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Abstract 

 

In this work, we develop a polycrystal mean-field constitutive model based on an elastic-plastic 

self-consistent (EPSC) framework. In this model, we incorporate recently developed subgrain 

models for dislocation density evolution with thermally activated slip, twin activation via 

statistical stress fluctuations, reoriented twin domains within the grain and associated stress 

relaxation, twin boundary hardening, and de-twinning. The model is applied to a systematic set 

of strain path change tests on pure beryllium (Be). Under the applied deformation conditions, Be 

deforms by multiple slip modes and deformation twinning and thereby provides a challenging 

test for model validation. With a single set of material parameters, determined using the flow-

stress vs. strain responses during monotonic testing, the model predicts well the evolution of 

texture, lattice strains, and twinning. With further analysis, we demonstrate the significant 

influence of internal residual stresses on: 1) the flow stress drop when reloading from one path to 

another, 2) deformation twin activation, 3) de-twinning during a reversal strain path change, and 

4) the formation of additional twin variants during a cross-loading sequence. The model 

presented here can, in principle, be applied to other metals, deforming by multiple slip and 

twinning modes under a wide range of temperature, strain rate, and strain path conditions. 
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1.0 Introduction 

Under an applied mechanical strain, hexagonal-close packed (HCP) polycrystalline metals, 

such as Mg, Ti, Be, and Zr, can deform via combinations of slip and twinning, even in ambient 

conditions [1, 2]. Under strain path changes the relative activities of slip and twinning can 

change and in particular, new slip and twin variants can activate within the same grain, former 

slip can reverse direction, and twin domains can shrink (de-twinning). These basic processes are 

microscopic, occurring in the interior of the grain and across or in the vicinity of the grain 

boundaries. The relative proportions of slip and twinning accommodating plastic strain and when 

and where they activate in the grain structure during a strain path have a profound effect on the 

flow stress-strain response and microstructure evolution. 

A number of material models have been developed to relate such details of slip and twinning 

in HCP metals to the macroscopic response. They range from analytical models [3] to 

polycrystalline upper-bound schemes such as Taylor [4, 5] and mean-field self-consistent models 

[6, 7] to spatially resolved techniques, such as crystal plasticity finite element [8-11] and Green’s 

function fast Fourier transform [12] models. While the latter class of models can be used for 

detailed simulations of grain-grain interactions and stress and strain localizations [10, 13-15], the 

mean-field constitutive models are more computationally efficient and have proven effective for 

predicting the average flow stress and texture evolution of grain aggregates over moderate to 

large strains [6, 7, 16-19]. Another advantage lies in the schemes they use for deformation 

twinning and linking its micromechanics to behavior of the polycrystal [20-23]. However 

explicit incorporation of deformation twinning in spatially resolved techniques is meeting 

challenges and is the subject of ongoing model development in the field [24]. 

In some cases, mean-field polycrystal models have served as the fundamental constitutive 

model within a larger finite element simulation. The polycrystal model provides the stress-strain 

relationship of a local material volume or material element undergoing homogeneous 

deformation of a finite element simulation and the FE simulation treats the variation in 

deformation from point to point across the sample. Such multi-scale model approaches have been 

used for simulations of compression and tension tests [25], bending [26-28], rolling [29], cup-

drawing [30, 31], sheet hydroforming  [32], tube extrusion [33], and bulk forming [34]. As these 

studies show, when a polycrystal model is used as the material point constitutive response in 
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place of the commonly used empirical or phenomenological laws, then heterogeneity in texture 

and other microstructural features can be predicted. 

Considering their widespread use and value, it is important that the polycrystal constitutive 

models take into account the mechanisms and physics driving deformation operating at a 

microscopic scale. Over the years, polycrystal models have been developed to account for a 

number of subgrain level phenomena for the evolution of crystallographic slip resistance with 

strain. Hardening has been modeled via phenomenological laws, such as the Voce law [35] and 

Mechanical Threshold Stress [36, 37], or based on the evolution of stored dislocations [21, 38-

40], as well as both stored and mobile dislocations within the grain [41]. Representing the effects 

of deformation twinning in these models is commonly more demanding than slip. Deformation 

twins affect the microstructure in two ways: they reorient the lattice within a finite domain 

within a grain and they introduce a twin-matrix boundary between the original parent grain and 

the twin domain [42, 43]. These effects impact dislocation processes in at least two ways. The 

twin-matrix boundaries can hinder slip (boundary effect) and the reoriented twin domains can 

provide new orientations within which the propensity for slip changes (lattice reorientation 

effect). Earlier analytical and polycrystalline mean-field models accounted for twinning as a 

pseudo-slip process [44], and considered the reorientation effect, via: (i) the predominant twin 

reorientation (PTR) method [45], (ii) the volume fraction transfer (VFT) scheme [46], (iii) the 

total Lagrangian approach [47, 48], and (iv) the composite grain (CG) method [49]. The most 

recent treatments take into account both effects, via the composite grain model for reorientation 

for a given number of twins n per grain and a Hall-Petch-type model for the spacing between 

adjacent twin boundaries [20, 39, 50]. 

Yet still, the effects of twinning in stress-strain response were not captured well without 

substantial parameter fitting [39, 49, 51]. Some recent works suggest that the problem may lie in 

the fact that most of these models treated the effects of twinning after the twin had nucleated and 

not twin nucleation itself. For twin nucleation, deterministic rules were typically used. In 

actuality, twinning calls for a probabilistic treatment. When and where twins nucleated is 

statistical in nature due to defect variations in the microstructure and fluctuations in inter-

granular (type 2) and intra-granular (type 3) stresses. Most recently, probability models for twin 

nucleation have been introduced, leading to significant improvements in the capability to capture 

both the twinned microstructure and stress-strain response [20, 21, 52]. In those models, the 
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characteristic threshold stress to first activate twinning was probabilistic and the stress 

concentrations for driving nucleation were randomly fluctuating. At nucleation, the reoriented 

twin lamellae were introduced and the stress and strain of the twin and matrix updated. After 

nucleation, the critical stresses governing the expansion of the reoriented twin domain and hence 

shrinkage of the matrix domain were modeled deterministically. The above effects of 

probabilistic activation of deformation twins have thus far been implemented into a visco-plastic 

self-consistent (VPSC) formulation, which only accounts for stresses derived from plastic strains 

and ignors elastic residual stresses of type 2.  Clearly treatments that also consider the effect of 

elastic strains would be more desirable. 

In most of the modeling advancements reviewed above, the polycrystal constitutive laws 

were tested under loadings applied in one direction and fixed deformation conditions, whereas in 

practice, loading situations often involve changes temperatures, strain path, strain rate, etc., such 

as in fatigue and forming operations. To model stress-strain behavior during a sequence of two or 

more strain paths, each differing in load direction, temperature, or strain rate, it has been found 

necessary to account for additional micro-scale phenomena often missed in monotonic loading 

treatments, such as backstresses, substructure development, glide of special dislocations 

(“polarized dislocations”) [53-55], and/or de-twinning [56, 57].   

Many of the foregoing phenomena are driven by a complex coupling of elastic and plastic 

strain fields. For instance, the residual stresses and strains left in the microstructure after one 

strain path are expected to affect the propensity of plastic slip, deformation twinning, or de-

twinning in subsequent paths. However, many of the modeling attempts to date have not 

completely captured the combination of dislocation motion and residual elastic strain 

development. Previously, constitutive models based on Taylor or VPSC have employed the idea 

of reversible dislocations to model the flow stress during cyclic loading and strain path changes 

[53-55, 57-59]. While they involve sophisticated models for dislocation density evolution (as 

opposed to phenomenological ones) they also neglect elastic strain development. Some 

polycrystalline models approaches have accounted for the development of elastic strains and 

their effects on deformation mechanisms. Constitutive models using an elasto-plastic self-

consistent (EPSC) approach have been applied to cyclic loading cases for stainless steel [60].  

Most notable is the recent development of the elasto-VPSC (E-VPSC) models and its modeling 
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of de-twinning and loading and unloading sequences [61]. Yet still, the models for hardening of 

slip resistance were based on phenomenological functions and not based on dislocation storage. 

Here, a multi-scale constitutive model for hexagonal close packed (HCP) metals is 

developed. It is predominantly a meso-scale model, covering the length scale range from the 

subgrain scale to the scale of the polycrystalline aggregate. We use EPSC [7] as it enables both 

elastic and plastic strains to play a role in slip, twinning, and de-twinning. To account for these 

deformation mechanisms, we incorporate into the EPSC formulation several subgrain and grain-

level models that have up to now only been used in combination with the VPSC formulation: 

dislocation density based hardening, internal stress fluctuations for twin nucleation, CG twinning 

model and de-twinning. We additionally advance the twinning model from VPSC to account for 

multiple twin domains of different variants within the same grain in EPSC. To distinguish this 

model from prior modeling efforts, we refer hereinafter to it as the multi-scale EPSC (MS-EPSC) 

model. 

The standard version of the EPSC model has been used in the past for the interpretation of in-

situ neutron diffraction data [60, 62], a method to experimentally probe grain-level deformation 

behavior within bulk samples through measurements of internal strains. The high-penetration 

depth of neutrons and high-energy x-rays in most materials makes it possible to probe the 

internal structure within bulk samples under and after unloading. Changes in diffraction peak 

locations are associated with internal elastic strain development. An advantage of coupling EPSC 

modeling and in-situ diffraction is that the model and the experiment probe the polycrystal in 

similar ways allowing for successful interpretation of the diffraction results. A fraction of grains 

with a common orientation but a variety of grain neighborhoods gives rise to an averaged 

diffraction response, and the EPSC model allows determination of the average response of a 

similar subset of grains embedded within an averaged (effective) environment.  

In this work, the MS-EPSC model is applied to a set of strain path change uniaxial tests on 

pure Be reported previously in [63]. During these tests, evolution of flow stress, texture, twin 

volume fraction, and lattice strain, were measured. All these data can potentially be predicted 

and interpreted by the EPSC model. Experimental measurements in [63] indicate that within this 

test matrix, some strain paths involve slip, some both slip and twinning, and others slip and de-

twinning. The aim of our application to this Be data set is two-fold: 1) to predict when slip, 

twinning, and de-twinning occurs and its effect on texture and stress-strain and 2) to understand 
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the effect of internal residual stresses on the activation of slip, twinning and de-twinning during 

two different types of strain path changes, a pseudo-reversal and a pseudo-cross loading.  

After characterization of the material parameters with a separate data set, the MS-EPSC 

model capability is demonstrated by good agreement in its predictions of evolution texture, twin 

fraction in twinning and de-twinning. Furthermore, as arguably the most stringent test of the 

model, the predictions for the evolution of residual lattice strains are shown to compare well with 

the data measured in situ in the high-energy x-ray diffractometer [63]. Through this effort, we 

reveal the significant effect of internal residual stresses on twin activation, the change in yield 

and flow stresses during the strain path change, and de-twinning. These findings were not 

possible with prior studies on HCP polycrystal behavior during strain path changes.  

The paper is structured as follows. First, we present the multiscale (MS)-EPSC constitutive 

model, starting from a review of the EPSC scheme, including the grain-level twinning and de-

twinning models and ending with models for slip and twin activation at the subgrain level. The 

model for treating multiple twin variants within a single grain is subsequently described. We 

then present our application to stress, texture, and lattice strain measurements made during 

uniaxial strain path change tests on high-purity Be. We end with a discussion on the implications 

on the specific roles of internal residual stresses.  

 

2.0 Modeling framework 

2.1 Polycrytalline model: Elastic-Plastic Self-Consistent (EPSC) formulation 

The EPSC model relates the deformation of individual grains to the polycrystalline aggregate 

response. The model follows the formulation given in Ref. [64]. Details can also be found in [7, 

65]. Below we only review the essential details.  

In EPSC, the polycrystal is represented by a number of grains with a given volume fraction 

and crystallographic orientation. Each grain is modeled as an ellipsoidal inclusion embedded in a 

homogeneous matrix with average properties of the aggregate polycrystal. By working in small 

strain increments, a linearized relation between stress and strain is employed, where the 

increments in the macroscopic stress and strain are: 

εLσ dd = .                 (1) 

In Eq. (1), L is the instantaneous elasto-plastic stiffness tensor of the polycrystal matrix. The 

response of each grain follows from solving the stress equilibrium and compatibility relations for 
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an inclusion embedded in a homogeneous anisotropic matrix under applied loads [7, 66]. 

Increments in polycrystal stress and strain are equal to the volume average of the grain stress 

increment and strain increments as: 

c
dd σσ =    and c

dd εε = .              (2) 

The condition that the average of the grain increments are equal to the overall polycrystal 

increments leads to a self-consistent equation for the overall elasto-plastic stiffness L, which is 

calculated iteratively in a given increment using a standard self-consistent procedure [7]. At this 

point the stress states, strain states, and slip/twin resistances (through the hardening law 

described later) are updated incrementally for the current deformation step n+1, with respect to 

their previously converged values, noted by the superscript n. For example, the new stress of the 

polycrystalline aggregate is calculated from the overall stress increment, σd , associated with the 

strain increment, εd , as: 

 σσσ d
nn +=+1 .                 (3) 

 

2.2 Single crystal plasticity model 

In our notation, “ ⋅ ” is a contracted or dot product and “ ⊗ ” is an uncontracted or tensor 

dyadic product. For the individual grains (ellipsoidal inclusions), the constitutive relation 

between increment in stress and increment in strain is linearized as: 

ccc
dd εLσ =                  (4) 

where  cL  is the incremental elasto-plastic stiffness tensor (aka instantaneous moduli) in the 

grains and is defined as: 








 ⊗−⋅= ∑
s

sscc fmICL                (5) 

where cC  is the elastic stiffness tensor of a single crystal and sm  is the Schmid tensor for the sth 

slip system. The matrix, sf , relates an increment in shear strain on sth slip system to the total 

increment in strain, css
ddγ εf= , and is defined for a given set of active systems as: 

( ) c

s

sss's CmXf ∑ ⋅= −

'

'1
, ''' scsssss

h mCmX ⋅⋅+= .                       (6) 

The slip resistance on a slip system is a function of increments in shear according to: 
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∑=
'

''

s

ssss

c dhdτ γ                 (7) 

where 'ss
h  is hardening matrix (i.e., instantaneous hardening coefficients). It should also be 

noted that sf  is dependent on the hardening law through 'ss
h . Elements of the hardening matrix 

are themselves a function of dislocation density. (The model for the evolution of dislocation 

density will be described in section 2.4.1.) It can be seen that the tensor cL  is a function of the 

active slip systems, elastic stiffness tensor, and hardening law. When the set of active slip and 

twinning systems are known, then cL  can be calculated.  In order for a slip or twinning system to 

be active, it must satisfy two conditions:  (1) s

c

cs τ=⋅σm , meaning that the resolved shear stress 

on the slip system has to be equal to the slip resistance (stress needs to be on the single crystal 

yield surface) and (2) s

c

cs dd τ=⋅ σm , meaning that the slip/twin system has to remain on the 

evolving single crystal yield surface in a given increment as stress evolves due to hardening. In 

addition, the formulation allows for only positive shear on a given slip system,  i.e., 0>∆ sγ , 

since reverse shear of this slip system would be captured as positive slip on the opposite-signed 

slip system. The slip systems are defined such that the two slip systems sharing the same plane 

normal but having opposite sense of shear are independently considered.  

 

2.3 Twinning and de-twinning models 

The grains in the present MS-EPSC model can either be untwinned or twinned. A nucleation 

criterion, which will be described in section 2.4.3, is used to determine when and if a grain twins 

and via which variant. If a grain is to twin, then the grain model is converted to a composite 

grain (CG) model. The CG model accounts for both the changes in morphology and 

crystallographic reorientation associated with twinning [49, 67]. In the CG model, there are two 

ways in which a twinned grain has been treated. In the earlier version, a CG grain was a single 

laminated inclusion in which continuity of stresses and strains at the matrix-twin boundary is 

enforced [49]. In the most recent versions and the one used here, the CG grain was modeled as 

two separate inclusions that are decoupled mechanically [27, 39, 40]. At the moment of twin 

nucleation, the grain is transformed into a representative twin and matrix inclusion with the twin-

matrix orientation relationship. For the shape of the twin and matrix inclusions, the long axis is 

made to lie along the twin plane and the short axis of the ellipsoids is aligned perpendicular to 

the twin plane.  
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After nucleation, the twin inclusion is allowed to thicken. Twin thickening is governed by a 

separate growth model, which will be described in section 2.4.2. During thickening, volume 

fraction from the parent matrix inclusion is transferred to the twin inclusion. Accordingly, the 

parent matrix ellipsoid shrinks and twin ellipsoid thickens. Apart from the volume transfer, the 

twin and the parent matrix ellipsoids are treated as independent inclusions in the model. Slip and 

secondary twin activity within the reoriented twin domains are allowed (without allowing for 

reorientation of the secondary twins). Also, the initial twin-matrix orientation relationship could 

change during subsequent deformation. 

A macroscopic strain path change usually leads to a change in the flow stress. The change 

depends on the strain level reached during forward loading, changes in load conditions (e.g., 

temperature, strain rate), and the relative orientation of the forward and reload paths. Such 

changes are induced not only by the subgrain structure but also by the crystallographic texture 

during forward loading. Twinning plays a major role in both aspects by introducing twin 

boundaries and by altering texture development during forward loading. Upon reloading, twins 

formed during forward load can resist new slip or twinning non-coplanar to the twin boundaries, 

can provide domains for new slip, or can de-twin. The original CG model [49] as well as all 

subsequent applications of the CG model do not account for the formation of multiple twin 

variants per grain.   

As an advancement, we adopt the scheme from [62] to allow the activation of multiple twin 

variants per grain in the CG twinning model in EPSC. The orientation of the twin domain grains 

is easily determined from the crystallographic relation between the parent and corresponding 

twin variant. The twin domain ellipsoids for a given twin variant grow according to the activity 

of that twin variant. Also the volume fractions of the growing twin variants are transferred from 

the parent to the corresponding twin domains. The increment in the twin volume fraction on a 

twin variant, t, is proportional to the shear increment, ttt
Sf γ∆=∆ where t

S  is the characteristic 

twin shear, which for the tensile twins in Be is 0.189 [2].  The total volume fraction of the parent 

matrix ellipsoids and twin ellipsoids of all variants formed in a grain remains constant and equal 

to the initial volume fraction of the parent grain. 

The model for the evolution of the de-twinning resistance is the same as that for twinning. It 

is assumed that the de-twinning of a given twin variant ellipsoid occurs by the activation of the 

same twin variant inside the twin domain. As this ‘internal’ twinning proceeds, instead of 
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creating a separate secondary twin domain, the volume of the twin that should be occupied by 

this secondary twin is transferred from the original twin back to the parent. This process 

continues until the original twin volume has been entirely transferred back to the parent grain. At 

this point the ellipsoid of this twin variant disappears. 

 

2.4 Activation of slip and deformation twinning 

2.4.1 Evolution of slip resistance with straining 

In the present model, the resistance to slip, s

cτ , is allowed to evolve with strain according to a 

model developed in [39]. This law for strain hardening s

cτ  is intended to cover hardening from 

small to large strain including Stage IV hardening of a metal. In brief, the resistance to slip s

cτ  is 

modeled at the level for a particular slip system s belonging to a common slip mode α and is 

attributed to a sum of dislocation storage and the resistance from the lattice and internal 

microstructural boundaries (e.g., grain or twin boundaries). The rate of dislocation storage is 

governed by thermally activated dislocation glide and hence is dependent on strain rate and 

temperature. In several prior works, this model has been successfully used within the VPSC 

framework to a variety of metals of different crystal structures: hcp Zr [38, 39], Be [57, 68], and 

Mg  [69, 70], BCC Nb [71, 72], FCC superalloy Haynes [73] and orthorhombic uranium [26, 

27]. In order to incorporate it into the EPSC framework, the corresponding expression for the 

hardening rate 'ss
h  had to be newly derived. Thus, the basic formulation of this hardening model 

is only briefly reviewed but the derivation of 'ss
h  is presented in full. 

In the following, the superscripts s, s’ span the slip systems and the Greek superscripts βα ,

represent modes to which s, s’ belong. The slip resistance per slip system, s

cτ  , is a sum of a 

friction stress ατ o
(dependent on the Peierls stress and the initial content of dislocations), a barrier 

effect term ατ HPo ,
 (dependent on initial grain size), and forest and debris interaction stresses s

forτ  

and ατ deb
 (dependent on a spatially random and ordered distribution of stored dislocations, 

respectively) [39, 74], i.e., 

ααα τττττ deb

s

forHPoo

s +++= ,                (8) 

where: 
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s

for

s

for b ρχµτ α= , )
1

log(
deb

debdebdeb
b

bk
ρ

ρµτ
α

αα = , 

g

HPo
d

b
HP

α
αα µτ =, .        (9) 

In the above equations, α
b  is the magnitude of the Burgers vector, 

gd  is the initial grain size, µ  

is the effective shear modulus, and αHP is a Hall-Petch parameter. Note that ατ o  and ατ HPo ,
 define 

the initial slip resistance and do not evolve with strain. When there are twins present in the grain, 

the s

HPo ,τ  term is defined per slip system, s, as ���� � ���	
���	��
���	�
��
���	�� ����� ���
��	  and 

gd  is 

replaced by the mean-free-path distance calculated using ����� � ��
���	��� !"#���  [39, 49]. The angle $ 

is the angle between slip plane and the PTS plane and �% � �&'(�
)((�	 is the separation between 

twin lamellas calculated as the ratio between the grain size, �* and a specified number of 

lamellae, +,-�.,,-�. The number of lamellae inside parent grains is chosen to be five. The term, 

���	
���	�����	�
��
���	��, represents the barrier factor and is based on the /�0��1 and /�0���-2 constants, 

which represent the minimum volume fraction identifying the PTS and the maximum volume 

fraction that twin can occupy in a given grain.  The former /�0��1 is taken to be 0.025 and the 

latter /�0���-2 is taken to be 1.0 

According to the classic thermal activation model, the rate of evolution of the stored forest 

dislocation densities, 
s

forρ , with shear strain is [75-77]: 

( ) ,,21'

,

'

,

'

s

for

s

fors

s

forrem

s

s

forgen

s

s

for
Tkk ρερ

γ
ρ

γ
ρ

γ
ρ αα

ɺ−=
∂

∂
−

∂
∂

=
∂
∂

    
,'

'

s

s

s

fors

for dd γ
γ
ρ

ρ
∂
∂

=                 (10) 

where α
1k  is an adjustable coefficient for dislocation storage by statistical trapping of gliding 

dislocations by forest obstacles and α
2k  is a rate-sensitive coefficient that defines dynamic 

recovery by thermally activated mechanisms. The latter coefficient, α
2k , is given by [39]: 

  

















−=

obD

kT

g

b

k

k

ε
εχ

αα

α

α

α

ɺ

ɺ
ln1

3
1

2 ,
 
                                                                                    (11)  

where, k , 
oεɺ , α

g , and αD
 
are the Boltzmann constant, a reference strain rate, an effective 

activation enthalpy and a drag stress, respectively. Dynamic recovery is often associated with 

thermal activation of dislocation cross-slip and climb, and the formation of dislocation debris is 
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concomitant with these recovery processes. As a consequence, in the model, the rate of debris 

development is coupled to the rate of recovery of all active dislocations through:  

∑ ∂
∂

=
α

αα γ
γ

ρ
ρ '

'

, s

s

s

forrem

deb dbqd                                                                                         (12) 

where α
q  is a dislocation recovery rate coefficient defining the fraction of an α-type dislocations 

that do not annihilate but become debris.  

Based on the Eq. (7), the evolution of the resistance on a slip system is done via 

instantaneous hardening coefficients 'ss
h . Current slip resistance, s

cτ  on a slip system s is a 

function of dislocation densities (
s

forρ  and debρ ), which are in turn the function of the shearing 

strain on slip systems inside crystal  ( sγ ). This implies that we must evaluate: 

'

'

s

s

cssh
γ
τ

∂
∂= ,               (13) 

which is: 

'

,

'''' s

HPo

s

deb

s

s

for

s

o

s

s

c

γ
τ

γ
τ

γ
τ

γ
τ

γ
τ ααα

∂
∂

+
∂
∂+

∂
∂

+
∂
∂=

∂
∂

.           (14) 

Using the chain rule and based on the above equation, individual terms from equation (14) 

evaluate to: 

0
'

,

'
=

∂
∂

=
∂
∂

s

HPo

s

o

γ
τ

γ
τ αα

, 

'

'

'

'

''
2

1
s

s

ss

s

s

s

for

s

s

for
b

γ
ρ

ρ
χµ

γ
ρ

ρ
τ

γ
τ α

∂
∂=

∂
∂

∂
∂

=
∂
∂

 , if s=s’ else 0
'

=
∂
∂

s

s

for

γ
τ

, 

'''
2

1
]1)[log(

s

deb

deb

debdebs

deb

deb

deb

s

deb bbk
γ
ρ

ρ
ρµ

γ
ρ

ρ
τ

γ
τ αα

αα

∂
∂+−=

∂
∂

∂
∂=

∂
∂

.        (15) 

When twins are present in a given grain, the derivative of Hall-Petch like term with respect to 

shear strain on PTS inside parent enters the hardening matrix as: 

3456	
37����	 � 3456	

3���	 3���	
37����	 �

8 ����	�
��
���	�� ����� ���
��	 9 �: ���	
���	�����	�
��
���	�� ����;<� �
�=�
��	 >?@ �� !"���A 3���	

37����	        
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�/�0� � �B C D/0� �7����	�               (16) 

 

2.4.2 Activation and propagation of deformation twinning and de-twinning 

In the model, the nucleation and propagation of deformation twinning in parent grains are 

treated separately from slip. The resistance to twin activation and propagation of a twin variant, t, 

is defined as [39]: 

t

slip

t

HPoo

t

c ττττ β ++= , .              (17) 

Here, 
βτ o  is a temperature-independent friction term, 

βτ HPo,  is the Hall-Petch term for grain size 

effects (being inversely proportional to 
gd ) as 

g

t

HPo
d

HPβ

τ =,  and for grains containing twins 

(inversely proportional to t

mfpd ) as 
t

mfp

t

HP

d

HP β

τ =   where, ����0  is still defined as ����0 �
��
���	��� !"#��� . 

t

slipτ  is a rate-dependent latent hardening term coupling the slip and twin/de-twin 

systems. The term is defined via:  

( )∑=
j

s

for

t

slip bbC ρεµτ αββα
ɺ ,                             (18) 

where 
βα

C is the latent hardening matrix. This component of the propagation resistance accounts 

for hardening of all twin systems due to interaction with slip systems. Evaluating the derivatives 

we get: 

'

'

'
'

'

'' s

s

for

s
s

s

for

s

for

t

slip

s

t

slip
bbC

γ
ρ

µ
γ
ρ

ρ
τ

γ
τ αββα

∂
∂

=
∂
∂

∂
∂

=
∂
∂

∑ .                (19) 

Inside twins, the Hall-Patch like contribution to the hardening is defined in a similar way as 

in the parent grains. The differences are only in the calculation of the mean free path, which is 

now calculated using #����� � ���	�� !"#��� and the barrier factor is taken to be unity. The Hall-Petch 

like term inside twins does not contribute to the hardening matrix because it does not depend on 

the shearing inside twins, but only on the shearing in parent grains.  
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During de-twinning, the Hall-Petch like term has the opposite effect on hardening as it did 

during twinning; that is, while its hardening effect in the parent grains decrease, it increases in 

twins.  

 

2.4.3 Description of nucleation criteria for twinning 

Twin nucleation is assumed to take place through fluctuations in stress concentration 

following the framework of [20]. To include this effect in a manner similar to [20], we introduce 

a fluctuating stress tensor c, fluct
σ  into the criterion for activating a twin system t.  We first define 

a local resolved shear stress on twin system t via: 

tc, fluctct τ=+⋅ )( σσm                          (20) 

Components of c, fluct
σ  are sampled from normal distribution, which was found in their work to 

represent well the stress fluctuations calculated from a spatially resolved FFT technique. Unlike 

in [20], where c, fluct
σ  is sampled from a multivariate normal probability distribution model, we 

sample stress components from a one-dimensional normal distribution with a zero mean and 

standard deviation defined as a function of equivalent stress of polycrystal ( 10/eqσ  for normal 

and 25/eqσ  for shear stress components).  

As soon as a twin variant is tagged to ‘nucleate’ within a parent,  c, fluct
σ  no longer has an 

effect. The growth of this twin domain is governed by hardening law (Eq. 16), with no further 

contribution from  c, fluct
σ  and the stress state within the twin domain is calculated in the EPSC-

CG formulation as described in section 2.3.  There is, however, one exception to the stress 

calculation and it is only applied when a twin domain ellipsoid is first formed. A freshly formed 

twin domain is given an initial volume fraction of 1% (called “finite initial fraction” (FIF) by 

[62]. In this scheme, the stress in this initial twin domain is set to the difference between a 

correcting stress and the parent stress. The former is the elastic deformation needed to cancel the 

excess plastic shear caused by formation of a twin with 1% twin fraction. The 1% value is 

arbitrary and we found that such a tiny value was important so that it had negligible impact on 

the residual lattice strains and the stress relaxation in the parent grains.  

 

3.0 Review of experimental work 
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In prior work, pure Be was tested in situ on the 1-ID-C beamline at the Advance Photon 

Source, Argonne National Lab and ex situ by INSTRON in the Spectrometer for Materials 

Research at Temperature and Stress (SMARTS) [78] at the Lujan Center, LANSCE, Los Alamos 

National Laboratory under uniaxial compression at room temperature [63]. The experiment was 

designed to study the interactions between slip and twinning, and the mechanisms underlying 

Bauschinger effects and de-twinning. For experimental details, we refer the reader to [63].  

The as-received Be was a rolled sheet and compression cubes were cut from it for 

mechanical testing. The starting material had a sharp texture with a majority of the basal poles 

aligned in the thru-thickness (TT) direction of the original sheet material (0001)||TT, as is shown 

in Fig. 2. The uniaxial loading directions and strain rates were selected in order to alter the slip 

and twinning systems activated. The strain rates were 0.001/s, 1/s and 5/s and the loading 

direction either TT (along most of the basal poles) or in-plane, IP (normal to most of the basal 

poles). In IP compression, a majority of the crystals in the starting material are ideally suited for 

twinning and prismatic slip although basal slip is the easier slip mode.  In TT compression, 

however, most of the crystals are well suited for pyramidal slip. Basal slip is likely in both load 

directions within those starting crystal orientations that deviate from (0001)||TT. 

 

4.0 Characterization of model parameters 

The main deformation mechanisms that occur at room temperature in pure Be have been 

reported in [79-81]. The easiest slip systems are the basal slip systems { }0002 0211 . The 

prismatic slip systems { }0110 0211  can also occur but require higher activation stresses. 

Pyramidal { } 32111110
 
slip systems are harder than both basal and prismatic slip. Deformation 

normal to the basal plane can be accommodated by pyramidal slip as well as { } 11102110  

deformation twinning [42, 43, 82], which is the most common twin among hcp metals.   It is 

referred to as an extension or tensile twin since when activated, it extends the crystal in the 

direction of the parent basal. This twin mode re-reorients the basal pole by 84.4° from being 

perpendicular with to being nearly aligned with the compression direction. Consequently, its 

activity can be detected from texture measurements [68]. Based on the above, we make available 

to each grain the ability to deform via prismatic slip (α = 1), basal slip (α = 2), pyramidal slip (α 
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= 3), and EBFBGH tensile twinning (β = 1). The single-crystal elastic constants used for Be were:  

GPa3.29211 =C , GPa7.2612 =C , GPa0.1413 =C , GPa4.33633 =C and GPa5.16244 =C  [83]. 

Figure 1 shows the true-stress vs plastic strain curves up to 0.22 strain and Fig. 2 displays the 

deformed texture to a true strain of 0.22 in IP1 compression under a strain rate of 5/s, measured 

by neutron diffraction. At 0.22 strain, the basal pole intensity along the compression direction 

IP1 has formed, which is a clear sign of { } 11102110  deformation twinning. The calculated 

texture achieves very good agreement.  

The single-load path tests in Fig. 1 were used to determine a single set of model parameters 

for the MS-EPSC model. In the simulations, we impose homogeneous boundary conditions for a 

uniaxial compression stress in the load direction and traction-free surfaces on the other 

orthogonal directions. As shown in Fig. 1 agreement with all monotonic tests was achieved. 

Table 1 summarizes the Burgers vector of all slip and twin modes established parameters. All 

subsequent calculations discussed hereinafter used these parameters and are predictions, not used 

as part of the fitting procedure.  

 

 
Figure 1 True stress-true strain response in compression at room temperature on annealed 
samples of rolled beryllium along the IP1 and TT direction under strain rates of 0.001/s, 1/s and 
5/s: measured (solid lines) and predicted (dash-dot lines). 
 
 



 

Figure 2 Basal pole figures showing 
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The initial slip resistance after including the Hall-Petch like term: 

  
1=α  2=α  3=α   1=β  

Initial CRSS ][MPa  188.9 94.4 323 406.4 
 

 

5.0 Model Predictions 

5.1 Monotonic tests 

The predicted slip and twin activities associated with the stress-strain curves in Fig. 1 are 

given in Fig. 3. These reveal that among all the tests, only IP1 5/s is predicted to have substantial 

tensile twinning. Comparatively, in IP1 compression at the lower rate 0.001/s, less tensile 

twinning is predicted and in the two TT compression tests, no tensile twins are activated.   

Experimental textures measured at different strain levels during the IP1 5/s and 0.001/s tests 

provide estimates of the twin volume fraction evolution, shown in Fig. 4 with dot symbols [63]. 

We observe that at the end of testing, the twin volume fraction in the 5/s test reached 

approximately 25%, which is substantial. In Fig. 4, the predicted volume fractions of reoriented 

twin domains are compared with measurements. We see that the agreement is very good. 

Further, the model forecasts that within the tensile twin domains basal slip and pyramidal slip are 

active.  

In the TT tests, in which twinning was not activated, we find that the deformation is instead 

accommodated via a mix of pyramidal and prismatic slip. These predictions of slip in the parent 

and twin domains are very similar to those reported in [68], which used the same dislocation 

density hardening law but within the VPSC framework.  

 

 



 

 
Figure 3 Predicted relative activities
parent domains for the compressed s
the IP1 compression under 5/s.  
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Figure 4 Evolution of the twin volume fraction during IP1 compression and secondary TTR 

compression under strain rates of 0.001/s and 5/s predicted by EPSC (lines) and measured by 

diffraction (symbols) as a function of strain. Measurements during the secondary path are based 

on in-situ integrated (0002) peak intensities.  

 

5.2 Strain path change tests 

To experimentally explore the effect of twinning on the deformation mechanisms activated in 

subsequent strain paths, the IP1 5/s samples were subjected either to through-thickness 

compression (TT) or orthogonal in plane direction (IP2).  Each subsequent load test was carried 

out in one of two strain rates, the same rate of  IP1 5/s or a much lower rate of 0.001/s [63].  

Figure 5 shows the measured stress-strain response during the strain path sequences. Some 

features appear to be insensitive to the type of strain path and the strain rate. In all cases, the 

reload yield stress drops with respect to the stress reached at the end of the first path (IP1, 5/s). 

The hardening rate in the initial straining period of the second path, however, is significantly 

larger than that at the end of the first path. These changes have in prior works been attributed to 

backstresses and the flow of “polarized” or “reversible” dislocations [53-55, 57]. 

There are clearly other features of the stress-strain response that are dependent on strain path 

and strain rate, such as the flow stress and hardening rates during large strain deformation, 

beyond the first 5% of strain. These are related to the different deformation mechanisms 

activated. The IP1-TTR pathway represents a pseudo-reversal. Experimental evidence indicates 

de-twinning occurs in the TT reload [63]. First, in the TT-reload textures we see that as reloading 

proceeds, the intensity of the basal planes originally formed along the IP1 direction decreases.  

Also the twin volume fraction is observed to decrease (Fig. 4). The in-situ data indicate a delay 

in de-twinning. The (00.2) diffracted peak intensity measured during the in-situ TT cross-

reloading, which is representative of the twin volume fraction, indicates that the twin volume 

fraction is stable until −0.04 reloading plastic strain and then drops rapidly with increased plastic 

strain. The delay in the onset of de-twinning has been associated with the defect content in the 

microstructure during reloading [63]. The EPSC model successfully captures this effect, which 

we associate with accurate modeling of de-twin resistance and residual stresses. The IP1-IP2R 

pathway, in contrast, is a pseudo-cross-rolling strain path change. Texture analysis suggests that 

new twins appear. As shown in Fig. 6, the concentration of basal poles along the IP2 has 

appeared after an additional 0.15 strain of IP2-reloading (5/s). Since the reload IP2R path 
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changes the load state with respect to the grain orientations, these twins are different variants 

than those formed in the first path. The measured volume fraction of twins after the secondary 

deformation step of −0.15 plastic strain in the IP2R direction was 0.04 under 0.001/s and 0.13 

under 5/s. The corresponding MS-EPSC predictions are 0.05 and 0.13, respectively. Based on the 

experimental interpretation, modeling the constitutive response of these tests requires that the 

internal residual stresses, de-twinning, and multiple twin variants per grain are taken into 

account. 

To calculate the constitutive response of these tests, we simulated ‘continuously’ the 

following three steps:  cooling from the processing temperature of the material 850 to 300K and 

subsequent deformation in the two-path deformation sequence by only changing the boundary 

conditions, temperature, and strain rate.  In ‘continuous’ modeling, none of the microstructural 

variables, such as dislocation density, twin fraction, texture, and grain shapes, were reset in the 

subsequent deformation steps.  The purpose of including the first cooling step was to estimate the 

initial state of thermal intergranular residual stresses ( ( )dTdd αεCσ −= ), where α is the thermal 

dilatation tensor that for Be is α11 = 12.42x10-6  K-1, α22 = 12.42x10-6  K-1,  α33 = 9.881x10-6  K-1 

and Tɺ is the temperature rate taken to be 80 K per increment (assumed to be uniform throughout 

the polycrystal). The calculated stress-strain curves and texture evolution in the subsequent paths 

are compared with the measurements in Figs. 5 and 6, respectively.  
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Figure 6 Basal pole figures showing measured (top row) and predicted (bottom row) texture 
evolution of rolled beryllium at various stages of deformation as indicated in the figure.  
 

 

Figure 7 displays the predictions for average slip and twin activity in all the matrix grain 

regions (top row) and in all the twin domains formed during the first path (bottom row). As 

anticipated the IP1-TTR pathway leads to de-twinning, which is seen by the tensile twin activity 

of the same variant in the original twin domains. The new intensity of basal poles along the IP2 

direction suggests that these are different twins than those formed in the primary IP1 5/s strain 

path. 

In contrast, the model indicates that the IP1-IP2R pathway results in the nucleation of new 

twin variants. Figure 8 compares the calculated volume fraction of individual twin variants in the 

polycrystal after the primary path IP1 5/s and after the secondary path IP2R and TTR. While in 

TTR the same twin variants are decreasing in volume fraction, in IP2R the new twin volume 

variants are increasing in volume fraction. Figure 9 shows the percentage of grains with twins 

containing either one or multiple twin variants. Only a few grains were predicted to contain four 

variants and none contained all six variants through the strain-path-change deformation.  
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6.0 Discussion 

6.1 Initial drop 

From the data, we observe a drop in flow stress at the beginning of the reload path. In our 

earlier work using VPSC [57], we captured this drop by introducing reversible dislocations, and 

further assumed that a portion of these reversible dislocations are used during the reload while 

the remaining fraction is annihilated. Similarly and also in VPSC, [55] introduced reversible 

dislocations to capture the plateau in the reload curves and assumed that the previously generated 

reversible dislocations are annihilated during a reload.  

In the current data, the initial drop arises regardless of the type of strain path change, whether 

a pseudo-reversal or pseudo-cross reload. Thus, it is not likely due to the glide of reversible 

dislocations since it is anticipated that this mechanism would be prevalent predominantly in the 

pseudo-reversal IP1-TTR pathway but not the pseudo-cross-loading IP1-IP2R pathway. This, 

however, does not imply that the flow of special ‘directional’ glide of dislocations (stress of type 

3) is not occurring in the pseudo-reversal, only that it has a minimal effect on the initial flow 

stress during the reversal reload. We also observe and predict that the mechanisms carrying the 

deformation in each path are very different. Thus the initial drop in flow stress during reload is 

not dependent on whether new twins are nucleated or former twins grow or de-twin (shrink).  

Here we show that the MS-EPSC model was able to capture the flow stress changes starting from 

the initial state of the primary loading and to the end of the reloading path for all tests. Unlike 

prior attempts to model this data set, we account for elastic and plastic strain development. On 

this basis we conclude that the substantial drop in the stress and increase in hardening rate at the 

beginning of the second path predominantly result from the initial residual stresses developed in 

the first path. 

 

6.2 Lattice strains. 

One capability of the MS-EPSC model is the prediction of the evolution of elastic strains.  As 

mentioned earlier, this evolution can be measured via in-situ diffraction techniques as the lattice 

strain experienced by certain crystallographic directions within a certain subset of diffracting 

grains. One important outcome when combining polycrystal modeling and lattice strain evolution 

is the evolution of strains in the matrix and twinned regions. Toward this end, Figure 10a 

compares measured and predicted strain evolution of the lattice strains in the EFFFGH,  EBFBIFH, 
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Figure 11 Distribution of residual stress at the end of primary IP1 loading (0.22 strain). The 
vertical lines in IP1 correspond to the average values of the residual stresses in the subsets of the 
diffracting grains (blue: (10.0), green: (10.1), red: (00.2)). Macroscopic average is zero.  
 

6.3 Stress fluctuations 

In the present simulations, stress fluctuations were introduced in the model for twin 

nucleation and impact the selection of twin variants formed in the model polycrystal during 

deformation. At the same time, lattice strain evolution is sensitive to the distribution of twin 

variants actually selected.  Thus, in absence of direct microstructural evaluation by EBSD of the 

deformed material, we can employ lattice strain evolution data to provide an indication of the 

dispersion in twin variants formed. Figure 12 compares the simulation results without stress 

fluctuations with the measurements. The comparison suggests that stress fluctuations are 

important for obtaining agreement with the lattice strain evolution. Clearly unlike the predictions 

with stress fluctuations, the results in Fig. 12 do not achieve good agreement with the lattice 

strain evolution for the EBFBIFH lattice strains. With stress fluctuations, the volume fraction of 

grains giving rise to the EBFBIFH diffraction does not drop rapidly due to activation of different 

twin variants. In addition, with the stress fluctuations rate of twinning influences the EFFFGH 
residual lattice strains curve to have lower rate of decrease with strain compared with no stress 

fluctuations.  

The stress fluctuations can have several effects on variant selection. It can result in the 

formation of more than one twin variant per grain and formation of twin variants that have a 

relatively low Schmid factor and selection of twin variants of lower Schmid factor over those of 



 

higher Schmid factor. It can also 

favorably oriented for twinning.  On 

lattice strains (with stress fluctuations

necessarily correspond to those of the

nearly all the twin variants formed i

factor).  In simulations with stress 

fraction of twin variants in the polycr

IP2. This conclusion is consistent 

Relatively large fractions of tensile 

been reported in deformed Zr and M

[21]. Our results here suggest that 

selection applies to EBFBGH twinning i

 

Figure 12 Predictions without fluctua
residual lattice strains during primary
to a strain of -0.22. (b) Comparison 
diffraction with and without fluctuation s
 

7.0 Conclusions 

We present a new and comprehens

elastic-plastic self-consistent (EPSC)

(MS-EPSC) we incorporate the most

activation via statistical stress fluctua

the model to a set of strain path cha

o cause twinning in grains not expected to twin, 

On this basis, we conclude from our model predict

tions) that the twin variants formed in the mater

of the highest rank. In simulations without stress fl

d in the model are rank 1 (with the highest value 

ss fluctuations, this is not the case. Figure 8 com

ycrystal at the end of primary path IP1 5/s and second

nt with prior experimental studies on other HC

le twins not associated with the highest Schmid f

nd Mg using automated EBSD analyses of thousands

hat the same phenomenon of widely dispersed tw

ng in Be as well.   

 
uctuating stresses. (a) Comparison of measured and 
ary compression in the IP1 direction under a strain 
on of the volume fraction of grain oriented to give 

uation stresses.  

hensive polycrystal mean-field constitutive model ba

C) framework. In this model, referred to as multi-s

ost recent subgrain models for thermally activated 

tuations, twin boundary hardening, and de-twinning

change tests on pure Be. The model is able to repr

29 

win, i.e., not 

dictions of the 

terial do not 

 fluctuations, 

ue of Schmid 

compares the 

condary path 

HCP metals. 

d factor have 

nds of twins 

d twin variant 

 

and predicted 
in rate of 5/s 
ve rise to the 

l based on the 

scale EPSC 

d glide, twin 

ng. We apply 

eproduce the 



30 
 

transients in the stress-strain response, anisotropic hardening, and evolution of twin volume 

fraction and texture for all tests with a unique set of single-crystal hardening parameters. We find 

that the substantial changes in the initial flow stress behavior during the strain path change arise 

regardless of the cross-reloading direction. The drop in the stress and increase in hardening rate 

at the beginning of the second path predominantly result from the residual stresses developed in 

the first path. Accurate predictions of the residual lattice strains are indicative that the residual 

stresses are accurately calculated. Stress fluctuations have several effects on the EBFBGH tensile 

twinning variant selection dispersing them in the sense that not all twins formed correspond to 

the variant with the highest Schmid factor. The implication of twin variant selection is seen in 

the improvements of the residual lattice strain predations.  

The model presented here can be applied to other metals, deforming by multiple slip and 

twinning modes, deforming under a wide range of conditions, temperature, strain rate, and strain 

path conditions. 
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