corresponding calculation with the point relaxation 

method, but based on the figures in Table 6, the point 
relaxation numerical model would have taken about 

12 times longer, or 4.5 hr, to perform this calculation. 
Thus, the standard VP model would require several 
CPU hours to reach the level of accuracy obtained 
with At, = 60s, which the EVP model simulates 
fairly well in only 45 CPU seconds using At, = 6 hr. 

7. Summary 

Despite its physical and computational problems, 
the nonlinear viscous-plastic rheology proposed by Hi- 
bler (1979) is the most widely accepted model for sea 
ice dynamics. In the model’s physical description, 
the ice viscosity suffers a severe singularity: treated 
as a viscous fluid, rigid sea ice has inh i t e  viscos- 

ity. Hibler (1979) regularized this problem by set- 
ting a maximum viscosity bound, thereby allowing 
the ice to creep slowly rather than being completely 
rigid. Even so, the viscosity ranges over many orders 
of magnitude, and integrating the implicit VP nu- 
merical model requires large computational resources, 
particularly for high resolution grids on parallel ar- 
chitectures. Using smaller maximum viscosity Val- 
ues increases the model’s computational efficiency but 
produces less accurate results. Our explicit elastic- 
viscous-plastic model incorporates a more physical 
regularization, utilizing an elastic mechanism in re- 
gions of rigid ice to significantly increase the computa- 
tional efficiency of the VP numerical model. For com- 
parison purposes, we have chosen to retain the max- 
imum viscosity bound for the results presented here. 
In this paper we also present a fast, though still im- 
plicit, conjugate gradient method for solving the VP 
equations. Although the conjugate gradient method’s 
efficiency is comparable to the EVP method’s on se- 
rial machines, the explicit EVP model will be sub- 
stantially more efficient on parallel computers. 

Furthermore, due to its semi-implicit treatment of 
the ice rheology, the standard numerical formulation 
of the VP model has very poor time response for time 
steps typically used by researchers in the field, which 
are often as long as a day. Our investigation of a sim- 
plSed, onedimensional version of the VP model in- 
dicates that the viscous-plastic model behavior is ac- 
ceptable only for wind stresses that vary slowly. How- 
ever, for wind stresses that vary significantly on time 
scales of a day, the viscous-plastic model response is 
weak. 

This computational pathology may be resolved by 
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improving the numerical method or by changing the 
physical parameterization in the model. The EVP 
model represents a combination of these approaches: 
its (albeit nonphysical) elastic waves enable the use of 
an efficient, explicit numerical method. We observe 
improved transient behavior of the solutions, enhanc- 
ing the model’s ability to capture the ice response 
to variations in the imposed stress. However, be- 

cause the EVP model is based on the same inearized 
viscous-plastic rheology as the VP model, it may in- 
herit similar problems in some parameter regimes. 

We have shown that a large range of the elastic 
wave parameter E exists for which the EVP numeri- 
cal method is both stable and efficient. In particular, 
this allows the elastic time step to be orders of magni- 
tude larger than the viscous-plastic time scale in areas 
of rigid ice. Several considerations must be weighed 
when choosing the model parameters. The time scale 
of the external forcing places an upper bound on At,, 
or At,. The choice of the subcycling time step Ate 
is based on considerations of efficiency and accuracy. 
Some guidelines for choosing Ate are given in Sec- 
tion 4. The parameter values used in this paper, 
namely for At,, E, and Ate, are representive of suit- 
able values that improve both the numerical efficiency 
and accuracy of the viscous-plastic ice model. A more 
complete parameter sensitivity study will be reported 
later. 

Other numerical concerns involve maintaining spa- 

tial symmetry and energy conservation in the dis- 
cretization of the stress tensor, which arises from a 
variational principle. Dividing the grid cells into four 
triangles for spatial discretizations results in higher 

resolution of the stress tensor and viscosity fields than 
of thickness and velocity. These numerical improve- 
ments, along with the formulation of the EVP model, 
have resulted in a fast, efficient model of sea ice dy- 
namics that is well suited to climate studies on par- 
allel machines. 

We have coupled the EVP dynamics model to ther- 

modynamic and transport components, and will be 
testing this ice model with daily atmospheric fluxes 
and validating it with remotely sensed and in-situ ob- 
servations. More complete descriptions of the ther- 
modynamics and transport components and results 
from the validation of the complete sea ice model are 
forthcoming. 
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Appendix A: Numerical formulations 

Formulas for the spatial derivatives of a field Aij 
defined at the upper right corner of the grid cell (see 
Figure 1). Ax;j and Ayfj are mid-cell lengths. As- 
suming the field A is linear in x and y within each 
triangle, 

North 

East 

South 

West 

Appendix B: Stability of the 1D equa- 
tions 

We perform a von Neumann stability analysis of 
the simplified, 1D dynamics equations (45)- (48). 
Discretizing time, these equations become 

= o  m dcl n+l 

un> - - (un+l - 
At 

- -on) + - - -- - - 0. 1 5on+l 25dun 

EAt 4C 16 dx 

Assume that both u and u have the form aneijkAz, 
and an+' = Xun. Then the characteristic equation is 

x2 (1 +a) + x (-2 -a+ P p )  + 1 = 0, 

where a = 5EAt/4C and p = 25EAt2/16m. Solu- 
tions are stable whenever 1x1 < 1, that is for 

1 

2 
a >  -k2p-2. 

Let E = At/r, and y = At/r,,. Then y = 4p/5aAx2 
and the boundary of the stability region is given by 

the hyperbolic function 

The stability region of the 2D equations, shown in 
Figure 2, is similar. 

Appendix C: VP model adjustment to 
imposed forcing 

The VF' adjustment time illustrated in Figure 7 for 

time steps of 6 hr or more may be estimated as fol- 
lows. For large time steps, the acceleration term may 
be neglected, and the transient iterates of the result- 
ing numerical scheme approximate the transition to 
steady state. That is, we integrate (54) over [x, L/2] 
and take advantage of the problem's symmetry about 
x = L/2 to produce the relation 

c- dU = 47 (; - X) . 
dX 

The transition to steady state is then governed by the 
associated iterative scheme, 

where PI = P/&, (55) has been incorporated for 

and 
G=-(" 47 x ) .  

&P 2 -  
Thus, the upper and lower bounds imposed on C now 
limit du/dx. The iteration begins with u = 0 and 

C = Cmm for al l  x. Recall that the steady state so- 
lution is composed of three line segments, the inner 
section characterized by Cmax and the two outer sec- 

tions by Cmin. In the inner section, C will remain equal 
to Cmm, but in the outer regions, C, given by (55)) will 

change from Cmm to <mine Equivalently, l d ~ / d ~ l  will 
change from ldu/dxlmm to ldu/dxlmin, under the it- 

eration (Cl). Let k be the number of iterations for 
this change to occur; then 
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Figure C1. The number of iterations, k, needed for 

C to change from (mm to Cmin, as a function of 5. 

The vertical lines indicate the break-points, between 
which C = Cmax. The number of steps required for the 
solution to reach steady state is given approximately 
by the largest value of k at the gridpoints nearest the 
break-points, about 140 in this case. 

In general, k will be a function of x. For this test case, 

lau/ax(,, = 2.2 x and la~/i?x(,~,, = 1.8 x lo-' 

(for P = 2 x lo6), so that 

1n1.2 x 103 

W l  ' 
k =  

illustrated in Figure C1. This formula is valid only in 
the outer regions and fails at the break-points, where 

]GI= 1: 
2 = -  L p  -* 

2 47- 
Here, k is largest for the gridpoints nearest the inner 
region; this analysis suggests that approximately 140 
iterations are needed for the solution to reach steady 
state, in good agreement with Figure 7. 
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