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A pseudo-elastic local meshless formulation is developed in this paper for elasto-plastic analysis of solids. The moving 
least square (MLS) is used to construct the meshless shape functions, and the weighted local weak-form is employed to 
derive the system of equations. Hencky’s total deformation theory is applied to define the effective Young’s modulus and 
Poisson’s ratio in the nonlinear analysis, which are obtained in an iterative manner using the strain controlled projection 
method. Numerical studies are presented for the elasto-plastic analysis of solids by the newly developed meshless 
formulation. It has demonstrated that the present pseudo-elastic local meshless approach is very effective for the elasto-
plastic analysis of solids. 
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1.   General Appearance 

The finite element method (FEM) is currently the dominated numerical simulation tool for the analysis of 
material behaviors in elastic and elasto-plastic ranges. A group of numerical techniques based on FEM 
have been developed so far to solve the elasto-plastic problems. Owen and Hinton1 provided finite 
element computer implementation of elasto-plastic problems based on incremental theory. Seshadri2 
developed a GLOSS method based on two-linear elastic finite element analysis which is used to evaluate 
the approximate plastic strains at certain local regions. Desikn and Sethuraman3 developed a so-called 
pseudo-elastic method for the determination of inelastic material parameters.  

However, the nonlinear stress-strain relationship and the loading path dependency in the plastic range 
make the analysis tedious.  On the other hand, some shortcomings of FEM are revealed in the elasto-
plastic analysis including difficulty for adaptive analysis and poor accuracy of the stress field. These 
shortcomings are inherent of numerical methods formulated based on predefined meshes or elements. In 
recent years, some meshless (or meshfree) methods have been proposed to overcome the shortcomings of 
FEM. According to the classifications of Liu and Gu4, meshless methods can be largely grouped into 
three different categories: the meshless method based on strong-forms, the meshless method based on 
weak-forms, and the meshless method based on the combination of weak- and strong-forms. The famous 
smooth particle hydrodynamics (SPH)5 belongs to the first category, and the element-free Galerkin (EFG) 
method6 and the point interpolation method (PIM)7 belong to the second category. The advantages of the 
meshless method include: 1) no mesh used; 2) high accuracy, and 3) good performance for adaptive 
analysis. Therefore, the meshless technique provides a big freedom for numerical modeling and 
simulation. However, the freedom does not present without cost (e.g., some undetermined parameters and 
worse computational efficiency).  
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In the family of meshless methods, the meshless method based on the local weak-form is a well-
developed technique including the meshless local Petrov-Galerkin (MLPG) method8,9  and the local radial 
point interpolation method (LRPIM)10. Due to the stability and accuracy of MLS, the local meshless 
method based on the moving least squares (MLS) is becoming a robust numerical tool for the practical 
analysis. However, almost all current researches and applications of this type of meshless methods (based 
on MLS) for solids are limited to linear elasticity, and few research for the material nonlinear analysis is 
reported. In this paper, a pseudo-elastic local meshless formulation is developed to solve elasto-plastic 
problems in solids. The locally weighted residual method is used to derive the meshless system of 
equations and MLS is applied to construct the meshless shape functions. The Hencky’s total deformation 
theory with the iterative manner is used to define effective material parameters. Numerical examples are 
studied to demonstrate the effectivity of the newly developed pseudo-elastic local meshless formulation 
for the elasto-plastic analysis.  

2.   The local meshless formulation  

Consider the following two-dimensional solid problem: 
 , 0ij j iσ b+ = in     Ω (1) 

The corresponding boundary conditions are 
 

i iu u= ;  i ij j it σ n t= =  (2) 

In the local meshless method, a local weak-form is constructed over a sub-domain Ωs bounded by Γs. 
Using the locally weighted residual method, the generalized local weak-form of Eqs. (1) and (2) for a 
field node, I, can be written as  
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where wI is the weight function, which is constructed based on the node I. 
The problem domain and boundaries are discretized by arbitrarily distributed field nodes. To 

approximate the displacement function u(x) in Ωs, a finite set of p(x) called basis functions is considered 
in the space coordinates xT=[x, y]. The moving least squares (MLS) interpolant uh(x) is defined in the 
domain Ωs by 
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where m is the number of basis functions, and the coefficient ( )ja x  is also a functions of x. ( )a x  is 

obtained at a point x by minimizing a weighted discrete L2 norm of: 
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where n is the number of nodes in the neighborhood of x for which the weight function w(x-xi)≠0, and ui 
is the nodal value of u at x=xi . The stationarity of J with respect to a(x) leads to the following linear 
relation between a(x) and u: 

 ( ) ( ) ( )=A x a x B x u  (6) 

In which A(x) and B(x) are the interpolation matrices defined by coordinates and the weight functions. 
Solving a(x) from Eq. (6) and substituting it into Eq. (4), we have 
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where ( )iφ x  is the MLS shape function. It should be mentioned here that the MLS shape function 
obtained above does not have the Kronecker delta function properties4. 

Substituting the displacement expression given in Eq. (7) into the local weak- form Eq. (3) and 
applying this local weak-form for all filed nodes, we have the following discretized system of equations, 
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 =KU F  (8) 
where K is the stiffness matrix and F is the force vector, i.e. 
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In Eq. (9), De is the effective material matrix that is obtained from the effective constitutive equation, 
i.e.:  
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where Ee and eν are effective Young’s modulus and Poisson’s ratio, which will be discussed in the 
following section. 

It should be mentioned here that to get the matrix K in Eq. (9), Gauss quadrature is used, and it means 
that K is obtained based on all quadrature points. Hence, eD is the material parameter matrix at the 
Gaussian quadrature point xQ.  

3.   Effective material parameters 

The strain-stress relationship can be taken in the form3 of )( ijij f σε = . ijε  is the total strain tensor which 

is the summation of  conservative elastic e
ijε and nonconservative plastic part p

ijε , i.e.,  

 e p
ij ij ijε ε ε= +  (12) 

The elastic strain tensor is related to the stress tensor and is given by Hooke’s law11 for isotropic material. 
The plastic strain tensor is related to the deviatoric part of stress tensor and is given by Hencky’s total 
deformation relation of p

ij ijSε Ψ= , where Ψ  is a scalar valued function, given by 
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Hence, from Equation (12), we can get 
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The above equation can be re-written as 
 1 e e
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where eE  and eν  are the equivalent Young’s modulus and Poisson’s ratio, which are given by 
 1 2
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;   
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     (16) 

Eq. (15) is the effective constitutive equation for the analysis of material nonlinearity. It should be 
mentioned here that the effective material parameters are functions of the final state of stress fields, which 
are usually unknown. Because the system of equations is constructed based on the Gauss quadrature 
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points, the effective material parameters should be also calculated for Gauss quadrature points. In 
addition, the direct method is unable to lead to the final solution, and the following iteration method based 
on the projection technique3 is used. 

A linear elastic analysis is firstly carried out to get the initial stress field. To determine whether a 
material enters the plastic range, the Von Mises yield criterion, which compares the equivalent stress with 
the yield stress, is used. If the equivalent stress calculated from linear analysis is smaller than the yield 
stress, σ0, the computing is finished because the material still satisfies the linear elasticity; if the 
equivalent stress is larger than the yield stress, it means the deformation already enters the plastic region, 
and the following iteration computing will be performed. 

From the initial linear elastic analysis, the strain value is kept unchanged (i.e. strain controlled), and is 
projected on the experimental uniaixial σ − ε curve. Based on the projection point, the effective value of 
Young’s modulus, )1(

eE , for the next iteration is obtained from the slope, and then the effective Poisson’s 
ratio, )1(

eν , can also be obtained from Equation (16). Using the new effective materials parameters)1(
eE  

and )1(
eν , the next linear elastic meshless analysis is carried out to get the next point, its projection point, 

and further to obtain )2(
eE  and )2(

eν ,  similarly.  This iterative procedure is repeated until all the effective 
material parameters converge and equivalent stress falls on the experimental uniaxial stress-strain curve.  
However, if the applied loading is too big, the computing may not converge, and it means that the 
material is already failure, and this certain loading is called the critical failure loading which is also an 
important parameter for solids and structures.  

4.   Numerical example 

To illustrate the effectiveness of the presented pseudo-elastic local meshless formulation for the material 
nonlinear problems, several cases of elasto-plastic analyses have been studied, and good results have been 
obtained. Following, the results for the uniaxial tension of a bar is presented and discussed in details.   
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Fig. 1 A cantilever bar under uniaxial 

tension 
Fig. 2 The convergence path for the bar with the elastic-perfectly 

plastic material (F=54MN, 55MN and 56MN) 

As shown in Fig. 1, a cantilever bar with length 3m and height 0.3m is subjected to a uniform tensile 
pressure (the resultant force is F). The Young’s modulus is assumed as 11101.2 ×=E   Pa, the Poisson’s 
ratio is 3.0=ν , and the yield stress is 8

0 1068.1 ×=σ  Pa. The bar is assumed as being in a plane stress 
state. As shown in Fig. 1, 163 irregularly distributed field nodes are used to discretize the problem 
domain and boundaries.  

The material is initially considered as elastic-perfectly plastic. The new developed pseudo-elastic 
local meshless method and the iterative projection technique are applied to get the results. Fig. 2 shows 
the convergence paths for different F. It can be seen that the present method using the projection 
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technique can quickly produce convergent results.  However, when F=56MN, the result is not convergent. 
It has been found that when F is larger than a certain value, the results will become non-convergent, and 
the structure fails. This value is called the critical failure load, and it is F=55.5 MN for this problem. 
Comparing with the FEM and other method results10,12, it can be seen that the results obtained by the 
present method are in good agreement with those obtained by other methods. It should be mentioned that 
the present method needs much less iteration steps than FEM. Therefore, it is more efficient than FEM.  

A work-hardening material is also considered, as shown in Fig. 3. It clearly shows that the pseudo-
elastic local meshless method gives convergent results for F=80 MN.  It is reasonable that a work-
hardening material has a much higher critical failure load than an elastic-perfectly plastic material. 

 
Fig.3 The convergence path for the bar with the work-hardening material (the unit of stress is Pa and F=80MN) 

5.   Conclusions 

A pseudo-elastic local meshless formulation is developed for solving elasto-plastic problems in solids. The 
moving least squares (MLS) is used to construct meshless shape function and the weighted local weak-form 
is used to derive the meshless system of equations. The Hencky’s total deformation theory is utilized to 
define the effective material parameters, which are obtained in an iterative manner using strain controlled 
projection method. Numerical studies are presented for the elasto-plastic analysis of solids by the newly 
developed meshless formulation. It has demonstrated that the present pseudo-elastic local meshless approach 
is very effective for the elasto-plastic analysis of solids. 
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