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An electronic nose using a single graphene FET
and machine learning for water, methanol, and
ethanol
Takeshi Hayasaka 1, Albert Lin1, Vernalyn C. Copa2,3, Lorenzo P. Lopez Jr. 2,3, Regine A. Loberternos2,3,

Laureen Ida M. Ballesteros2,3, Yoshihiro Kubota1, Yumeng Liu1, Arnel A. Salvador2,3 and Liwei Lin1

Abstract
The poor gas selectivity problem has been a long-standing issue for miniaturized chemical-resistor gas sensors.

The electronic nose (e-nose) was proposed in the 1980s to tackle the selectivity issue, but it required top-down

chemical functionalization processes to deposit multiple functional materials. Here, we report a novel gas-
sensing scheme using a single graphene field-effect transistor (GFET) and machine learning to realize gas

selectivity under particular conditions by combining the unique properties of the GFET and e-nose concept.

Instead of using multiple functional materials, the gas-sensing conductivity profiles of a GFET are recorded and

decoupled into four distinctive physical properties and projected onto a feature space as 4D output vectors and

classified to differentiated target gases by using machine-learning analyses. Our single-GFET approach coupled

with trained pattern recognition algorithms was able to classify water, methanol, and ethanol vapors with high

accuracy quantitatively when they were tested individually. Furthermore, the gas-sensing patterns of methanol

were qualitatively distinguished from those of water vapor in a binary mixture condition, suggesting that the
proposed scheme is capable of differentiating a gas from the realistic scenario of an ambient environment with

background humidity. As such, this work offers a new class of gas-sensing schemes using a single GFET without

multiple functional materials toward miniaturized e-noses.

Introduction
Miniaturized gas sensors are expected to witness a

high demand in the next decade in various sectors,

including industrial, consumer electronics, automotive,

medical, environmental, and petrochemical fields, due

to the small footprint, low power consumption, and

low cost1–3. The major driving factors of the growing

demand include continuous and real-time indoor and

outdoor air quality monitoring4,5, increasing enforce-

ment of occupational health and safety regulations by

governments6, and potential consumer electronics

applications7. By taking advantage of several unique

features, miniaturized gas sensors could offer both

mobile gas-sensing platforms and spatially distributed

usages. These highly desirable platforms can stimulate

emerging gas-sensing applications such as preventive

health care and air quality monitoring with mobile

devices, including smart phones. For example, some of

the volatile organic compounds (VOCs) in human

breath are known as biomarkers for clinical diag-

nostics, whereas NH3 and NO are related to Helico-

bacter pylori infections of the stomach and asthma,

respectively8. The detection of VOCs such as methanol

and ethanol has drawn great attention, as the former is

extensively used in various industries as an important

solvent and raw material9,10 and the latter has been
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studied for breath analysis and food industries11. On

the other hand, spatially distributed gas-sensing plat-

forms are suitable to monitor air pollution (e.g., CO,

NO2, and SO2) with high spatial resolution5.

Different gas sensors have been demonstrated by

combining key sensing principles/materials and micro/

nanofabrication technologies12,13. Metal oxide semi-

conductor (MOS) gas sensors have been widely used

since their emergence in the 1970s due to their high

sensitivity and low cost14,15, and they have been further

miniaturized in recent years with <10 mm2 or smaller

footprints15,16; however, poor gas-sensing selectivity

has been a long-standing issue12. In addition, the gas-

sensing principle has relied on the reactive oxygen

species on the MOS surface such that the sensor has to

operate at high temperature (typically >200 °C)17 with

relatively high power consumption (typically on the

order of 10 mW). In contrast, optical-type gas sensors

generally have high selectivity owing to the

wavelength-specific gas-sensing principle. However,

the relatively large size, complexity of the engineering

configuration, and production cost are several limiting

factors for widespread applications of optical-type gas

sensors12.

Artificial olfactory systems (electronic noses or e-noses)

have been promising tools to tackle the gas selectivity

issue for MOS-based gas sensors18–20. The biological

olfactory organ in nature has the capability for gas dis-

crimination by using the combination of (1) cross-

sensitive olfactory receptor arrays, (2) olfactory codes,

and (3) the recognition system (brain). The gas selectivity

is achieved by the uniqueness of the generated olfactory

codes. An e-nose system may comprise similar artificial

components, including (1) an array of gas sensors, (2)

output vectors, and (3) a pattern recognition algorithm.

The generated output vectors can be projected to an

abstract space called the feature space for subsequent

analyses. Although the concept of e-nose appeared in the

late 1980s21–23 and intensive studies followed in the

1990s24–28, e-nose systems are not commercially suc-

cessful today except for some minor usage in specialized

industries29,30.

Previously, a graphene field-effect transistor (GFET)

was demonstrated as a gas sensor with unique features,

including ultralow power consumption (typically on the

order of 10 μW) at room temperature with V-shaped

conductivity profiles31,32; however, it suffered from poor

gas-sensing selectivity33. Here, we propose a novel gas-

sensing scheme by combining the e-nose concept and

decoupled electrical signals of a single GFET to achieve

selectivity, miniaturization, low cost, and low power

consumption without using multiple functional mate-

rials. In the proposed scheme, the measured V-shaped

conductivity profiles are decoupled into four distinctive

physical properties combined with other parameters34:

μe ¼
1

cG

Δσe

ΔVG
ð1Þ

ne=h ¼
cG

e
jVNPj ð2Þ

μh ¼
1

cG

jΔσhj

ΔVG

ð3Þ

n�

nimp
¼

1

20

h

e2
σ0 ð4Þ

where μe is the electron mobility; μh is the hole mobility;

cG is the gate capacitance per unit area; Δσe is the change

in electron conductivity; Δσh is the change in hole

conductivity; ΔVG is the change in gate voltage; ne is the

electron concentration; nh is the hole concentration; e is

the elementary charge; VG is the gate voltage; VNP is the

gate voltage at the neutrality point (NP); n* is the residual

carrier concentration; nimp is the charged impurity

concentration; h is Planck’s constant; and σ0 is the

minimum conductivity at the NP. These physical proper-

ties are influenced by the gas molecules on the surface of

graphene32,34–36 to hold gas-specific information, such as

the charge magnitude and/or dipole moment of gas

molecules35,36. Figure 1 illustrates the measurable quan-

tities in a conductivity profile versus gate voltage of a

GFET and the corresponding physical phenomena for a

graphene channel. When gas molecules approach gra-

phene, positive or negative charge transfer can occur

between the gas molecules and graphene depending on

the relationship of the electron energy level, which shifts

the lateral position of the NP (Fig. 1a). After the event, gas

molecules can generate the Coulomb potential to cause

hole–gas interactions and a modulated hole field-effect

mobility to induce a slope change in the hole branch of

the conductivity profile (Fig. 1b). Similarly, the electron

field-effect mobility may be modulated by the attractive

Coulomb force to induce a slope change in the electron

branch of the conductivity profile (Fig. 1c). Near the NP

(Dirac point in the electron band structure), the residual

carriers and/or charged impurities can be influenced by

charged gas molecules such that the ratio, n*/nimp, may be

modulated to change the minimum conductivity at the

NP (Fig. 1d). Therefore, it is possible to construct 4-

dimensional (4D) output vectors as follows: q1—the

electron mobility (μe); q2—the carrier concentration (n);

q3—the hole mobility (μh); and q4—the ratio of the

residual carrier concentration to the charged impurity

concentration (n*/nimp). As such, the gas-specific infor-

mation can be characterized within a feature space similar

to that of an e-nose and resolved with pattern recognition

algorithms for selective gas sensing without multiple

functional materials. In fact, the four physical properties
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have been previously studied for gas sensing32 without

using the 4D concept and machine-learning scheme37.

We experimentally investigated the 4D vectors for

water, methanol, and ethanol to validate the proposed

scheme under particular conditions. These particular

target gases were chosen because methanol and ethanol

are important VOCs, as mentioned earlier, and humidity

can be a problem for GFET-based gas sensors operated at

room temperature38–41. By using a large amount of data,

our machine-learning algorithm was able to classify the

4D vectors for different gases with high consistency when

they are tested individually. The gas-sensing patterns in

binary mixture conditions of water and methanol vapors

were qualitatively distinguished. The feasibility of identi-

fying specific gas from the background ambient air typi-

cally mixed with various humidity levels is an important

step for gas sensing toward high selectivity, miniaturiza-

tion, low cost, and low power consumption.

Results
Measurement setup and experimental conditions

We prepared two different GFETs (details about the fab-

rication process can be found in Methods), namely, a pristine

GFET and an atomic layer deposition (ALD) RuO2-functio-

nalized GFET (ALD-RuO2-GFET), for three different

experiments using three types of gases: water (H2O),

methanol (MeOH), and ethanol (EtOH). The two different

types of GFETs extend the dimension of the feature space

from 4D to 8D to illustrate that the accuracy of the gas

classification results can be further improved with higher

dimensions. Three experimental setups, A (Fig. 2a), B (Sup-

plementary Fig. 3a), and C (Fig. 4a), were configured to study

the repeatability of the classification algorithms for individual

target gases (for setups A and B) and the applicability of the

scheme to binary mixtures (setup C). Throughout the study,

we define the local repeatability as the repeatability within a

single experimental dataset and the global repeatability as

the repeatability within multiple experimental data sets. The

specific gas type can be used as the variable, whereas

the other parameters, e.g., the concentration and the way to

produce the vapors, are set to be the same. The same mea-

surement setup (Supplementary Fig. 2) and other common

parameters were the same (Methods), such that the variables

are either the tested devices and/or the gas types. We

maintained the operation temperature at room temperature

such that the electrical output signals are not affected by

temperature variations. In the main text, we focus on the

results obtained from setup A using a pristine GFET,

whereas the results from all the experimental setups can be

found in Supplementary Information.
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Fig. 1 Schematic illustrations of the conductivity profiles versus the applied gate voltage and the corresponding physical phenomena

over a graphene field-effect transistor (FET). a (Top) A gas molecule can cause the lateral movement of the conductivity profile and the

movement of the charge neutral point; (bottom) the physical phenomenon of the charge transfer between a gas molecule and graphene and the

carrier concentration change in the band diagram. b (Top) The slope in the hole branch can be altered due to the gas molecule; (bottom) the

Coulomb interactions between the gas molecule and the holes. c (Top) The slope in the electron branch can be altered due to the gas molecule;

(bottom) the Coulomb interactions between the gas molecule and the electrons. d (Top) The height of the charge neutral point is changed due to

the gas molecule; (bottom) the modulated residual carrier concentration in the graphene
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Measurement results and the converted 4D and 3D vectors

The conductivity profiles versus the gate voltage with

respect to time on a pristine GFET are recorded as shown

in Fig. 2b–d for H2O, MeOH, and EtOH, respectively. It is

observed that the responses of the sensor to EtOH are

small, whereas the responses to H2O and MeOH are

relatively large and clear. These conductivity profiles were

converted to 4D and 3D vectors (Fig. 2e–j) based on the

proposed scheme and the relevant equations (Eqs. 1–4),

and the vectors are normalized such that one can focus on

the relative changes. Specifically, the 3D vectors (Fig.

2h–j) excluded the carrier concentration change in the 4D

vectors in order to visualize the results in 3D feature

space. Furthermore, it is useful to define the sensitivity

vector, i.e., the gas-sensing pattern, qs(t)= 100 × (q(t)−

q0)/q0 (%), where q(t) is a 4D or 3D vector and q0 is an

initial or reference vector by using the conductivity pro-

files at the time right before the first gas exposure cycle

starts. This definition is similar to that used in conven-

tional gas sensors, 100 × (R(t)− R0)/R0 (%), where R is the

resistance.

Two different 3D gas-sensing patterns were generated

and characterized as follows: (1) gas-sensing patterns

representing only the ascending cycles in which the gas

concentration increases from 10 to 90%; (2) gas-sensing

patterns enclosed by triangulated boundaries representing

both the ascending and descending (from 80 to 10%)

cycles. The first pattern is utilized to examine and validate

the raw data points, and the second pattern is utilized to

visualize the distinctive regions for different gases. The 3D

movies (Supplementary Movies 1 and 2) allow us to

examine the 3D gas-sensing patterns from different angles
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Fig. 2 Measurement results and the converted transient 4D and 3D vectors using setup A with the pristine GFET. a Gas-concentration profile

in test setup A. b–d Transient conductivity profiles versus the gate voltage with respect to time for water (H2O), methanol (MeOH), and ethanol

(EtOH). e–g Relative magnitude of the converted 4D vectors versus time; h–j and relative magnitude of the 3D vectors by removing the carrier
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in the 3D feature space. The representative 2D planes are

shown in Fig. 3a–c for the first patterns and Fig. 3d–f for

the second patterns. Figure 3a–c shows that the gas-

sensing patterns have consistent trends with good local

repeatability. Figure 3d–f indicates that the gas-sensing

patterns are distinctive in terms of their distributions in

the 3D feature space. These qualitative analyses agree with

the results from experiment set B (Supplementary Fig. 3

and Supplementary Movie 3) and the results using the

ALD-RuO2-GFET (Supplementary Figs. 5, 6, and Sup-

plementary Movies 5–7) and thus imply the high global

repeatability and validity of the proposed scheme. These

results suggest that the tested gas types can be classified

qualitatively by using the gas-sensing patterns.

The gas-concentration dependence on each physical

property is summarized in Supplementary Fig. 8.

Although most results show nearly linear relationships,

some of them are nonlinear. Theoretically, the field-effect

mobility should be inversely proportional to the gas

concentration, whereas the carrier concentration should

have linear dependency. The nonlinear behavior of the

carrier concentration change, pronouncedly observed in

the EtOH results, may be related to the interactions

between EtOH and the pre-existing charged impurities.

Despite the nonlinearity of the gas-concentration depen-

dence, the gas-sensing patterns are qualitatively distin-

guishable, as they are sufficiently distinct from each other.

These results suggest that the gas concentration may be

better obtained by using another GFET to characterize the

gas patterns in parallel, while the selectivity can be readily

achieved. The gas classification capability is discussed

further in a later section.

Gas-sensing patterns of binary gas mixtures

We are interested in distinguishing the gas-sensing

patterns from those of ambient air with background

humidity, as humidity can be a problem for GFET-based

gas sensors operated at room temperature38–41. We used

setup C (Fig. 4a) by varying the relative humidity (R.H.)

level stepwise (red color bars), 0%, 20%, 40%, and 60%,
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with three purge-exposure cycles of the carrier gas,

MeOH, and EtOH as the target gases (blue color bars) for

each R.H. level (complete dataset in Supplementary Fig.

4). The carrier gas was used as a blank target gas, i.e., a

negative control, which may only cause non-gas-related

signals. Therefore, the corresponding gas-sensing patterns

are considered to represent the background humidity

level only. The 3D gas-sensing patterns of the three binary

gas mixtures of (1) H2O and the carrier gas (blank), (2)

H2O and MeOH, and (3) H2O and EtOH were generated

for each experiment and merged into a shared 3D feature

space represented by green, red and blue markers,

respectively (Fig. 4b for the 2D representation and Sup-

plementary Movie 4 for the 3D movies). In Fig. 4b, the

gas-sensing patterns are grouped by light blue regions

based on the corresponding background R.H. levels. To

obtain the gas-sensing patterns, the reference vector, q0,

was defined as the vector at 10 min, which is the time

right before the first gas exposure cycle starts. All q(t)

were taken from the gas exposure cycles (blue bars) such

that the obtained gas-sensing patterns reflect the infor-

mation of both the target gas and the background R.H.

level. The results show that the gas-sensing patterns,

especially for MeOH (red markers), can be distinguished

visually from those with background humidity only (green

markers) in Fig. 4b. In general, the gas-sensing patterns

for the background humidity shift from the center to the

bottom left as the R.H. level increases, whereas the gas-

sensing patterns for MeOH shift to the upper side.

Interestingly, the trends here qualitatively agree with the

results in Fig. 3a, suggesting that the gas-sensing patterns

in the binary gas mixture can be related to the

superposition of the individual gas-sensing patterns tested

separately. Similar trends can also be found for those

using the ALD-RuO2-GFET (Supplementary Fig. 7 and

Supplementary Movie 8).

Classification of the gas-sensing patterns by using

machine-learning analyses

A supervised machine-learning analysis was conducted

to classify the gas-sensing patterns empirically. In this

analysis, we examined both pristine and ALD-RuO2

GFETs with two setups, A and B, in which the target gases

were tested individually. The goal is to distinguish three

gas types, H2O, MeOH, and EtOH, by adopting a multi-

class classification model. A multilayer perceptron clas-

sifier with a feed-forward neural network architecture was

implemented and trained by using data from the two

GFETs42. To avoid the overfitting phenomenon, which

occurs when a machine-learning model undergoes too

much training and may even fit to random noise such that

the model fails to capture a generalized trend, a cross-

validation test was performed. In general, the entire

dataset was randomly shuffled in several ways and sepa-

rated via a stratified split, where 20% was reserved as the

testing set and the remainder constituted the training set.

A stratified split ensures that each target class is ade-

quately represented in either set. Data reserved as the

testing set during each shuffle were scored by their cor-

responding neural network model.

Once the machine-learning models were trained, the

confusion matrices (Fig. 5a for the pristine GFET and Fig.

5d for the ALD-RuO2-GFET) were used to compare the

predicted labels of the testing data to their true labels. The
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numbers in the matrices convey the percentages of sam-

ples that were distributed among their associated label of

prediction. The accuracies of the pristine GFET device

and ALD-RuO2-GFET device were 96.2% and 100%,

respectively. The cross-validation results indicated that

the pristine GFET device had a mean accuracy of 95.4%

and a standard deviation of 2.5%, whereas the ALD-RuO2-

GFET device had a mean accuracy of 99.6% and a stan-

dard deviation of 0.8%. Figure 5b, e shows the accuracy

and cross entropy loss history as the neural networks

underwent epochs of training to minimize the loss func-

tion. A visible asymptotic state after 40 epochs implies

that the model had approached convergence and that

further training would not significantly improve the per-

formance. The learning curves in Supplementary Fig. 9

compares the machine-learning models’ performance and

the training set size. Both devices experienced saturation

in testing accuracy as the number of training samples

increases, which means that more training samples will

not improve the accuracy. The narrow gap between the

training and testing accuracies implies that the neural

network models have low variance when exposed to

unforeseen data. The ALD-RuO2-GFET device demon-

strated a higher training accuracy than that of the pristine

GFET device, which echoes their difference in classifica-

tion capability mentioned above. After merely 40 epochs

of training, the neural network model trained for samples

measured by the ALD-RuO2-GFET device was able to

predict 99.1% of the training data, and the time required

for 40 epochs of training was 0.0519 s.

The dimensional impact on the accuracy of the model

was evaluated as shown in Fig. 5c, f. For 2D and 3D

models, one can choose any two out of the four features

and any three out of four features for analyses, respec-

tively. The 1D model is excluded because the scalar value

cannot generate any characteristic feature. For the pristine

GFET (Fig. 5c) device, different combinations of features

could yield high accuracies in either 2D or 3D models

compared with that of the 4D model. For the ALD-RuO2-

GFET (Fig. 5f) results, three out of the four possible

combinations in the 3D model yield 100% accuracy. By

combining the features of the pristine GFET and ALD-

RuO2-GFET devices, an 8D model can be constructed.

Since the accuracy of the ALD-RuO2-GFET device can

reach close to 100% with four features, the pristine GFET

device’s 4D feature array was set as the starting point as

more features from the ALD-RuO2-GFET device were

added. As shown in Fig. 5c (red markers), adding more

dimensions can result in higher accuracies than that of the

4D model. These results validate the classification cap-

ability of the multidimensional gas-sensing patterns of

GFETs and suggest that an improved accuracy can be
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achieved by expanding the feature space to higher

dimensions.

The accuracy variations in the lower-dimension (2D and

3D) models imply that some features have stronger

influences on the classification study. Here, the impor-

tance of the eight features (for the two GFETs) is inves-

tigated by employing the “one-way analysis of variance

(ANOVA) F-test” scheme, which can rank the importance

of features43. The F-statistic is defined as the ratio of the

treatment sum of squares (SST) to the sum of squares

error (SSE), scaled by their respective degrees of freedom.

For a feature matrix of q rows by m columns, the F-

statistic is expressed as:

F ¼

Pm
i¼1

ni Y i�Y
� �2

m�1

Pm
i¼1

Pni
j¼1

Y ij�Y ið Þ
2

mðq�1Þ

ð5Þ

where ni represents the number of observations within

feature i; Y i represents the mean of feature I; Y represents

the grand mean of the entire matrix; and Yij represents the

jth entry of feature i. Converting the F-statistic to a p-

value by referring to the F-distribution, one either accepts

or rejects the null hypothesis, which is that any variation

observed between features is likely due to randomness.

Typically, for p-values less than a significance level of α=

0.05, the null hypothesis is rejected, and the correspond-

ing feature is considered informative. The feature with the

smallest p-value was considered most important. Table 1

ranks the eight collective features of both sensor devices

from best to worst according to the calculated p-values.

Figure 5g qualitatively compares feature importance by

taking the negative log on the p-value column in Table 1

and then normalizing by the most important feature.

According to Table 1, all eight features had p-values <

0.05, which suggested that all features were in fact

statistically informative to the outcome of the classifica-

tion study. It is evident that the electron field-effect

mobility (μe) of both GFETs is more important than

others, whereas the ratio of the residual carrier concen-

tration to the charged impurity concentration (n*/nimp) of

the pristine GFET is the least important. Therefore, the

variations in the dimension dependence on the accuracy

in the lower dimensions are indicative of the difference in

importance between the tested features.

Discussion
Compared with other approaches using nonscalable

device fabrication, special functional materials and bulky

peripheral optical systems44–47, this work presents a

practical approach to address selectivity, miniaturization,

low cost and low power consumption issues at the same

time. Here, we discuss the origin of the unique gas-

sensing patterns. Previous studies have suggested that the

electrical properties of GFETs can be dictated by the

charged impurity concentration, nimp, through the fol-

lowing relationship (together with Eq. 4)32,34:

σðnÞ ¼ Ce
n

nimp

�

�

�

�

�

�

�

�

þ σres ð6Þ

μ ¼
C

nimp
ð7Þ

where C is a constant; e is the elementary charge; and σres

is the residual conductivity. The relationship of linear

conductivity with respect to carrier concentration (Eq. 6)

has been validated with experimental results32, whereas

there have been some discrepancies in terms of the

minimum conductivity (Eq. 4) and the field-effect

mobility (Eq. 7)32,36. For example, inconsistent results

have been observed in previous studies between the

mobility and the charged impurity concentration (Eq. 7),

and the possible reason has been explained as the

compensation of the pre-existing charged impurities on

the substrate by the incoming charged functional groups

Table 1 Summary of one-way ANOVA F-test, ranked in descending order of feature importance.

Importance rank Feature name F-statistic p-value

1 Electron mobility (μe) of the ALD-RuO2-GFET 1480.34 1.08 × 10−183

2 Electron mobility (μe) of the pristine GFET 831.58 6.07 × 10−142

3 Hole mobility (μh) of the ALD-RuO2-GFET 325.78 3.78 × 10−84

4 Carrier concentration (n) of the pristine GFET 127.35 2.31 × 10−43

5 Hole mobility (μh) of the pristine GFET 117.56 9.59 × 10−41

6 The ratio (n*/nimp) of the ALD-RuO2-GFET 108.68 2.69 × 10−38

7 Carrier concentration (n) of the ALD-RuO2-GFET 96.44 8.37 × 10−35

8 The ratio (n*/nimp) of the pristine GFET 13.38 2.39 × 10−6
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and dipolar molecules on the surface of graphene36. Other

studies have also suggested that the dipole moment of the

H2O molecules on graphene may have a crucial influence

on the energy shift of the impurity bands with an

underlying (SiO2) substrate48. With intensive studies in

the last decade, it is still challenging to precisely model the

impacts of gas-GFET interactions on electrical properties.

Nevertheless, several measurable quantities are confirmed

to be associated with gas-GFET interactions. For example,

the asymmetric field-effect mobility in this study, i.e.,

μe/μh ≠ 1 (e.g., Fig. 2e–j), can be explained by the

difference in the scattering cross sections due to the

attractive and repulsive Coulomb forces between the free

carriers and the charged impurities, which may exist on

the bottom (i.e., pre-existing charged impurities) and/or

top (i.e., gas molecules) of the graphene35,49,50. As the

Coulomb potential depends on the magnitude of the

charge and/or dipole moment of gas molecules, the ratio

of the carrier mobility, μe/μh, may provide gas-specific

information. Indeed, previous studies suggest that the

ratio, μe/μh, may be related to the impurity strength

(strength of scattering due to charged impurities), α, via

the following equation35,49,50:

μe

μh

¼
nþi Cð�αÞ þ n�i CðþαÞ

nþi CðþαÞ þ n�i Cð�αÞ
; 0< α<

1

2
ð8Þ

where n±
i represents the concentration of the positively/

negatively charged impurities, and C(±α) represents the

transport cross section35,49,50. Equation 8 allows us to

estimate the impurity strength α in our experimental

results. The numerically estimated impurity strengths are

plotted in Fig. 6a, b, in which the trend of impurity

strength for MeOH and EtOH are qualitatively consistent.

The impurity strength of MeOH tends to increase as the

gas concentration increases, while that of EtOH barely

changes. Histograms for a particular condition (the gas

concentration is 60% for all the gases) are provided in Fig.

6c, d from five data points for each gas, implying the

uniqueness of this quantity for unique gas-sensing
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patterns, which qualitatively agree with the visually

distinguishable gas-sensing patterns in the qs1− qs3 plane

(e.g., Fig. 3a, d) in which H2O and MeOH vapors can be

easily distinguished. In addition, as previously suggested,

the term Δne/hΔμe/h may be related to gas-specific

information32,37. We speculate that qs4 (~n*/nimp) reflects

the interactions between the gas molecules and the pre-

existing charge impurities on the substrates. As such, we

attribute the origins of the unique gas-sensing patterns to

the charge and/or dipole moment of the gas molecules

and the interactions between the gas molecules and the

pre-existing charged impurities on the substrate.

The machine-learning analyses allow us to classify the

gas-sensing patterns in a systematic manner with impor-

tant statistical information related to the physical prop-

erties of the tested GFETs. The testing accuracy

represents a fair metric to assess the model’s ability to

analyze new data, so long as the sample count repre-

senting each target gas is kept approximately equivalent to

prevent a skew in prediction. The one-way ANOVA F-test

results indicate that the electron field-effect mobility has

the highest influence on the gas classification in this study.

In addition, the results suggest that the importance of the

features can be modulated by chemical functionalization.

This information may be useful to improve the reliability

of the proposed scheme further.

The potential limitations of the proposed approach are

the inevitably time-consuming data collection processes

and the intensive computations for the machine-learning

analyses. The variations in the physical properties of

GFET devices warrant a unique machine-learning model

and training process for each device. From the char-

acterization results of the prototype devices, the accuracy

and cross entropy loss history (Fig. 5b, e) suggest that ~40

epochs of training are enough for a robust neural network

model based on the 4D gas-sensing patterns. The total

time requirement for the training process can be

approximately estimated based on the number of epochs,

which is almost instantaneous in this study. On the other

hand, the time requirement for acquiring one piece of

data during the prototype test is 1 min, which is domi-

nated by the specifications of the peripheral measurement

system and can be significantly reduced with better

instruments. Another key variation is the amount of

charged impurities on the substrates (boundary between

graphene and SiO2), which can affect the charged

impurity states on the substrates. Nonetheless, this issue

may be alleviated by improving the quality control of the

manufacturing process. Another potential issue is the

influence of the various factors in the ambient environ-

ment41. The e-nose system based on GFET could use a

temperature compensation algorithm and/or a tempera-

ture controller to eliminate the influence of temperature

variations, whereas the signals from humidity could

potentially be decoupled by the proposed approach. To

realize an e-nose using a single GFET with the proposed

scheme, other target gases should also be tested with

complex backgrounds, whereas three vapors (H2O,

MeOH, and EtOH) were evaluated with binary gas mix-

tures in this study.

The proposed scheme can be applied to other FET-

based gas sensors, such as Si-based FETs, where the

threshold voltage and the transconductance may be uti-

lized as key parameters for multidimensional vectors. The

machine-learning approach can be further extended to

start with a multiclass model that distinguishes the gas

mixture group, followed by a multioutput regression

model of each group for the prediction of concentrations

of both the target gas and common humidity values in

ambient air. As long as there are sufficiently large training

samples with characteristic features, the machine-learning

scheme should be able to differentiate specific signatures

of gas patterns and predict relevant properties. In con-

clusion, we have proposed and demonstrated a multi-

dimensional gas-sensing scheme with a single GFET by

utilizing distinctive 4D vectors from the results of three

tested target gases and machine-learning analysis for gas

classifications. As such, by decoupling the electrical sig-

nals from a single GFET, rather than adding multiple

functional materials, miniaturization, low power con-

sumption, low cost, and selectivity can be accomplished

for the tested gases under particular conditions, which is a

promising step toward a miniaturized e-nose.

Materials and methods
Fabrication and characterization of GFETs

Commercially available graphene substrates (monolayer

graphene on SiO2/Si (300 nm/500 μm), 10 mm× 10mm

in area, Graphenea, San Sebastián, Spain) prepared by

chemical vapor deposition (CVD) were used to fabricate

the pristine GFETs. Metal contacts, Au/Pd (50 nm/

25 nm), were patterned on the graphene substrate by a

lift-off process. Subsequently, graphene channels (100 μm

in width and 500 μm in length) were defined by an oxygen

plasma etching process (50W for 7–10 s). The fabricated

GFETs were generally p-type (in which the majority car-

riers are holes); ~20 wt% polyethylenimine (PEI) solution

was applied to the graphene and left for 2 h for the n-type

counterdoping process. The PEI solution was then washed

away by soaking in DI water, resulting in a charge neutral

point that was shifted to close to 0 V. The fabrication

process of the ALD-RuO2-GFET can be found else-

where51. A scanning electron microscope (SEM) image of

the fabricated graphene FET is shown in Supplementary

Fig. 1a. The fabricated GFETs were fixed onto a ceramic

package by using conductive silver paste. A typical elec-

trical configuration of a GFET is shown in Supplementary

Fig. 1b. A constant source-drain current of 100 μA is
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supplied between the source (S) and drain (D), and the

voltage across the graphene channel is measured via two

inner contacts (A) and (B) to establish the four-probe

configuration. The gate voltage is applied through the Si

substrate as the back gate. A conductivity profile versus

gate voltage is obtained by sweeping the gate voltage from

−40 to +40 V with a ramp rate of 2 V/s, as shown in

Supplementary Fig. 1c. The conductivity profiles of

GFETs can be decoupled into four distinctive physical

properties of GFETs through Eqs. (1–4) for 4D vectors. A

computed 4D vector example is shown in Supplementary

Fig. 1d.

Experimental setup for gas sensing

The gas control system consists of a dry air gas cylinder,

three mass flow controllers (MFC1, MFC2, and MFC3),

two vapor sources, a gas chamber, power sources, and a

control and data acquisition system (Supplementary Fig.

2a). The gas concentration is determined by the ratio of

two mass flow controllers, and the ratio is controlled over

time based on a designated profile (e.g., Figs. 2a, 4a and

Supplementary Fig. 3a) through LabVIEW (National

Instruments). The gas chamber consists of a cap chamber,

a GFET test chip, an IC socket, a casing, and BNC con-

nector ports (Supplementary Fig. 2b). When the cap

chamber is tightened with screws, the GFET test chip is

sealed via an O-ring, and a dome-shaped space with a

volume of 1 ml is formed. A schematic illustration of the

cross section of the cap chamber and the GFET test chip

is shown in Supplementary Fig. 2c. Throughout all the

experiments, the total mass flow rate was fixed at

200 sccm such that the pressure-dependent false signal

was minimized, and dry air was used as the carrier gas.

The gas control profiles consist of multiple purge cycles

(where only dry air is injected) and gas exposure cycles of

10 min for each test. The conductivity profiles of GFETs

were acquired every minute; therefore, one gas exposure

cycle contained 10 conductivity profiles. In experimental

setup C, the background R.H. level was controlled by

MFC1 and MFC2, and the target gas concentration was

controlled by MFC3.

Data preprocessing workflow

A supervised classification study was conducted to

substantiate the selectivity of our gas sensor. The task was

to train the machine-learning (ML) model for each sensor

device to distinguish specific target gases with good

selectivity. Data preprocessing was performed once raw

data were imported to a Jupyter Notebook. During each

alternation from a purge cycle to an exposure cycle and

vice versa, we removed the first few samples to avoid

possibly unstable data between the cycles. Afterwards, a

new “label” column was created to denote the target gas

species representing each sample’s feature vector. Entries

in the label column were numerically coded. For a three-

class study such as the three different gases tested in this

work, each gas type was represented as a digit: 0, 1, or 2.

The next step was to separate the entire data into a

training and testing set according to an 80/20 split. The

training set was reserved for the ML model to “learn”

about the data and iteratively optimize the classification

model, whereas the testing set was served to evaluate the

algorithm’s performance by giving unforeseen data. All

numeric feature values were subsequently normalized by

the StandardScaler function in the Scikit-learn Python

library by deducting each numeric entry by their corre-

sponding feature’s mean and then dividing by said fea-

ture’s standard deviation52,53. The purpose of

normalization was to prevent features that were numeri-

cally greater in value to dictate the outcome of the clas-

sification study. To prevent the distribution of the testing

set from leaking into the ML model, the mean and stan-

dard deviation represented those of the training set only.

Multilayer perceptron model

The ML model supported multiclass classification to

enforce the classification of a sample to one and only one

gas type. Various contemporary gas sensor applications,

such as the e-nose, adopt the artificial neural network

model because of its ability to model and predict complex

data26,28,42,54,55. The multilayer perceptron (MLP) classi-

fier, which adopts a feed-forward neural network archi-

tecture, was implemented for this study. The MLP neural

network model contains three components: an input

layer, an hidden layer, and an output layer. The hidden

layer comprises a set of neurons, which take in a weighted

linear combination of the normalized feature values from

the input layer plus a bias term, and then pass through an

activation function such as a rectified linear unit

(RELU)54. The weight factor (wi,j) connects the ith entry

of the input layer to the jth neuron of the hidden layer.

Their outputs are fed to the next hidden layer(s) (should

they exist) as the input until reaching the output layer,

where the value of each entry correlates to the likelihood

of each possible target class. The presence of the hidden

layer(s) allows the neural network model to model non-

linear data, and the activation function acts as a means to

buffer the noise in the data54. The neural network model

realizes the underlying pattern in data by executing the

backpropagation algorithm, which iteratively searches for

the optimal weights and biases to minimize the error

between the predicted label and the true label. The

number of hidden layers and the number of neurons to

place within each hidden layer are determined from lit-

erature research without yielding a definitive rule of

thumb. However, it is ideal to keep the number of hidden

layers to 2 and select the number of neurons such that the

trained model does not overfit or underfit the data54.
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Scikit-learn library’s API for an MLP classifier object

offers a suitably large number of hyperparameters for

programmers to modulate52,53. The classifier object was

fitted against the training set of each sensor device. Once

a stopping criterion of the training process was met, the

testing set was then fed to the trained classifier to evaluate

the accuracy as well as other pertinent performance

metrics.

Overfitting and the cross-validation test

Machine-learning models face the problem of over-

fitting when a model undergoes too much training such

that it fits random noise and fails to capture a generalized

trend, thus producing a significant drop in testing accu-

racy. Although a testing dataset was explicitly put aside at

the onset to evaluate the model’s robustness against new

data, the concern over whether the testing set constituted

a fair representation of all unforeseen likelihoods cannot

be ruled out. A cross-validation test is conducted to

ensure that the neural network model’s generalization

performance is not too high or low by coincidence. The

entire dataset was randomly shuffled several ways and

separated via a stratified split, of which 20% were reserved

as the testing set and the remaining constituted the

training set. A stratified split ensures that each target class

is adequately represented in either set. Data reserved for

testing during each shuffle were scored by their corre-

sponding neural network model. By recording the mean

and standard deviation of the performance metric, such as

accuracy, one can interpret whether the ML model is

robust against unseen data.

Acknowledgements

This work was supported in part by PCARI (Philippine-California Advanced
Research Institutes), an NSF grant—ECCS-1711227, BSAC (Berkeley Sensor and
Actuator Center), and the Leading Graduate School Program R03 of MEXT.
These devices were fabricated at the UC Berkeley Marvell Nanofabrication Lab.

Author details
1Berkeley Sensor and Actuator Center & Department of Mechanical

Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.
2Materials Science and Engineering Program, College of Science, University of
the Philippines Diliman, 1101 Quezon City, Philippines. 3National Institute of
Physics, College of Science, University of the Philippines Diliman, 1101 Quezon
City, Philippines

Author contributions

T.H. conceived the core idea of this study. T.H. and Y.L. designed the devices.
T.H., V.C.C. and L.P.L. fabricated the devices. T.H., L.P.L., Y.K. and Y.L. designed
and configured the experimental setup. Y.K. designed and wrote the LabVIEW
program. T.H., R.A.L. and L.I.M.B. conducted the experiments. T.H. wrote the
MATLAB codes for data processing. A.L. designed and conducted the machine-

learning analysis. T.H., A.L. and L.L. prepared the manuscript. A.A.S. and L.L.
guided the research. All authors contributed to the interpretation of the results
and discussions.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information accompanies this paper at https://doi.org/
10.1038/s41378-020-0161-3.

Received: 14 June 2019 Revised: 20 February 2020 Accepted: 7 March 2020

References

1. Gas sensor market size & share. Industry analysis report, 2018–2025. https://
www.grandviewresearch.com/industry-analysis/gas-sensors-market.

2. Inc, G. M. I. Gas Sensor Market worth over $3bn by 2024: Global Market

Insights, Inc. GlobeNewswire News Room. http://www.globenewswire.com/
news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-
by-2024-Global-Market-Insights-Inc.html (2018).

3. Gas Sensors Market worth 1,297.6 Million USD by 2023. https://www.
marketsandmarkets.com/PressReleases/gas-sensor.asp.

4. Zampolli, S. et al. An electronic nose based on solid state sensor arrays for
low-cost indoor air quality monitoring applications. Sens. Actuators B 101,

39–46 (2004).
5. Yi, W. Y. et al. A survey of wireless sensor network based air pollution mon-

itoring systems. Sensors 15, 31392–31427 (2015).
6. OSHA Annotated PELs. Occupational safety and health administration. https://

www.osha.gov/dsg/annotated-pels/index.html.
7. Rüffer, D., Hoehne, F. & Bühler, J. New digital metal-oxide (MOx) sensor plat-

form. Sensors 18, E1052 (2018).
8. Tricoli, A., Nasiri, N. & De, S. Wearable and miniaturized sensor tech-

nologies for personalized and preventive medicine. Adv. Funct. Mater.

27, 1605271 (2017).
9. Rahman, M. M., Khan, S. B., Jamal, A., Faisal, M. & Asiri, A. M. Highly sensitive

methanol chemical sensor based on undoped silver oxide nanoparticles
prepared by a solution method. Microchim. Acta 178, 99–106 (2012).

10. Kanungo, J. et al. Development of SiC-FET methanol sensor. Sens. Actuators B
Chem. 160, 72–78 (2011).

11. Tang, H. et al. An ethanol sensor based on cataluminescence on ZnO
nanoparticles. Talanta 72, 1593–1597 (2007).

12. Liu, X. et al. A survey on gas sensing technology. Sensors 12, 9635–9665 (2012).
13. Aleixandre, M. & Gerboles, M. Review of small commercial sensors for indi-

cative monitoring of ambient gas. Chem. Engi. Trans. 30, 169–174 (2012).
14. Taguchi, N. Gas detecting device. US patent 3, 695, 848 (1972).
15. Neri, G. First fifty years of chemoresistive gas sensors. Chemosensors 3,

1–20 (2015).
16. Yamazoe, N. & Shimanoe, K. New perspectives of gas sensor technology. Sens.

Actuators B Chem. 138, 100–107 (2009).
17. Barsan, N., Koziej, D. & Weimar, U. Metal oxide-based gas sensor research: how

to. Sens. Actuators B Chem. 121, 18–35 (2007).
18. Röck, F., Barsan, N. & Weimar, U. Electronic nose: current status and future

trends. Chem. Rev. 108, 705–725 (2008).
19. Gardner, J. W. & Bartlett, P. N. A brief history of electronic noses. Sens. Actuators

B Chem. 18, 210–211 (1994).
20. Fitzgerald, J. E., Bui, E. T. H., Simon, N. M. & Fenniri, H. Artificial nose technology:

status and prospects in diagnostics. Trends Biotechnol. 35, 33–42 (2017).
21. Persaud, K. & Dodd, G. Analysis of discrimination mechanisms in the mam-

malian olfactory system using a model nose. Nature 299, 352–355 (1982).
22. Abe, H. et al. Automated odor-sensing system based on plural semi-

conductor gas sensors and computerized pattern recognition tech-
niques. Anal. Chim. Acta 194, 1–9 (1987).

23. Ballantine, D. S., Rose, S. L., Grate, J. W. & Wohltjen, H. Correlation of
surface acoustic wave device coating responses with solubility
properties and chemical structure using pattern recognition. Anal.
Chem. 58, 3058–3066 (1986).

24. Aishima, T. Aroma discrimination by pattern recognition analysis of responses
from semiconductor gas sensor array. J. Agric. Food Chem. 39, 752–756 (1991).

25. Shurmer, H. V., Gardner, J. W. & Corcoran, P. Intelligent vapour discrimination

using a composite 12-element sensor array. Sens. Actuators B Chem. 1,
256–260 (1990).

26. Nakamoto, T., Fukuda, A. & Moriizumi, T. Perfume and flavour identification by
odour-sensing system using quartz-resonator sensor array and neural-network
pattern recognition. Sens. Actuators B Chem. 10, 85–90 (1993).

27. Pearce, T. C., Gardner, J. W., Friel, S., Bartlett, P. N. & Blair, N. Electronic nose for

monitoring the flavour of beers. Analyst 118, 371 (1993).

Hayasaka et al. Microsystems & Nanoengineering            (2020) 6:50 Page 12 of 13

https://doi.org/10.1038/s41378-020-0161-3
https://doi.org/10.1038/s41378-020-0161-3
https://www.grandviewresearch.com/industry-analysis/gas-sensors-market
https://www.grandviewresearch.com/industry-analysis/gas-sensors-market
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
http://www.globenewswire.com/news-release/2018/11/14/1651260/0/en/Gas-Sensor-Market-worth-over-3bn-by-2024-Global-Market-Insights-Inc.html
https://www.marketsandmarkets.com/PressReleases/gas-sensor.asp
https://www.marketsandmarkets.com/PressReleases/gas-sensor.asp
https://www.osha.gov/dsg/annotated-pels/index.html
https://www.osha.gov/dsg/annotated-pels/index.html


28. Winquist, F., Hornsten, E. G., Sundgren, H. & Lundstrom, I. Performance of an
electronic nose for quality estimation of ground meat. Meas. Sci. Technol. 4,
1493–1500 (1993).

29. Sensigent. http://www.sensigent.com/products/cyranose.html.
30. Portable Electronic Nose. AIRSENSE analytics. https://airsense.com/en/

products/portable-electronic-nose.
31. Schedin, F. et al. Detection of individual gas molecules adsorbed on graphene.

Nat. Mater. 6, 652–655 (2007).
32. Chen, J.-H. et al. Charged-impurity scattering in graphene. Nat. Phys. 4,

377–381 (2008).
33. Joshi, N. et al. A review on chemiresistive room temperature gas sensors

based on metal oxide nanostructures, graphene and 2D transition metal
dichalcogenides. Microchim. Acta 185, 213 (2018).

34. Adam, S., Hwang, E. H., Galitski, V. M. & Das Sarma, S. A self-consistent theory
for graphene transport. Proc. Natl Acad. Sci. 104, 18392–18397 (2007).

35. Novikov, D. S. Numbers of donors and acceptors from transport measure-
ments in graphene. Appl. Phys. Lett. 91, 102102 (2007).

36. Liang, S.-Z., Chen, G., Harutyunyan, A. R. & Sofo, J. O. Screening of charged

impurities as a possible mechanism for conductance change in graphene gas
sensing. Phys. Rev. B 90, 115410 (2014).

37. Liu, Y., Lin, S. & Lin, L. A versatile gas sensor with selectivity using a single
graphene transistor. In 2015 Transducers—2015 18th International Conference

on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). https://doi.
org/10.1109/TRANSDUCERS.2015.7181084 (2015).

38. Kim, C. H., Yoo, S. W., Nam, D. W., Seo, S. & Lee, J. H. Effect of tem-
perature and humidity on NO2 and NH3 gas sensitivity of bottom-gate
graphene FETs prepared by ICP-CVD. IEEE Electron Device Lett. 33,
1084–1086 (2012).

39. Melios, C. et al. Effects of humidity on the electronic properties of
graphene prepared by chemical vapour deposition. Carbon 103,
273–280 (2016).

40. D. Smith, A. et al. Resistive graphene humidity sensors with rapid and direct
electrical readout. Nanoscale 7, 19099–19109 (2015).

41. Hayasaka, T., Kubota, Y., Liu, Y. & Lin, L. The influences of temperature,
humidity, and O2 on electrical properties of graphene FETs. Sens. Actuators B
Chem. 285, 116–122 (2019).

42. Hierlemann, A. & Gutierrez-Osuna, R. Higher-order chemical sensing. Chem.

Rev. 108, 563–613 (2008).
43. Elssied, N. O. F., Ibrahim, O. & Osman, A. H. A novel feature selection based on

one-way ANOVA F-test for e-mail spam classification. J. Appl. Sci. 7, 625–638
(2014).

44. Rumyantsev, S., Liu, G., Shur, M. S., Potyrailo, R. A. & Balandin, A. A. Selective gas
sensing with a single pristine graphene transistor. Nano Lett. 12, 2294–2298
(2012).

45. Potyrailo, R. A. et al. Towards outperforming conventional sensor arrays with
fabricated individual photonic vapour sensors inspired by Morpho butterflies.
Nat. Commun. 6, 7959 (2015).

46. Nallon, E. C., Schnee, V. P., Bright, C., Polcha, M. P. & Li, Q. Chemical dis-
crimination with an unmodified graphene chemical sensor. ACS Sensors 1,
26–31 (2016).

47. Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10,
1131 (2019).

48. Leenaerts, O., Partoens, B. & Peeters, F. M. Water on graphene: hydrophobicity
and dipole moment using density functional theory. Phys. Rev. B 79, 235440

(2009).
49. Srivastava, P. K., Arya, S., Kumar, S. & Ghosh, S. Relativistic nature of carriers:

Origin of electron-hole conduction asymmetry in monolayer graphene. Phys.
Rev. B 96, 241407 (2017).

50. Novikov, D. S. Elastic scattering theory and transport in graphene. Phys. Rev. B
76, 245435 (2007).

51. Hayasaka, T. et al. ALD-RuO2 Functionalized Graphene FET with Distinctive Gas
Sensing Patterns. In Proc. of 32th IEEE Micro Electro Mechanical Systems Con-

ference 149–152 (2019).
52. Buitinck, L. et al. API design for machine learning software: experiences from

the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining

and Machine Learning (2013).
53. Pedregosa, F. et al. Scikit-learn: machine learning in Python. JMLR 12,

2825–2830 (2011).
54. Kirk, M. Thoughtful Machine Learning with Python: A Test-Driven Approach

(O’Reilly Media, Inc., 2017).
55. Scott, S. M., James, D. & Ali, Z. Data analysis for electronic nose systems.

Microchim. Acta 156, 183–207 (2006).

Hayasaka et al. Microsystems & Nanoengineering            (2020) 6:50 Page 13 of 13

http://www.sensigent.com/products/cyranose.html
https://airsense.com/en/products/portable-electronic-nose
https://airsense.com/en/products/portable-electronic-nose
https://doi.org/10.1109/TRANSDUCERS.2015.7181084
https://doi.org/10.1109/TRANSDUCERS.2015.7181084

	An electronic nose using a single graphene FET and machine learning for water, methanol, and ethanol
	Introduction
	Results
	Measurement setup and experimental conditions
	Measurement results and the converted 4D and 3D vectors
	Gas-sensing patterns of binary gas mixtures
	Classification of the gas-sensing patterns by using machine-learning analyses

	Discussion
	Materials and methods
	Fabrication and characterization of GFETs
	Experimental setup for gas sensing
	Data preprocessing workflow
	Multilayer perceptron model
	Overfitting and the cross-validation test

	Acknowledgements


