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An electronic tongue taste evaluation: Identification of goat milk adulteration
with bovine milk
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a b s t r a c t

An electronic tongue with 36 cross-sensibility sensors was built allowing a successful recognition of the
five basic taste standards, showing high sensibility to acid, salty and umami taste substances and lower
performance to bitter and sweet tastes. The taste recognition capability was afterwards tested in the
detection of goat milk adulteration with bovine milk, which is a problem for the dairy industry. This new
methodology is an alternative to the classical analytical methods used to detect caprine milk adulterations
with bovine milk, being a simpler, faster and economical procedure. The different signal profiles recorded
by the e-tongue device together with linear discriminant analysis allowed the implementation of a model
that could distinguish between raw skim milk groups (goat, cow and goat/cow) with an overall sensibility
and specificity of 97% and 93%, respectively. Furthermore, cross-validation showed that the model was able
to correct classify unknown milk samples with a sensibility and specificity of 87% and 70%, respectively.
Additionally, the model robustness was confirmed since it correctly or incorrectly classified milk samples
with, respectively, higher and lower probabilities than those that could be expected by chance.

1. Introduction

Electronic tongues are sensor arrays for liquid analysis using
both several non-specific, low-selective, chemical sensors with
high stability and cross-sensitivity and ion-selective sensors [1].
The main purpose of electronic tongues is qualitative analysis, such
as recognition, classification or identification of samples, which
depends on the composition of the sensor array and the mathe-
matical procedure adopted for data treatment [1]. An electronic
tongue (e-tongue) device is generally tested by evaluating its recog-
nition capability to the basic standard tastes: sweet, acid, bitter,
salty and umami [2]. Classification models can be constructed from
signal processing procedures using non-supervised techniques like
principal components analysis (PCA) or supervised techniques such
as linear discriminant analysis (LDA) and artificial neural network
[1,2]. When compared with other analytical methodologies, this
kind of devices also present interesting practical properties such as
lower calibration costs, satisfactory accuracy for reasonable small
sizes of the calibration data set and easy adaptability to different
working conditions [3].

In the last decade, potentiometric sensor arrays have been
widely used in food analysis namely, for milk recognition and
classification [2,4–6], wine recognition and quantitative analy-
sis and its correlation with human sensory perception [7], beer
recognition [2,8], plant samples recognition and classification [9],
beverage analysis [2,10–12], soy sauce taste analysis [13] and honey
classification according to the pollen type [14]. In these works,
several types of sensors have been tested in the potentiometric
devices, namely lipid membranes [2,13], chalcogenide sensors [15],
cation and anion-sensitive PVC based membranes [5,11], cation and
anion-sensitive and partially selective electrodes [4,6,8,12,16], and
polymeric membranes formed on solid conducting silver supports
[14].

Still, a small number of works on the application of sensor array
devices for milk analysis are available in the literature, especially
concerning e-tongue devices, although it is possible to find sev-
eral works on electronic noses [3,17–20]. Winquist and co-workers
[21] used an e-tongue for the determination of bacterial counts in
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Table 1

Membrane additives and plasticizers used in the polymeric membranes preparation.

Additive substance Membrane additive identification Plasticizer substance Plasticizer identification

Octadecylamine 1 Bis(2-ethylhexyl)phthalate A
Bis(2-ethylhexyl)phosphate 2 Bis(1-butylpentyl) adipate B
Oleyl alcohol 3 Tris(2-ethylhexyl)phosphate C
Methyltrioctylammonium chloride 4 Dibutyl sebacate D
Tridodecylmethylammonium chloride 5 2-Nitrophenyl-octylether E
Oleic acid 6 Dioctyl phenylphosphonate F

fresh milk during storage. Collier and co-workers [19] also used a
screen-printed electrochemical array to discriminate among four
milk samples, among four yoghurt samples, and among four cul-
tured and non-cultured dairy products, but constrained by the
execution of all the measurements in a single experiment. Mabrook
and co-workers [22] have proposed a new method for detecting
added water to dairy products, based on ac electrical admittance
measurements. Ciosek and co-workers [4,6] have developed and
applied an e-tongue for milk classification according to the milk’s
fat content and brand, without sample pre-treatment, being able
to correctly classify (predict) 97% of the milk samples.

The aims of this work were: (i) to construct an all-solid-state
potentiometric e-tongue with two units of 20 polymeric mem-
branes each (18 different and 2 replicates of selected membranes),
working in parallel, in which the polymeric mixtures were applied
on solid conducting silver-epoxy supports, (ii) to evaluate, by means
of principal components analysis, its ability to differentiate the five
basic taste standards (sweet, acid, salty, bitter and umami tastes),
and finally, (iii) as a practical application for the dairy industry,
to use the taste recognition ability of the e-tongue to detect raw
goat milk adulterations with raw cow milk by means of linear dis-
criminant analysis. This statistical approach intended not only to
classify raw skim milks according to animal provenience (goat, cow
and respective mixtures), but also to compare the model classi-
fications with those that could be expected by chance, in order
to verify if the proposed potentiometric methodology could be
used reliably by cheese producers for the detection of goat milk
adulterations with cow milk. This technique was used for the clas-
sification of vinegars based on their polyalcohols content [23],
the varietal differentiation of red wines in the Spanish Valencian
region [24], the determination of geographic origin of potatoes
using their content in mineral and trace elements [25], to dis-
criminate between table olives according to their mineral nutrient
composition [26], to discriminate between bovine breeds and pro-
duction sub-system based on the raw meat fatty acids profile [27],
and to differentiate honey samples according to their pollen content
[14].

To the best knowledge of the authors it is the first time that an
e-tongue device is applied to detect the adulteration of raw caprine
skim milk with raw bovine skim milk. In fact, the adulteration of
goat milk with bovine is quite frequent, due to the seasonal fluctu-
ations of the production of goat milk and to the higher price of this
compared with bovine; the replacement is also a chance for the milk
producers to get rid of their overproduction of bovine milk with-
out loss of profit. Therefore, it is important to establish and validate
easy and reliable methodologies that can be used to detect this
kind of adulterations. In recent years, several analytical methods
(urea-polyacrylamide gel electrophoretic techniques, isoelectric
focusing, high-performance liquid chromatography, immunochro-
matography, immunological methods, capillary electrophoresis)
[28–33] have been reported for the detection and/or quantifica-
tion of milk and cheese adulterations, and in some cases even
to determine the regional provenance of dairy products unam-
biguously (polymerase chain reaction, near infrared, mid infrared,

front face fluorescence spectroscopy, stable isotope and nuclear
magnetic resonance-coupled with chemometric tools) [34–38].
Although these methods are quite precise and commonly used,
they are very time-consuming and expensive, requiring complex
pre-treatment of the samples, specialized equipment and qualified
personal. Therefore, the development of a potentiometric multi-
sensor system (e-tongue) that could be used in the dairy industry
by cheese makers, to evaluate in a real time basis the possible adul-
terations of their “raw materials” is of major importance.

2. Materials and methods

2.1. Reagents

All reagents were of analytical grade and used as pur-
chased. The membrane components were from Fluka: poly(viny-
lchloride) high molecular weight (PVC), octadecylamine, bis(2-
ethylhexyl)phosphate, oleyl alcohol, methyltrioctylammonium
chloride, tridodecylmethylammonium chloride, oleic acid,
2-nitrophenyl-octylether, dioctyl phenylphosphonate, bis(2-
ethylhexyl)phthalate, dibutyl sebacate, bis(1-butylpentyl) adipate,
tris(2-ethylhexyl)phosphate and tetrahydrofurane. Deionised
water was used for all sample dilutions and standard solutions
preparation.

Six commercial buffer standard solutions (pH at 25 ◦C equal to
2.00, 3.00, 4.01, 6.98, 8.96 and 9.94, from Panreac and Fixanal) were
used to test the polymeric membrane behaviour with pH variation.

The reagents used in the preparation of the basic taste solutions
to assess the multi-sensor system performance for taste distinc-
tion and polymeric membranes sensibility were: as sweet flavors,
fructose (Panreac), glucose (Fluka) and sucrose (Panreac); as acid
flavors, ascorbic acid (Panreac), citric acid (Fisher Scientific) and
HCl (Riedel-de Haën); as bitter taste, caffeine (Panreac), urea (usb)
and MgSO4 (Panreac); as salty flavor, NaCl (Panreac), KCl (Panreac)
and NH4Cl (Riedel-de Haën). The umami taste, the fifth basic taste,
was tested using the reagent monosodium glutamate, MSG (Fluka)
[2,39]. The concentrations of the solutions ranged from 1 × 10−5 to
1 × 10−1 mol/L.

2.2. Membrane preparation

The polymeric membranes were prepared using poly(viny-
lchloride) as the polymeric matrix, with membrane additives and
plasticizers as indicated in Table 1, and tetrahydrofurane, as solvent
for the solid membrane mixture dissolution. Membranes were pre-
pared using approximately 31.9–32.3% of PVC, 64.7–65.2% of the
plasticizer compound and 2.8–3.2% of the sensor compound. As
Table 1 shows, six plasticizer compounds and six sensor compounds
were tested, giving 36 different sensor membrane mixtures. The
sensor compounds were used and tested by Toko [2] for beverage
analysis with an e-tongue device. However, in the present work, to
improve the polymeric membrane taste sensibility, six plasticizers
were used and incorporated in the polymeric membranes and its
response tested against different taste standard solutions.



2.3. Samples

Raw bovine and caprine milks (from Friesian and Portuguese
Serrana breeds, respectively) were obtained directly from the pro-
ducers. Nine milk samples of each animal breed, obtained from
different animals, were collected during a 3-week period.

2.4. Sample preparation

After sample reception, bovine/caprine solutions were prepared
by mixing different levels (%, v/v) of each milk type. The milk
mixtures as well as the whole bovine and caprine milks were trans-
ferred into Falkon tubes and stored in the refrigerator, during 1 h,
to achieve 5 ◦C. All milk samples were centrifuged at 2000 × g, at
6 ◦C, during 30 min, and stored at −20 ◦C until use, without further
treatment. Before the experimental assays, the frozen fat content
at the top of each Falkon tube was removed by cutting the respec-
tive tube section. Before analysis, the milk samples were allowed
to reach ambient temperature and, afterwards, analysed for train-
ing and evaluating the multi-sensor device capacity to identify the
adulteration of caprine milk with bovine milk. The milk mixture
levels were in the range of 1–99%. For this purpose, mixed milk
solutions were prepared using five different milk samples of each
animal breed. Measurements with the sensor array device were
always carried out in diluted solutions samples (4 mL of each skim
milk sample were diluted to 100 mL with deionised water). These
diluted solutions of skim milk samples were prepared and anal-
ysed, most of then twice, giving a total of 142 milk analyses (19,
16 and 107 samples for goat, cow and goat/cow skimmed milks,
respectively).

2.5. Multi-sensor system

Two cylindrical potentiometric sensor arrays were built on
acrylic bodies (diameter of 1.5 cm and length of 6 cm), with 20
holes (3 mm of diameter) filled with conducting silver-epoxy resin
(EPO-TEK E4110) connected to copper electric wires. Membranes
were formed by deposition of the membrane solution on the silver
conducting surface, drop by drop, in each one of the 20 holes of
the acrylic body, as described in a previous work [14]. In the first
sensor array, membranes were prepared with membrane additives
1–6 and with plasticizers A, B and C. In the second array, mem-
branes with membrane additives 1–6 and with plasticizers D, E
and F were used. In the unused two holes of each array, two poly-
meric membranes that showed a non-crystalline visual aspect of
the membrane surface were duplicated: membranes A2 and A3 for
the first system and membranes D4 and E4 for the second one. In
the data treatment, only one of the repeated polymeric membranes,
the one with best results in sensibility, was considered.

2.6. Measurements

The multi-sensor system includes the two sensor array sets,
together with a reference electrode Ag/AgCl with double junction
(3 mol/L KCl as external solution), and was connected to a multi-
plexer Agilent Data Acquisition/Switch Unit model 34970A. Sensor
signals were acquired using the Agilent BenchLink Data Logger soft-
ware installed in a PC computer. The electric potential signals of
the 40 sensors were imported to an Excel spreadsheet and then
analysed using a multivariate statistical software.

All measurements were performed in a double wall glass cell
thermostatized at 25 ◦C, using a Tectron Bio thermostatic bath from
Selecta. Each solution was analysed during a 7–10 min period.

The sensor sensibility evaluation was carried out using basic
taste solutions with concentrations ranging from 1 × 10−5 to

1 × 10−1 mol/L, according to the known detection levels of sev-
eral taste substances [39]. For this purpose, the e-tongue was
immersed in the glass cell containing 50 mL of a 1 × 10−5 mol/L
solution and, after signal stabilization, small volumes of the more
concentrated solutions (1 × 10−3 and 1 × 10−1 mol/L) were added
for concentration increase. Finally, the solution with concentration
of 1 × 10−1 mol/L was measured.

To assess the effectiveness of the multi-sensor device to distin-
guish the basic standard tastes, solutions of 1 × 10−3 mol/L were
prepared for each standard taste compounds and measured.

2.7. Statistical analysis

Principal components analysis was applied for reducing the
number of variables (36 sensors) to a smaller number of new
derived variables (principal components or factors) that adequately
summarize the original information, i.e., the five basic standard
tastes. Moreover, it allowed recognising patterns in the data by
plotting them in a multidimensional space, using the new derived
variables as dimensions (factor scores). The aim of the PCA is to
produce components suitable to be used as predictors or response
variables in subsequent analysis. The number of factors to keep in
data treatment was evaluated by the Scree plot and also by the total
percentage of variance explained by the number of components
selected [40].

Linear discriminant analysis was performed to obtain classifi-
cation rules for differentiation between raw milk goat and cow
samples and goat/cow mixtures. It provides a classification model,
characterized by a linear dependence of the classification scores
with respect to the descriptors (groups defined previously), which
maximize the ratio between-class variance and minimize the ratio
of within-class variance. LDA assumes an a priori knowledge of the
group membership of each sample in a training set. In LDA, groups
are supposed to follow a multivariate normal distribution and to
be linearly independent [26,40,41]. The classification power of the
model derived can be evaluated using the original grouped cases or
using a “leaving one-out” cross-validation procedure. In the former
procedure, the same samples are employed for the deduction of
the linear functions and to test their ability, which can give overop-
timistic results. In the latter procedure, the sample data minus
one observation are used for the estimation of the discriminant
functions, and then the omitted variable is classified from them;
the procedure was repeated for all observations and so each sam-
ple was classified by discriminant functions which were estimated
without its contribution [26,40]. Moreover, for both procedures,
the sensibility and specificity of the discriminant model were com-
puted based on the number of individuals correctly predicted as
belonging to an assigned group. Sensibility was calculated by divid-
ing the number of samples of a specific group correctly classified
by the total number of samples belonging to that specific group.
Specificity was calculated by dividing the number of samples of
a specific group classified as belonging to that group by the total
number of samples of any group classified as belonging to that spe-
cific group. In this work, both procedures for LDA implementation
were performed using the SPSS software.

Traditionally, the computation of the confusion matrix has been
the final step in the discriminant analysis. However, the confu-
sion matrix, when viewed as a contingency table, may be subject
to further analysis, namely with respect to the observed correct
overall classification, to group differences and to the classification
and misclassification within groups (cells in the confusion matrix),
to compare the predicted classification using the model to that
expected from chance alone [26,42]. To evaluate the overall LDA
classification, the conventional chi-square test for a contingency



table was applied. In cases where the expected (theoretical) num-
ber of samples classified in a specific group (cell) was lower than
one or if in more than 20% of the cells of the confusion matrix the
expected number of samples was higher than one but lower than
five, the Fisher’s exact test was used as an alternative to the chi-
square test. For the cases where a correlation between the actual
group and the predicted one was found, its intensity was evaluated
by means of the Phi, Cramer’s V and contingency coefficient.

Regarding group difference’s test, the Morrison [42] likelihood
analysis was used to compare the proportion of correctly classified
observations with the proportion expected by chance. The propor-
tion expected by chance, cpro, was calculated as [26]:

cpro = prow × ˛column + (1 − prow) × (1 − ˛column) (1)

where prow is the true proportion of each type (or milk group) in
the total sample, and ˛column is the proportion of each type (milk
group) in the whole sample categorized in that type (milk group)
by the model.

The relationship between chance and observed proportions can
be tested using a Z statistic of the form:

Zi =
pcc − cpro

√

cpro(1 − cpro)/n
(2)

where pcc is the overall percent observations correctly classified in
the sample.

Classification and misclassification within groups was used to
establish the source of deviation and was determined using the
maximum chance criterion, cmax, defined as the minimum expected
correct classification for a select group of interest, being calculated
assuming that all observations are categorized as coming from that
group [26,42].

A Z statistic was also used to test this relationship for all the cells
in the confusion matrix:

Zij =
occ − cmax

√

cmax(1 − cmax)/n
(3)

where occ stands for observed correct (incorrect) classification of
the specific cell.

3. Results and discussion

In this study, the capability of the built e-tongue to recognise
the five basic standard tastes (sweet, acid, bitter, salty and umami),
as well as to classify raw skim milk samples (bovine, caprine and
bovine/caprine mixtures) based on the e-tongue taste skill, were
investigated.

3.1. Sensor performance evaluation of the basic standard taste

substances

Six buffer solutions with pH values in the range of 2–10 were
used to evaluate the response of each sensor of the multi-sensor
device to pH. Distinct pH sensibilities were observed for the 36
sensors used: weak sensibility, with slopes between −3.0 and
2.2 mV/decade, for sensors A1, B2, B6, C1, D1, E2, E3, E6, F3 and F4;
reasonable dependence for sensors A4, D5, E1 and F2, with slopes
in the range of −8.0 to −3.8 mV/decade; and, high sensibility, with
slopes between −34.3 and −15.6 mV/decade, for the other sensors.
In general, the majority of these two last group sensors, showed
a satisfactory pH dependence with correlation coefficients higher
than 0.9. Furthermore, most of the sensors used in this work were
sensitive to the composition of the buffer solutions. In fact, remov-
ing buffer solutions from the calibration results in an increase of
the correlation coefficients in the pH calibration.

For assessing the ability of the sensors to distinguish different
flavors, solutions were used for sweet, salty, acid, bitter and umami
tastes (except for the last one, each kind of taste was tested with
three different compounds, see above). The aim was to verify how
the sensors respond to taste solution concentrations (varying from
1 × 10−5 mol/L to 1 × 10−1 mol/L, by successive additions), and to
evaluate their sensibility by calculating the slope of the sensor sig-
nal in relation to the concentrations, in a logarithmic scale. Fig. 1
shows the slope values obtained for the signal response of each
sensor towards the logarithmic of the concentration of each taste
solution.

Globally, the results in Fig. 1 show that the sensors
used in this work present a wide range of sensibility (from
−51.8 to 45.5 mV/decade) towards each basic standard taste
solution concentrations, being less sensible for glucose
(0.1–13.2 mV/decade), fructose (−4.7 to 11.3 mV/decade), sucrose
(−4.7 and 11.1 mV/decade), caffeine (1.7 and 19.3 mV/decade)
and urea (−6.8 and 3.3 mV/decade) than for MgSO4, and the
acid and salty basic standard tastes. In fact, for these latter taste
compounds, a higher sensor sensibility was observed, with slope
amplitudes from 33.1 to 53.6 mV/decade. Moreover, the sensor
slope profiles for the four ionic compounds studied (NaCl, KCl,
NH4Cl and MgSO4) were similar, although quite different from the
other analyzed substances. Overall, for this case, slopes between
−45.8 and 11.0 mV/decade were obtained, most of them being
negative. It should be noticed that, although MgSO4 is an ionic
compound, in this work it was used as a bitter taste standard in
the sensory classification, as suggested by Briggs et al. [39]. For
acid substances, the values of the slopes were, in general, positive
and high, varying between −51.8 and 45.5 mV/decade, the sensor
response being more sensitive to HCl concentration variations. The
MSG analysis showed mostly negative slopes, in the range of −25.1
to 8.4 mV/decade.

Moreover, the signal stability as well as the repeatability in
time of the responses towards the standard taste compounds for
each sensor were studied. Concerning the signal stability, it was
observed that the different sensor signals recorded during 5 min,
after a stabilization period of 5–10 min, showed a maximum varia-
tion coefficient (CV) lower than 1%, between 1 and 3% and from 3 to
5%, for 17, 19 and 4 sensors, respectively, for all the taste compounds
evaluated. Regarding the repeatability, responses for three solu-
tions of caffeine, with the same concentration, were recorded for all
the sensors used, showing CV between 0.5 and 15%. These results
showed that the multi-array sensor device present a satisfactory
signal behavior in time.

Globally, the results obtained from the 36 sensors show that the
e-tongue built in this work could distinguish the five basic stan-
dard tastes, based on the different signal sensor profiles recorded,
although with less efficiency for all the sweet taste substances,
caffeine and urea.

The non-supervised PCA method was applied to the sensors
signals profile measured in 1 × 10−3 mol/L solutions of the taste
standards to display its variability. Principal components analy-
sis showed that 97.6% of the total variance of the data could be
explained using only three principal components. Fig. 2 shows the
three-dimensional representation of the three principal compo-
nent factor scores obtained for the flavour solutions.

As can be inferred by the results shown in Fig. 2, the five basic
standard tastes could be separated in five different groups, con-
firming the satisfactory performance achieved with the e-tongue
device. The first principal component factor allowed the separation
of the acidic taste substances in the positive region and the MSG
substance (umami taste) on the negative region; the second factor
separates the sweet taste (glucose, fructose and sucrose are present
in the positive region) from the other taste substances. The urea



Fig. 1. Sensibility of all sensors to the basic standard taste solutions.

and caffeine are close to the interception of these two factors axes
(no relevant contribution from the factors), while NaCl, KCl, NH4Cl
and MgSO4 are grouped in the region with low values of these
two factors. The MgSO4, used as a bitter substance, was grouped
with the salty taste compounds, due to its ionic nature. Factor 3
allows a weak separation between compounds with high dissocia-
tion degree (positive region) and molecular/low dissociation degree
compounds (negative region) with exception of glucose, which is
in the positive region. Globally, these results are in accordance with
the sensor sensibility evaluation presented and discussed above.

3.2. Application of the multi-sensor device to classify milk

samples

The e-tongue device built in this work was also used for milk
samples classification purposes, based on its ability to differentiate
the taste standard substances, as described above. Fig. 3 presents a
typical average signal sensor profile recorded for three whole skim

caprine milk samples, three 50% bovine/caprine milk mixtures and
three whole skim bovine milk samples, showing also the magnitude
of the standard deviation observed. This figure shows that small dif-
ferences between the signal intensities are observed for the three
milk samples, which indicates the need to use all the 36 sensors
to classify whole or adulterated milk. Moreover, for this study, the
responses of the four repeated sensors used in the two parallel sen-
sor arrays were also included, since it has been reported that the
inclusion of repeated sensors in multivariate analysis can improve
model performance [43].

LDA with probabilities proportional to each group size was used
to discriminate between the three milk groups: goat, cow and
goat/cow raw skim milk samples. Although this method requires
the normality of the data, it can deal with deviations from normal-
ity, having good robustness [44]. The number of variables (sensors
signals) that could be used to obtain the maximum correct classifi-
cation of the raw milk samples according to milk types was selected,
retaining those which did not fail the tolerance test, allowing max-



Fig. 2. Representation of the three principal component factor scores obtained for
the taste solutions.

imizing the discriminant information for classification purposes.
Keeping a small number of key variables is essential for increas-
ing the reliability of the mathematical classification, eliminating
features with minor information and allowing also a visual exami-
nation of the data set by a two-dimensional plot of the key features
[26]. For the linear discriminant analysis carried out, considering
that the prior probabilities were proportional to each group size, all
sensors, except sensors E5, E6, F2 and F4, which failed the tolerance
test, were included. This test was used to identify multicolinear-
ity in discriminant analysis. Two discriminant functions, explaining
100% of cumulative variance (85.5% and 14.5% for Functions 1 and 2,
respectively), were retained, being both significant accordingly to
the Wilk’s Lambda test (p ≤ 0.001). Taking into account the coeffi-
cients of the canonical discriminant functions, standardized by the
variance within groups, it can be stated that the most outstanding
contribution to discrimination in the first function, in decreasing
order of importance, was obtained from sensors F1, A1, B1, A5,
B3, B4, C4, C5, D4, C1, A2, F5, A4, B5 and A3. Regarding the sec-
ond discriminant function, sensors D3, A6, E2, E4, D5, D4, D2, F3,
E3, B2, B6, D6, A3 and C2 showed the largest absolute correlation.
Applying these functions to the sensor signals obtained for the dif-
ferent raw skim milk samples analyzed, the corresponding scores
for each function were calculated and plotted versus the canonical
functions, allowing the visualization of their ability to discriminate
among the three skim milk groups considered (Fig. 4). While raw

Fig. 4. Discriminant analysis obtained for the 142 skim raw milk samples.

skim bovine milk samples were characterized by negative values of
both Functions 1 and 2, caprine milk samples were characterized
by negative values of Function 1 and mainly positive values of Func-
tion 2. Mixtures of cow and goat raw skim milks presented positive
values of Function 1 and values ranging from −2 to +2 for Function
2. From these results and based on the relative contribution of each
sensor to discriminant Function 1, it can be stated that the sensors 1,
4 and 5 (with plasticizers A, B, C and D or F) are those that most con-
tribute for the discrimination between caprine/bovine skimmed
milk mixtures and whole skim bovine or caprine milks. Moreover,
sensor 2 (with plasticizers B, C, D and E), sensor 3 (with plasticiz-
ers A, D, E and F) and sensor 6 (with plasticizers A, B and D) are
those that most contribute to discriminant Function 2, facilitating
the differentiation between whole skim bovine and caprine milks.

The confusion matrix (Table 2) associated with the linear
discriminant analysis between milk groups showed satisfactory
overall sensibility and specificity: 97% and 93%, 87% and 70%,
respectively, for original and cross-validation classifications. More-
over, applying the Fisher’s exact test to the results obtained for both
original groups and cross-validation classifications, as the practical
rule of the chi-square test was not obeyed, chi-square values of
158.50 and 106.37 were, respectively, obtained (p < 0.0002 for four
degrees of freedom), showing a strong association between orig-
inal and predicted groups. In fact, the symmetric measures (Phi,
Cramer’s V or contingency coefficients) calculated for both origi-
nal groups and cross-validation classifications, are higher than 0.78
and 0.66, respectively, showing a powerful association between the
variables with high statistical significance (p < 0.0002). Therefore,
it can be inferred that the model performance yield a better clas-
sification into milk groups than those expected just by chance,

Fig. 3. Signal sensor profiles (with the standard deviation bar) for whole skim caprine milk sample, 50% bovine/caprine milk mixture and whole skim bovine milk sample.



Table 2

Confusion matrix of discriminant analysis (milk groups) according to the signals obtained from the e-tongue potentiometric devicea .

Actual group Predicted group membership Total Sensibility (%)

Goat Cow Goat/Cow mixtures

Goat 16 (10) 2 (6) 1 (3) 19 84 (53)
Cow 0 (6) 16 (9) 0 (1) 16 100 (56)
Goat and Cow mixtures 0 (0) 2 (3) 105 (104) 107 98 (97)
Total 16 (16) 20 (18) 106 (108) 142 97 (87)
Specificity (%) 100 (63) 80 (50) 99 (96) 93 (70)

a Results from cross-validation are given in parenthesis.

both for the samples analyzed and for the unknown skim milk
samples.

Furthermore, the analysis of the results presented in
Table 2 shows that globally the best characterized group was
caprine/bovine skim raw milk with 99% and 98% of specificity
and sensibility for the original data, and 96% and 97% for cross-
validation procedure. These results clearly show that the linear
discriminant model obtained was able not only to recognize
differences between the sensor signals obtained with the e-tongue
device for this group of samples and the other two, but also
to classify unknown samples of caprine/bovine raw skim milk.
However, with respect to the cow and goat groups, the model
showed large deviations between specificity and sensibility values
for the original and cross-validation classifications, mainly due to
some misclassification observed for those types of samples in the
cross-validation procedure. Therefore, although the ability of the
deduced discriminate functions to detect different sensor signals
among skim raw goat and cow milks was very satisfactory (84%
and 100% of sensibility and 100% and 80% of specificity for goat and
cow milks, respectively), its ability to classify further unknown
samples was less efficient (only 53% and 56% of sensibility and 63%
and 50% of specificity for goat and cow milks, respectively).

Owing to the rather low sensibilities and specificities obtained
for cow and goat milk groups in cross-validation, and because the
two dimensional plotting of the score versus the corresponding
canonical functions did not lead to a completely separation of
these two groups (Fig. 4 and Table 2), a more detailed evaluation
of the confusion matrix was made. For this, the test based on the
likelihood ratio defined by Morrison [42] was applied to evaluate
the expected classification of specific milk groups (rows) using
the proportional chance criteria to obtain an estimation of the
expected correct classification by chance. The estimated propor-
tional chance criteria may be compared with the overall correct
classification by the Zi score obtained for each group (milk type)
according to Eq. (3) defined in Section 2. The Zi values calculated for
each milk group studied are shown in Table 3, for both the original
group and cross-validation classifications. Although considering
the satisfactory classification results described before, this study
was only necessary for cross-validation data and for the cow and
goat groups, it was made for both classification procedures and

for the three milk groups to obtain a more complete view of the
e-tongue performance. The results show that for the original group
procedure, the classification obtained using the deduced model is
significantly higher than expected by chance (Zi ≥ 5.24; p < 0.0002),
since the model only misclassifies a few samples of each milk as
belonging to other groups. The application of this overall test of
significance to the cross-validation data shows that the deduced
model can classify goat, cow and goat/cow unknown samples with
higher success than that obtained by chance (Zi ≥ 2.25; p ≤ 0.012),
although with lower efficiency when compared with the results
obtained with the original data.

A more detailed statistical analysis can be conducted in order to
determine if the deduced model probability to correct or incorrect
classify each raw skim milk sample is greater or lower than that
expected by chance. Since divergences may be presented in any of
the confusion matrix cells, each one should be tested to determine
whether its proportion differs from chance [26]. The Zij values of
this comparison and its associated probabilities are also shown in
Table 3 for the two classification methodologies used, original data
groups and cross-validation.

For the original data group classification procedure, the results
obtained (Zij) reinforced the conclusion already stated showing
that the correct classification of goat, cow and goat/cow samples
was higher than that expected by chance (Zij ≥ 6.30; p < 0.0002)
and also that the misclassification obtained by the deduced
model (samples of one group incorrectly classified as belonging to
another group) is lower than that obtained by chance (Zij ≤ −2.84;
p ≤ 0.0023), except for goat samples that are misclassified as cow
samples by the model, with a probability similar to that obtained
by chance (Zij = −1.00; p = 0.1587).

On the other hand, for the cross-validation results, the deduced
model can classify unknown samples of each group in the cor-
rect group with higher probability than that obtained by chance
(Zij ≥ 6.04; p < 0.0002). However, it misclassified goat samples as
cow and vice-versa with higher probability than obtained by chance
(Zij equal to 6.37 and 9.89, respectively; p < 0.0002), meaning that
the deduced model confuses some goat unknown samples with cow
and vice-versa. Moreover, goat unknown samples were misclassi-
fied as goat/cow samples with a similar probability as by chance
(Zij = 0.84; p = 0.2005). On the other hand, cow unknown samples

Table 3

Analysis of the confusion matrixa: group difference’s test (Zi) and classification and misclassification within groups (Zij).

Classification procedure Current milk group Zi Predicted milk group (Zij)

Goat Cow Goat and Cow mixtures

Original
data

Goat 5.24 (<0.0002) 24.79 (<0.0002) −1.00 (0.1587) −2.84 (0.0023)
Cow 5.35 (<0.0002) −4.25 (<0.0002) 33.44 (<0.0002) −4.25 (<0.0002)
Goat and Cow mixtures 8.36 (<0.0002) −20.84 (<0.0002) −20.32 (<0.0002) 6.30 (<0.0002)

Cross-
validation

Goat 2.39 (0.0084) 13.74 (<0.0002) 6.37 (<0.0002) 0.84 (0.2005)
Cow 2.25 (0.0122) 9.89 (<0.0002) 16.95 (<0.0002) −1.89 (0.0294)
Goat and Cow mixtures 5.78 (<0.0002) −20.84 (<0.0002) −20.06 (<0.0002) 6.04 (<0.0002)

a Probabilities of the values of Zi and Zij are given in parenthesis.



were misclassified as goat/cow samples with lower probability than
the one obtained by chance (Zij = −1.89; p = 0.0294). As expected,
considering the results already discussed, unknown goat/cow sam-
ples were always misclassified in a significant lower proportion
than that expected by chance (p < 0.0002).

The confusion obtained regarding the misclassification of some
goat and cow raw skim milk samples could be explained by the
small number of samples obtained for these two groups (19 and
16 samples analysed, respectively) when compared to the large
number of samples considered for the goat/cow group (142 sam-
ples analysed). Therefore, a larger number of samples should be
used in order to enhance the ability of the deduced linear discrimi-
nant model, based on the signals obtained from the e-tongue device
assembled, especially to differentiate between different unknown
milk samples.

4. Conclusions

This work shows that the multi-sensor device developed allows
differentiation between the five basic standard tastes (sweet, salty,
bitter, acid and umami tastes), being more effective towards the
recognition of the acid, salty and umami tastes. When the device
was applied to the study of caprine milk adulterations with bovine
milk, a problem in the dairy industry, it was able to give differ-
ent signal profiles associated to the specific sensory characteristics
of each skimmed milk sample, allowing discrimination between
goat, cow and goat/cow raw skimmed milks with satisfactory sen-
sibilities and specificities (over than 87% and 70%, respectively).
Therefore, it has been shown that this methodology can be used as
a fast and economic procedure to evaluate, in a real time basis,
the possible adulterations of goat raw milk with cow raw milk.
However, in order to use the e-tongue as a routine methodology
for caprine milk adulteration detection in the dairy industry, it is
needed to improve the multi-sensor system by testing and includ-
ing more sensible sensors to milk composition variations.
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