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Abstract Deep non-rapid eye movement sleep (NREM) and general anesthesia with propofol are

prominent states of reduced arousal linked to the occurrence of synchronized oscillations in the

electroencephalogram (EEG). Although rapid eye movement (REM) sleep is also associated with

diminished arousal levels, it is characterized by a desynchronized, ‘wake-like’ EEG. This observation

implies that reduced arousal states are not necessarily only defined by synchronous oscillatory

activity. Using intracranial and surface EEG recordings in four independent data sets, we

demonstrate that the 1/f spectral slope of the electrophysiological power spectrum, which reflects

the non-oscillatory, scale-free component of neural activity, delineates wakefulness from propofol

anesthesia, NREM and REM sleep. Critically, the spectral slope discriminates wakefulness from

REM sleep solely based on the neurophysiological brain state. Taken together, our findings

describe a common electrophysiological marker that tracks states of reduced arousal, including

different sleep stages as well as anesthesia in humans.

Introduction
General anesthesia is a reversible, pharmaceutically induced state of unconsciousness, while sleep is

internally generated and cycles between rapid (REM) and non-rapid eye movement sleep (NREM;

Brown et al., 2010; Franks and Zecharia, 2011). Both sleep stages and anesthesia are character-

ized by a behaviorally similar state of reduced physical arousal (Brown et al., 2010; Franks and

Zecharia, 2011; Murphy et al., 2011). Definitions of arousal vary and include e.g. autonomic,

behavioral or mental arousal. For this study, we followed an updated version of the framework by

Laureys et al. that defined consciousness on two axes – content (awareness) and level (arousal;

Boly et al., 2013; Laureys, 2005). While the conscious content is low in NREM sleep and propofol

anesthesia, it is high in wakefulness and dreaming states like REM. The arousal level is low during

anesthesia and in all sleep states including REM.

Both NREM sleep stage 3 (also called slow-wave sleep) and general anesthesia with propofol

exhibit similar electrophysiological features, such as an increase in low frequency activity and the

occurrence of prominent slow oscillations (<1.25 Hz; Brown et al., 2010; Franks and Zecharia,
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2011; Murphy et al., 2011; Prerau et al., 2017; Purdon et al., 2013). Moreover, propofol anesthe-

sia has been linked to the emergence of a strong frontal alpha oscillation (8–12 Hz; Purdon et al.,

2013) whereas spindles (12–16 Hz) typically appear in NREM sleep stage 2 (Prerau et al., 2017). In

contrast, REM sleep is characterized by a desynchronized, active pattern in the electroencephalo-

gram (EEG), which resembles wakefulness (Brown et al., 2010; Prerau et al., 2017). The additional

defining features of REM sleep are therefore peripheral markers including muscle atonia as detected

by electromyography (EMG) combined with rapid eye movements in the electrooculogram (EOG;

Prerau et al., 2017). To date, it has been challenging to differentiate REM sleep from wakefulness in

humans solely from the electrophysiological brain state (Pal et al., 2016).

Recently, several lines of inquiry highlighted the importance of non-oscillatory, scale-free neural

activity for brain physiology and behavior (Miller et al., 2009a; Gao et al., 2017; Voytek et al.,

2015; Voytek and Knight, 2015; Miller et al., 2009b; He et al., 2010). The electrophysiological

power spectrum is characterized by a 1/f signal drop-off, i.e. higher frequency activity exhibits

reduced power as compared to low frequency activity. This scaling law between power and fre-

quency can be estimated from the exponential decay of the power spectrum (He et al., 2010) and

has previously been used to assess a variety of cognitive and EEG phenomena (Colombo et al.,

2019; Lina et al., 2019; Miskovic et al., 2019; Pereda et al., 1998; Pritchard, 1992; Shen et al.,

2003; Susmáková and Krakovská, 2008). Notably, this decay function mainly captures non-oscil-

latory brain activity, which is not characterized by a defining temporal scale, such as band-limited

oscillations (He et al., 2010). Therefore, analyses of scale-free 1/f dynamics might prove especially

helpful when analyzing brain states that are not characterized by prominent oscillations such as REM

sleep in humans. We hypothesized that markers of 1/f activity, such as the spectral slope of the

power spectrum, may provide an electrophysiological signature that distinguishes ‘paradoxical’ REM

sleep (Siegel, 2011) from wakefulness.

Importantly, 1/f dynamics can also be observed in a variety of other signals. For instance, long-

range temporal correlations of neuronal oscillations (Linkenkaer-Hansen et al., 2001) or the size

and duration of neuronal avalanches (Beggs and Plenz, 2003; Palva et al., 2013) also follow a

power law but these scale-free behaviors likely have a different neurophysiological basis than the 1/f

drop-off of the power spectrum (He et al., 2010).

eLife digest Electroencephalogram (EEG for short) is a widespread technique that helps to

monitor the electrical activity of the brain. In particular, it can be used to examine, recognize and

compare different states of brain consciousness such as sleep, wakefulness or general anesthesia.

Yet, during rapid eye movement sleep (the sleep phase in which dreaming occurs), the electrical

activity of the brain is similar to the one recorded during wakefulness, making it difficult to

distinguish these states based on EEG alone.

EEG records brain activity in the shape of rhythmic waves whose frequency, shape and amplitude

vary depending on the state of consciousness. In the EEG signal from the human brain, the higher

frequency waves are weaker than the low-frequency waves: a measure known as spectral slope

reflects the degree of this difference in the signal strength. Previous research suggests that spectral

slope can be used to distinguish wakefulness from anesthesia and non-REM sleep. Here, Lendner

et al. explored whether certain elements of the spectral slope could also discern wakefulness from

all states of reduced arousal.

EEG readings were taken from patients and volunteers who were awake, asleep or under

anesthesia, using electrodes placed either on the scalp or into the brain. Lendner et al. found that

the spectral slope could distinguish wakefulness from anesthesia, deep non-REM and REM sleep.

The changes in the spectral slope during sleep could accurately track the degree of arousal with

great temporal precision and across a wide range of time scales.

This method means that states of consciousness can be spotted just from a scalp EEG. In the

future, this approach could be embedded into the techniques used for monitoring sleep or

anesthesia during operations; it could also be harnessed to monitor other low-response states, such

as comas.
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Recent findings suggested that 1/f dynamics differentiate wakefulness from general anesthesia

(Colombo et al., 2019; Gao, 2016). For instance, using intracranial recordings in macaque monkeys,

it had been shown that the spectral slope between 30 and 50 Hz reliably tracked changes in arousal

level under propofol anesthesia from induction to emergence (Gao et al., 2017). Moreover, it has

been reported that that the spectral slope between 1 and 40 Hz in human scalp EEG recordings dis-

criminated states with conscious content, namely wakefulness and ketamine anesthesia, from states

where no conscious report was possible, i.e. Xenon and propofol anesthesia (Colombo et al., 2019).

Collectively, these studies implied that propofol anesthesia was accompanied by a steeper decay of

the power spectrum (Colombo et al., 2019; Gao et al., 2017).

With regard to sleep physiology, it had been observed that the spectral exponent of human scalp

EEG becomes more negative during NREM sleep, when estimated e.g. in the 1 to 5 Hz (Shen et al.,

2003), 3 to 30 Hz (Pereda et al., 1998) or 0.5 to 35 Hz frequency range (Miskovic et al., 2019). A

similar pattern was observed in intracranial recordings with subdural grid electrodes in humans

between 10 and 100 Hz (one subject; Freeman and Zhai, 2009) or 1 and 100 Hz (five subjects;

He et al., 2010). Note that the 1/f background activity was estimated from frequency bands that

were potentially influenced by simultaneously occurring low frequency oscillation i.e. delta (<4 Hz) or

slow waves (<1.25 Hz) that might affect the degree of spectral tilt.

General anesthetics like propofol, etomidate and barbiturates act on GABAergic receptors to

enhance inhibition (Brown et al., 2011). Recently, computational simulations indicated that the

spectral slope might provide a surrogate marker for the excitation to inhibition (E/I) balance with

more negative spectral slopes (esp. in the 30 to 50 Hz range) indexing enhanced inhibition

(Gao et al., 2017). This model was validated using intracranial recordings in macaques and rodents:

A shift in E/I-balance towards inhibition by administrating propofol resulted in a steeper slope of the

power spectrum. Likewise, the spectral slope in the rodent hippocampus varied across the depth of

hippocampus, directly reflecting the ratio of excitatory to inhibitory cells in the underlying neuronal

population. Moreover, a modulation of spectral slope was also observed as a function of the hippo-

campal theta cycle, likely reflecting rapid shifts in E/I-balance (Gao et al., 2017).

A recent study that employed two-photon calcium imaging in mice provided additional insight

into putative changes in E/I-balance during the sleep cycle. Cortical activity in mice was reduced dur-

ing NREM sleep compared to wakefulness and, notably, even further reduced during REM sleep

(Niethard et al., 2016). Crucially, the authors observed a selective increase in inhibitory interneuron

activity (parvalbumin-positive interneurons; Niethard et al., 2016) during REM but not NREM sleep

revealing an overall shift towards inhibition during REM sleep.

In the present study, we assessed if 1/f spectral dynamics, in particular in the 30 to 50 Hz range,

which is devoid of prominent low-frequency oscillatory activity (Gao et al., 2017), could track arousal

states in humans both under anesthesia with propofol and during sleep in intracranial and scalp EEG

recordings. Specifically, we hypothesized that the spectral slope should become more negative (i.e.

the power spectrum steeper) in sleep and under anesthesia compared to wakefulness. Importantly,

we also predicted that the spectral slope could discriminate wakefulness from NREM as well as REM

sleep. Based on recent reports linking E/I-balance and electrophysiology (Gao et al., 2017;

Niethard et al., 2016), we reasoned that the spectral slope, as a putative marker of E/I-balance,

should facilitate the detection of REM sleep directly from the current brain state, without comple-

mentary information from additional EMG or EOG recordings. While previous studies that included

lower frequency power in their slope estimates, found the slope of REM to be close to wakefulness

(He et al., 2010), we specifically investigated if the aperiodic background activity in the 30 to 50 Hz

range could reliably discriminate REM sleep from wakefulness and NREM sleep.

Results
We tested if non-oscillatory brain activity as quantified by the spectral slope of the electrophysiologi-

cal power spectrum could discriminate different states of arousal in four independent studies: We

obtained both (1) scalp EEG (n = 9) and (2) intracranial EEG (n = 12) under general anesthesia with

propofol. Furthermore, we recorded (3) scalp EEG (n = 20) as well as (4) scalp EEG combined with

intracranial EEG (n = 10) during a full night of sleep. We utilized both extra- and intracranial record-

ings to assess the precise spatial extent of the observed effects. In line with previous reports, the

spectral slope was defined by a linear fit to the power spectrum in log-log space between 30 and 45
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Hz (Gao et al., 2017). Critically, we carefully validated the chosen parameters in a series of control

analyses as indicated below.

1/f spectral dynamics during propofol anesthesia
We first tested if the spectral slope discriminates wakefulness and propofol anesthesia in humans in

two experiments. In the first study, we recorded scalp EEG during general anesthesia for orthopedic

surgery in otherwise healthy adults (Study 1, n = 9). In the second study, we obtained intracranial

EEG in epilepsy patients who were implanted with intracranial electrodes for seizure onset localiza-

tion while they underwent general anesthesia for electrode explantation (Study 2, n = 12; subdural

grid electrodes (electrocorticography; ECoG) and stereotactically placed depth electrodes (SEEG;

coverage see Figure 1—figure supplement 1a).

In Study 1 (n = 9), we found that the time-resolved spectral slope closely tracked changes in

arousal levels while subjects underwent propofol anesthesia (Figure 1a). Specifically, we observed a

significant decrease of the spectral slope from wakefulness (�1.84 ± 0.30; mean ± SEM) to anesthe-

sia (�3.10 ± 0.20) when averaged across all electrodes (Figure 1b; permutation t-test: p<0.0001,

obs. t8 = 7.09, dWake-Anesthesia = 1.65).

A cluster-based permutation test assessing the spatial extent of this effect on the scalp level

resulted in a single large cluster that spanned all 25 electrodes without a clear peak (p<0.001;

Figure 1b). To further examine the spatial distribution of the observed scalp EEG pattern and to

assess subcortical contributions, we utilized intracranial recordings in Study 2 (n = 12). Again, we
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Figure 1. The spectral slope tracks changes in arousal level under general anesthesia with propofol. (a) Time-resolved average of three frontal EEG

channels (F3, Fz, F4) during anesthesia. Upper panel: Time-frequency decomposition. Dotted white line: Induction with propofol. Middle: Spectral slope

(black; mean ± SEM). Lower panel: Slow frequency (<1.25 Hz; gray) and alpha (8–12 Hz; purple) baseline-corrected power (mean ± SEM). Note, elevated

slow frequency activity is already present during wakefulness. While alpha frequency activity is steadily increasing in the first minutes of anesthesia, slow

frequency activity exhibits a waxing and waning pattern which may reflect the premedication with a sedative. (b) Anesthesia in scalp EEG (n = 9). Upper

panel: Spatial extent of spectral slope difference. Cluster permutation test: *p<0.05. Lower panel: Left - Power spectra (mean ± SEM); Right – Spectral

slope. Wakefulness (red), anesthesia (blue) and grand average (black; all mean ± SEM). Permutation t-test: ***p<0.001. (c) Anesthesia in intracranial

recordings (n = 12). Upper panel: Left – coronal, right – axial view of intracranial channels that followed (magenta) or did not follow (white) the EEG

pattern of a lower slope during anesthesia compared to wakefulness. Lower panel: Left – Power spectra; Right – Spectral slope. Wakefulness (red),

anesthesia (blue) and grand average (black; mean ± SEM). Permutation t-test: ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Coverage in intracranial subjects.

Figure supplement 2. Differences in spectral slope under general anesthesia and in sleep in cortical recording sites.

Figure supplement 3. The influence of segment length and number of tapers on spectral slope estimation under general anesthesia with propofol.

Figure supplement 4. The influence of different fit algorithms and fit lengths on spectral slope estimation in general anesthesia with propofol.
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observed that the spectral slope was higher during wakefulness (�2.75 ± 0.15) than during anesthe-

sia (�4.34 ± 0.11) when averaged across all electrodes (Figure 1c; permutation t-test: p<0.0001,

obs. t11 = 9.93, dWake-Anesthesia = 3.57). This effect was present at the majority of recording sites (470

of 485 SEEG (96.9%); Figure 1c, Table 1). Notably, recordings from subdural grid electrodes (n = 4)

showed the same pattern: The spectral slope decreased from wakefulness to anesthesia in the

majority of recording sites (129 of 147 ECoG (87.75%); Figure 1—figure supplement 2a).

Taken together, we observed a more negative spectral slope under anesthesia compared to

wakefulness in both scalp as well as intracranial EEG (Figure 1b,c). Our results indicate that the spec-

tral slope differentiates between wakefulness and general anesthesia in humans. This effect spanned

all scalp and the majority of intracranial electrodes, hence, supporting the notion that propofol anes-

thesia induces a global, brain-wide state change (Brown et al., 2010).

1/f spectral dynamics discriminate wakefulness, NREM and REM sleep
Having established that the spectral slope differs significantly between wakefulness and propofol

anesthesia, we next examined if this state-dependent modulation generalized to other forms of

decreased arousal, such as sleep. We specifically sought to determine if the spectral slope could dis-

cern wakefulness from different sleep stages. We analyzed two datasets obtained during a full night

of sleep. In Study 3, we obtained polysomnography recordings from 20 healthy subjects, which

included scalp EEG, as well as electrocardiography (ECG), electromyography (EMG) and electroocu-

lography (EOG). To determine the precise spatial extent and subcortical contributions, we again

recorded intracranial EEG in a separate cohort for Study 4 (n = 10; electrode coverage see Fig-

ure 1—figure supplement 1b). Critically, we combined intracranial EEG with polysomnography

(scalp EEG, ECG, EMG, EOG) to enable comparable sleep staging across both the scalp and intra-

cranial studies.

We observed that the time-resolved spectral slope closely tracked the technician-scored hypno-

gram (Figure 2a). To quantify this effect, we compared spectral slope estimates across wakefulness,

N3 and REM sleep. In Study 3, we obtained a separate baseline eyes-closed recording during rest in

14 out of 20 subjects. In this subset, we observed prominent slope differences between quiescent

rest (�1.87 ± 0.18; mean ± SEM), N3 sleep (�3.46 ± 0.16) and REM sleep (�4.73 ± 0.23; Figure 2b).

These differences were significant when averaged across all scalp EEG channels (repeated-measures

ANOVA permutation test: p<0.0001, obs. F1.94, 25.17 = 56.05, dRest-Sleep = 3.07). Notably, N2 sleep

exhibited an average slope of �3.67 ± 0.10 that was also significantly below rest (Figure 2—figure

supplement 1a; permutation t-test: pRest-N2 <0.0001; obs. t13 = 7.97; dRest-N2 = 3.31). Permutation

t-tests revealed a significant difference between rest and N3 (pRest-N3 <0.0001, obs. t13 = 5.69, dRest-

Table 1. Anatomical distribution of stereotactically placed intracranial depth electrodes in Study 2 – Intracranial anesthesia (n = 12).

Brain region Total number of electrodes Electrodes with state-dependent slope modulation

ALL 485 470 (96.9 %)

Prefrontal Cortex (PFC) 179 175 (97.8 %)

medial Prefrontal Cortex (mPFC) 27 27 (100 %)

lateral Prefrontal Cortex (lPFC) 147 143 (97.3 %)

Orbito-frontal Cortex (OFC) 5 5 (100 %)

Medial temporal Lobe (MTL) 40 1 (95.0 %)

Hippocampus 26 24 (92.3 %)

Amygdala 13 13 (100 %)

Cingulate Cortex 22 22 (100 %)

Insula 13 13 (100 %)

M1/Premotor 48 47 (97.9 %)

Lateral Temporal Cortex (LTC) 50 50 (100 %)

Parietal Cortex 84 78 (92.9 %)

Visual Cortex 49 47 (95.9 %)
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N3 = 2.49), between rest and REM (pRest-REM <0.0001, obs. t13 = 11.67, dRest-REM = 3.71) and

between N3 and REM sleep (pN3-REM = 0.0001, obs. t13 = 4.44, dN3-REM = 1.70). Importantly, while

some overlap of absolute spectral slope values between rest and sleep existed when comparing

across individuals (Figure 2—figure supplement 1a), we observed a consistent individual decrease

of – 2.06 ± 0.21 (mean ± SEM) between rest and all sleep stages (Figure 2—figure supplement 1b;

Rest-N1 = �1.95 ± 0.26, Rest-N2 = �1.81 ± 0.23, Rest-N3 = �1.59 ± 0.28, Rest-

REM = �2.86 ± 0.25).

Including all available wake periods (before, during and after the night of sleep in all 20 subjects)

increased the variance (Figure 2—figure supplement 1c), which can be explained by the fact that

subjects were still drowsy and data during state transitions was included. However, the overall pat-

tern was remarkably similar (Figure 2—figure supplement 1b,d). As this approach increased the

available amount of data, we utilized all wake trials (referred to as wake) for subsequent analyses.

Next, we assessed the spatial topography of where the slope tracks the hypnogram. Thus, we cal-

culated the Mutual Information (MI) between the time-resolved spectral slope and the hypnogram.
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Figure 2. The spectral slope tracks changes of arousal level in sleep. (a) Time-resolved average of three frontal EEG channels (F3, Fz, F4) during a night

of sleep. Upper panel: Expert-scored hypnogram (black), wake (pink), REM (light green). Upper middle: Time-frequency decomposition. Lower middle:

Spectral slope (black; mean ± SEM). Lower panel: Slow frequency (<1.25 Hz) power (gray; mean ± SEM). (b) Sleep in scalp EEG. Upper panel: Left: Slope

difference between sleep and rest (n = 14). Cluster permutation test: *p<0.05. Right: Mutual Information (MI) between the time-resolved slope and

hypnogram (n = 20). Cluster permutation test against surrogate distribution created by random block swapping: *p<0.05. Lower panel: Left - Power

spectra (n = 14; mean ± SEM); Right – Spectral slope (n = 14). Rest (magenta), NREM stage 3 (blue), REM sleep (green) and grand average (black;

mean ± SEM). Repeated measures ANOVA permutation test: ***p<0.001. (c) Sleep in intracranial EEG (n = 10). Upper panel: Left – coronal, right – axial

view of intracranial channels that followed (magenta) or did not follow (white) the EEG pattern of a lower slope during sleep (REM/N3). Lower panel:

Left – Power spectra (mean ± SEM); Right – Spectral slope of simultaneous EEG recordings (Fz, Cz, C3, C4, Oz). Wakefulness (red), NREM stage 3 (N3;

blue), REM sleep (green) and grand average (black; mean ± SEM). Repeated measures ANOVA permutation test: ***p<0.001.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Relative changes of spectral slope reliably differentiate between wakefulness, sleep and general anesthesia.

Figure supplement 2. The spectral slope is not confounded by muscle activity.

Figure supplement 3. Anatomical distribution of sleep dependent spectral slope modulation in scalp EEG.

Figure supplement 4. Differences of spectral slope in intracranial electrodes between waking and NREM sleep stage three or REM sleep (n = 10).

Figure supplement 5. Evaluation of different slope fit settings in intracranial sleep.

Figure supplement 6. The influence of different power calculations on signal-to-noise ratio during sleep.

Figure supplement 7. The influence of segment length and number of tapers on spectral slope estimation in sleep.

Figure supplement 8. The influence of reference schemes on spectral slope estimation during sleep.

Figure supplement 9. The influence of different fitting algorithms on spectral slope estimation during sleep.

Figure supplement 10. Comparison of Mutual Information captured by fronto-parietal connectivity and spectral slope.

Figure supplement 11. Slope difference between N3 and REM sleep.
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MI is ideal to assess the relationship between a discrete variable (hypnogram) and neurophysiologic

data (Quian Quiroga and Panzeri, 2009). In addition, we also repeated all analyses based on linear

rank correlations, which yielded comparable results (Figure 2—figure supplement 2a,b).

We observed that the spectral slope closely tracked the hypnogram at all electrodes as indicated

by a permutation test (n = 20; average z score = 4.14 ± 0.41 (mean ± SEM); all z > 2.8 correspond to

a Bonferroni-corrected p<0.01; Figure 2b). This effect peaked over frontal electrodes F3, Fz and F4

(z = 4.90 ± 0.37; Figure 2b). Since frequencies of cranial muscle activity overlap with the frequency

range used for spectral slope estimation, we controlled for possible muscle artifacts by repeating

the analysis after local referencing (Laplacian; Fitzgibbon et al., 2013). In addition, we utilized par-

tial correlations that considered the slope of the EMG as a confounding variable. These control anal-

yses indicated that excluding these confounds strengthened the observed relationship between the

hypnogram and the spectral slope (Laplacian: pSpearman <0.001, pMI <0.0001; partial correlation:

pSpearman <0.001; Figure 2—figure supplement 2).

Spatial characteristics of sleep state-dependent spectral slope
modulations
We established that the spectral slope closely tracks the hypnogram. However, we observed pro-

nounced differences between scalp electrodes (Figure 2b), thus, raising the question, which brain

regions contribute most to the observed effects at the scalp level. In a source level analysis using an

LCMV beamformer, prefrontal areas exhibited the strongest sleepstate-dependent modulation (Fig-

ure 2—figure supplement 3). To further investigate the contribution of cortical and subcortical

regions, we obtained intracranial EEG recordings (Study 4, n = 10), which were combined with simul-

taneous scalp EEG recordings.

First, we aimed to replicate the results from Study 3. Again, we found that the slope decreased

from wakefulness (�2.99 ± 0.32; mean ± SEM) to N3 sleep (�3.69 ± 0.12) and REM sleep

(�4.15 ± 0.29; Figure 2c). These three states were significantly different in a repeated-measures

ANOVA permutation test (p=0.0009; obs. F1.97, 17.74 = 10.79, dWake-Sleep = 1.12), thus, directly repli-

cating the pattern as observed in Study 3. Permutation t-tests revealed a significant difference

between wakefulness and REM (p=0.0002; obs. t9 = 4.78; d = 1.19) and wakefulness and N3

(p=0.0136; obs. t9 = 2.66; d = 0.92) but only marginally between N3 and REM (p=0.0431; obs.

t9 = 1.84; d = 0.64).

Second, we directly tested which intracranial SEEG contacts mirrored the observed scalp EEG

pattern. We observed the same pattern - a more negative spectral slope in N3 and REM sleep as

compared to wakefulness - in 155 of 352 SEEG (44.03%; chi-squared test against chance-level (33%):

X2 = 8.20, p=0.0042; Figure 2c, Figure 2—figure supplement 3). Importantly, this analysis revealed

that medial prefrontal cortex (mPFC) and medial temporal lobe structures (MTL; details see Table 2,

Figure 2—figure supplement 3) exhibit a significantly larger fraction of electrodes showing sleep

state-dependent slope modulation compared to their lateral counterparts (chi-squared tests: mPFC -

lateral PFC: p<0.0001, X2 = 33.56, MTL – lateral temporal cortex: p<0.0001, X2 = 33.12), hence, con-

verging on the same brain regions known to be the most relevant for sleep-dependent memory con-

solidation (Dang-Vu et al., 2008; Helfrich et al., 2018; Mander et al., 2013; Murphy et al., 2009).

Note that we did not specifically target any brain regions and in contrast to previous studies using

subdural grid electrodes (Gao et al., 2017; He et al., 2010), the majority of our probes were stereo-

tactically placed depth electrodes (for Wake - N3 and Wake - REM see Figure 2—figure supple-

ment 4; subdural grid electrodes see Figure 1—figure supplement 2b,c). Given the spatial

heterogeneity of intracranial responses (Parvizi and Kastner, 2018), there was a remarkable conver-

gence on medial PFC that resembled the pattern observed at source level (Figure 2—figure supple-

ment 3) and the overlying scalp EEG electrode Fz (Figure 2).

The spectral slope discriminates wakefulness from states of reduced
arousal
Our findings provide evidence that the spectral slope reliably discriminates wakefulness from sleep.

Multiple prior reports indicated that slow waves are a hallmark of decreased arousal states

(Brown et al., 2010; Franks and Zecharia, 2011; Murphy et al., 2011). We directly compared how

well slow wave activity and spectral slopes estimates differentiate arousal states using both a linear
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discriminant analysis (LDA) and a multivariate general linear Model (GLM) to discriminate different

sleep states based on either the spectral slope or slow wave activity in 18 subjects (two subjects had

to be excluded due to insufficient wake trials).

Note that both the LDA classifier and the GLM were trained on the same values that were used in

the univariate testing. Both the LDA classifier as well as the GLM output provide a quantitative met-

ric, namely the accuracy of correctly classified trials for LDA and the unique explained variance quan-

tified by eta squared for the GLM enabling a direct comparison between different conditions. The

GLM offers the additional advantage of facilitating the assessment of the multivariate interaction of

the spectral slope and slow wave power. Data were z-scored before modeling with GLM and LDA

outputs were logit-transformed before comparison.

Linear Discriminant Analysis
First, we directly tested if the spectral slope is superior in discriminating REM sleep from wakeful-

ness. We found that classifier performance was enhanced using the spectral slope compared to slow

wave power (spectral slope: 76.31 ± 3.61% (mean ± SEM), slow wave power: 61.50 ± 1.93%; permu-

tation t-test: p<0.001, obs. t17 = 3.73, d = 1.25; Figure 3a). This finding indicates that the spectral

slope constitutes a marker that successfully discriminates REM sleep from wakefulness solely from

the electrophysiological brain state. Note that classification performance is bound by the accuracy of

the underlying sleep scoring as a ground truth. Since the inter-rater reliability between sleep scoring

experts is typically about 80% (Danker-Hopfe et al., 2009), the classifier accurately predicts the

experts’ ratings in 80% of the time.

Second, we repeated this analysis to discriminate wakefulness from N3 sleep. Classification per-

formance using slow wave power or spectral slope did not differ significantly (slow wave power:

82.09 ± 2.13%, spectral slope: 73.05 ± 2.97%; permutation t-test: p=0.054, obs. t17 = �1.95,

d = �0.72; Figure 3b). This shows that the spectral slope successfully discriminates wakefulness

from N3 sleep despite the fact that the defining criterion of N3 sleep is pronounced slow wave activ-

ity. If LDA was used to classify all three states simultaneously (wakefulness, N3, REM; chance

level = 33%) then the classifier performance was comparable for the spectral slope and slow wave

power (spectral slope: 58.09 ± 2.35%; slow wave power: 63.94 ± 2.04%; permutation t-test: p=0.054,

obs. t17 = �1.77, d = �0.62) potentially reflecting the respective advantageous classification of

either REM or N3 from wakefulness.

We repeated this analysis to discriminate anesthesia from wakefulness (n = 9). We found that clas-

sification based on the spectral slope performed better than the one based on slow wave power

Table 2. Anatomical distribution of stereotactically placed intracranial depth electrodes in Study 4 – Intracranial sleep (n = 10).

Brain region Total number of electrodes Electrodes with state-dependent slope modulation

ALL 352 155 (44.0 %)

Prefrontal Cortex (PFC) 132 49 (37.1 %)

medial Prefrontal Cortex (mPFC) 28 24 (85.7 %)

lateral Prefrontal Cortex (lPFC) 73 15 (20.6 %)

Orbito-frontal Cortex (OFC) 30 10 (33.3 %)

Medial Temporal Lobe (MTL) 48 33 (68.8 %)

Hippocampus 27 19 (70.4 %)

Amygdala 18 14 (77.8 %)

Cingulate Cortex 40 31 (77.5 %)

Insula 41 21 (51.2 %)

M1/Premotor 7 7 (100 %)

Lateral Temporal Cortex (LTC) 79 13 (16.5 %)

Parietal Cortex 0 0

Visual Cortex 3 1 (33.3 %)

Other 2 0
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(spectral slope: 76.56 ± 3.56%, slow wave power: 52.43 ± 1.04%; permutation t-test: p<0.001, obs.

t8 = 6.10, d = 2.63; Figure 3c). Note, that slow wave power was already elevated during wakeful-

ness, which may reflect a premedication with a sedative (see Figure 1a and Materials and Methods).

General Linear Model
When discerning wakefulness from REM sleep, information (as quantified by unique explained vari-

ance eta squared) about the underlying arousal state was significantly different between the spectral

slope, SO power and their interaction (repeated-measures ANOVA permutation test: p<0.001, F1.16,
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Figure 3. Differentiation of wakefulness from sleep and general anesthesia via Linear Discriminant Analysis (LDA) trained classifier and multivariate

general linear modeling (GLM). All LDA classification performances (panel a – c) were logit-transformed and averaged across channels before

comparison. (a) Using the 1/f slope (n = 18; two patients had to be excluded due to insufficient wake trials) resulted in a higher percentage of correct

classification of wakefulness and REM compared to slow wave (SO) power (<1.25 Hz; SO: 61.50 ± 1.93% (mean ± SEM), slope: 76.31 ± 3.61%;

permutation t-test: p<0.001, observed (obs.) t17 = 3.73, d = 1.25). **p<0.01. Dashed line – chance level at 50% (permutation t-test vs. chance): SO:

p<0.001, obs. t17 = 5.51, d = 1.84, slope: p<0.001, obs. t17 = 6.03, d = 2.01). (b) The use of SO power and spectral slope resulted in comparable

classification of wakefulness and NREM sleep stage 3 (n = 18; SO: 82.09 ± 2.13%, slope: 73.05 ± 2.97%; permutation t-test: p=0.054, obs. t17 = �1.95,

d = �0.72). n.s. – not significant. Dashed line – chance level at 50% (permutation t-tests vs. chance): SO: p<0.001, obs. t17 = 11.23, d = 3.71, slope:

p<0.001, obs. t17 = 6.63, d = 2.21). (c) The 1/f slope (n = 9) resulted in a higher classification accuracy of wakefulness and anesthesia with propofol

compared to SO power (SO: 52.43 ± 1.04%, slope: 76.56 ± 3.56%; permutation t-test: p<0.001, obs. t8 = 6.10, d = 2.63). ***p<0.001. Dashed line –

chance level at 50% (permutation t-test vs. chance): SO: p=0.003, obs. t8 = 2.33, d = 1.10, slope: p<0.001, obs. t8 = 6.15, d = 2.89). All predictors for the

multivariate GLM (panel d - f) were z-scored before modeling and calculated on data derived from scalp electrode Fz. (d) Between wakefulness and

REM sleep (n = 18; two patients had to be excluded due to insufficient wake trials), the unique explained variance as quantified by eta squared (h2) was

significantly different between the 1/f slope, SO power and the interaction between the two (slope: 0.12 ± 0.03, SO: 0.17 ± 0.03, interaction: 0.08 ± 0.02;

repeated-measures ANOVA permutation test: p<0.001, F1.16, 19.74 = 19.69). ***p<0.001. (e) Variance between wakefulness and NREM sleep stage 3

(n = 18) was equally well explained by the 1/f slope, SO power and their interaction (slope: 0.12 ± 0.03, SO: 0.17 ± 0.03, interaction: 0.08 ± 0.02;

repeated-measures ANOVA permutation test: p=0.081, F1.72, 29.28 = 2.55). n.s. – not significant. f, Out of the total variation between wakefulness and

general anesthesia with propofol (n = 9), significantly different proportions could be attributed to the 1/f slope, SO power and their interaction (slope:

0.10 ± 0.03, SO: 0.01 ± 0.003; interaction: 0.002 ± 0.001; repeated-measures ANOVA permutation test: p<0.001, F1.01, 8.09 = 14.61). This effect was mainly

driven by the 1/f slope. ***p<0.001.
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19.74 = 19.69). Post hoc t-tests (p-values were Bonferroni-corrected for multiple testing) revealed that

this effect was predominantly driven by the spectral slope (slope: 0.29 ± 0.05 (mean ± SEM), SO:

0.05 ± 0.01; interaction: 0.06 ± 0.03; post hoc permutation t-tests (Bonferroni-corrected): Slope-SO:

p<0.001, obs. t17 = 4.29, d = 1.50, Slope-Int.: p<0.001, obs. t17 = 4.84, d = 1.62; SO-Int.: p=0.63,

obs. t17 = 0.82, d = 0.29).

For NREM stage three sleep and wakefulness, there was no difference in explained variance

between factors (slope: 0.12 ± 0.03, SO: 0.17 ± 0.03, interaction: 0.08 ± 0.02; repeated-measures

ANOVA permutation test: p=0.081, F1.72, 29.28 = 2.55; post hoc permutation t-tests (Bonferroni-cor-

rected): Slope-SO: p=0.406, obs. t17 = �1.11, d = �0.39; Slope-Int.: p=0.422 obs. t17 = 1.09,

d = 0.31; SO-Int.: p=0.032, obs. t17 = 2.44, d = 0.88).

Between anesthesia and wakefulness, information about the state was again significantly different

between factors (slope: 0.10 ± 0.03, SO: 0.01 ± 0.003; interaction: 0.002 ± 0.001; repeated-measures

ANOVA permutation test: p<0.001, F1.01, 8.09 = 14.61). As in the wake-REM differentiation, this could

mainly be attributed to the spectral slope (post hoc permutation t-tests (Bonferroni-corrected):

Slope-SO: p<0.001, obs. t8 = 3.70, d = 1.75), Slope-Int.: p<0.001, obs. t8 = 3.95, d = 1.87, SO-Int.:

p=0.019, obs. t8 = 2.67, d = 1.07).

Taken together, the results from the GLM mirrored the findings from the LDA approach: The

spectral slope enabled an improved classification and contained more unique information about

arousal state compared to slow wave power when differentiating wakefulness from both propofol

anesthesia and REM sleep and was comparable when discerning wakefulness from N3 sleep.

The relationship of slow waves and the spectral slope
N3 sleep and propofol anesthesia are both characterized by the occurrence of prominent slow oscil-

lations (Murphy et al., 2011). Previous reports indicated that low frequency activity might serve as a

marker to disentangle different arousal states (Brown et al., 2010; Franks and Zecharia, 2011;

Murphy et al., 2011). Our results confirm and extend this observation. However, while slow wave

activity (<1.25 Hz) discriminated wakefulness from N3, it was less robust in separating wakefulness

from REM sleep or propofol anesthesia Figure 3). We conducted several control analyses to investi-

gate the relationship of slow wave activity and the spectral slope.

First, we found that the interaction of spectral slope and slow wave activity did not explain more

unique variance than the sum of the univariate metrics in a GLM, hence, indicating that the slope

and slow wave activity provide complimentary information about arousal states (Figure 3). In addi-

tion, if lower frequencies (e.g. 1 to 20 Hz) were utilized for spectral slope estimation, MI between

the hypnogram and the time-resolved spectral slope decreased (Figure 2—figure supplement 5d)

suggesting that lower frequencies and the 30 to 45 Hz range may index distinct processes.

Second, we analyzed the changes in spectral slope during the time course of a slow wave. At the

scalp EEG level, the trough of a slow wave is associated with a cortical ‘down-state’, while the peak

reflects an ‘up-state’ (Nir et al., 2011; Valderrama et al., 2012). We found, that the spectral slope

mirrored up-/down-states during sleep with more negative slopes observed at slow wave troughs

compared to peaks (Figure 4). This effect was most pronounced over frontal channels (cluster-based

permutation test: p=0.005, dTrough-Peak = �0.65).

Third, slow wave activity is also present to some degree during REM sleep (Funk et al., 2016) as

well as wakefulness (Vyazovskiy et al., 2011). Here, we detected a significantly higher number of

slow waves during N3 sleep (SON3 = 28.79 ± 0.79 per minute; mean ± SEM at electrode Fz) as com-

pared to REM sleep (SOREM = 2.16 ± 0.89 per minute; permutation t-test: p<0.0001, obs.

t19 = 22.64, d = 7.05) and wakefulness (SOWake = 5.05 ± 0.51 per minute; permutation t-test:

p<0.0001, obs. t19 = 25.32, d = 6.92; Figure 4d).

Interestingly, the averaged slope at the trough of the slow waves was significantly different

between arousal states: �2.26 ± 0.12 in wakefulness, �3.40 ± 0.09 in N3 sleep and �4.00 ± 0.18 in

REM sleep (mean ± SEM), mirroring our observation of the overall slope differences (Figure 4c; per-

mutation t-tests: Wake-N3: p<0.0001, obs. t18 = 7.07, d = 2.38; Wake-REM: p<0.0001, obs.

t18 = 9.67, d = 2.55, N3-REM: p=0.007, obs. t19 = 2.73, d = 0.91).

Taken together, our control analyses indicate that slow wave activity and the spectral slope may

index two distinct processes.
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Control analyses
Evaluation of parameters for 1/f spectral slope estimation
Non-oscillatory background activity decays exponentially following a power law with a 1/f shape:

PSD(f)~1/fa. The spectral slope (a) of this decay, sometimes also referred to as spectral exponent (b

= - a), can be estimated by a linear regression of the PSD in log-log space (both x- and y-axis are

logarithms). In this study, we examined the spectral slope in three distinct states of reduced arousal,

namely general anesthesia, NREM three and REM sleep, and in both scalp EEG and intracranial EEG

recordings. We estimated the spectral slope from a linear fit to the power spectrum in log-log space

from 30 to 45 Hz as suggested previously (Gao et al., 2017). There is no consensus on parameters

for spectral slope estimation and a variety of settings have been employed. To address this issue,

we systematically evaluated the influence of the following parameters:

1. Power
a. Method for power calculation

Using a Multitaper approach (Prerau et al., 2017) for power estimation resulted in a bet-
ter signal to noise ratio in sleep compared to a single Hanning taper, a periodogram or
Welch’s method (no overlap, single taper; Figure 2—figure supplement 6) across all
examined frequencies (0.5 to 45 Hz; Fig X, p < 0.001).

b. Segment length
A change in segments length from 10 to 30 s under anesthesia or 30 to 10 s in sleep did
not change the overall observed pattern of spectral slopes (Figure 1—figure supplement
3b,c; Figure 2—figure supplement 7b,c) and estimates from both segment lengths were
strongly correlated (p<0.0001; Figure 1—figure supplement 3d; Figure 2—figure sup-
plement 7d).

c. Reference scheme
Bilateral linked mastoids, common average, Laplacian and clinical bipolar reference
schemes resulted in comparable spectral slope patterns with more negative slopes for
sleep than for rest (Figure 2—figure supplement 8b). Although absolute slopes values
varied slightly, they were strongly correlated between montages (p<0.001; Figure 2—fig-
ure supplement 8c).

2. Frequency range
a. Center frequency for fit

We evaluated the relationship between hypnogram and time-resolved slope as a function
of different center frequencies (±10 Hz around center frequency, starting from 20 up to
150 Hz) and found that spectral slope estimates only correlated significantly/had signifi-
cant Mutual Information (MI) with the hypnogram if center frequencies up to 40 Hz were
selected for the fit (Figure 2—figure supplement 5a).

b. Length of fit
We evaluated the relationship between hypnogram and time-resolved slope as a function
of fit lengths (from 30 Hz onwards with a 10 Hz increase of fit length up to 100 Hz). The
results showed that spectral slopes estimates could be fitted with variable fit length from
30 Hz onwards and still resulted in a significant correlation/MI with the hypnogram (Fig-
ure 2—figure supplement 5b).

c. Fit to low frequencies
We explored fits to lower frequencies in both propofol anesthesia and sleep. Under anes-
thesia, spectral slope estimates from fits to 1 to 40 and 30 to 45 Hz resulted in a similar
pattern with more negative slopes during anesthesia compared to wakefulness (Figure 1—
figure supplement 4c). Effect sizes between states and goodness of fits were comparable
in both frequency ranges (Figure 1—figure supplement 4e) while classification perfor-
mance between states was better for the lower frequency fit (Figure 1—figure supple-
ment 4f), possibly due to including frequency bands that exhibit strong differences
between wakefulness and anesthesia (e.g. delta/alpha oscillation; Purdon et al., 2013).
For sleep, we evaluated fits to lower frequencies starting from 1 to 5 Hz with an increasing
length of additional 5 Hz per fit after discounting the oscillatory components from the
power spectrum by means of irregular resampling (IRASA; Wen and Liu, 2016a, Fig-
ure 2—figure supplement 5c). When comparing the MI between the spectral slope fits
to a random distribution derived from a block swapping procedure, the 30 to 45 fre-
quency range resulted in significantly higher MI than the fits to lower frequencies (Fig-
ure 2—figure supplement 5d).

3. Fit
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a. Linear regression
We compared a linear regression with the MATLAB polyfit.m function to the eBOSC algo-
rithm (Caplan et al., 2001; Kosciessa et al., 2020a; Whitten et al., 2011) which employs
MATLAB’s robustfit.m function. While both algorithms resulted in slightly different abso-
lute slopes estimates (anesthesia: Figure 1—figure supplement 4a,b; sleep: Figure 2—
figure supplement 9a), both estimates revealed the same overall pattern with a more
negative slope for sleep compared to rest and anestehsia compared to wakefulness.
Moreover, slope estimates derived from both algorithms were strongly correlated
(p<0.0001; Figure 1—figure supplement 4d; Figure 2—figure supplement 9c) and did
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highlighted in pink, REM periods in light green. Upper middle panel: Multitapered spectrogram of electrode Fz. Lower middle panel: Number of slow

wave (SO) events during 30 s segments of sleep in electrode Fz. Note the decreasing number of SO events during the course of the night. Lower panel:

Spectral slope of SO events occurring in N3 (blue), wakefulness (red) and REM sleep (green) in electrode Fz. Background: Time-resolved slope of

electrode Fz in light gray. (b) Right panel: Average spectral slope changes over the time course of all slow waves in scalp EEG (n = 20) during sleep

(blue; mean ± SEM); superimposed in red is the average slow wave of all subjects. Highlighted are the following 0.5 s time windows relative to the slow

wave trough: �750 to �250 (center �0.5 s; green), �250 to 250 (center 0 s; pink) and 250 to 750 ms (center 0.5 s; purple). Left panel: Power spectra in

log-log space within specified time windows during the slow wave: �750 to �250 (center: �0.5 s; green), �250 to 250 (center: 0 s; pink) and 250 to 750

ms (center: 0.5 s; purple). Note the steep power decrease during the trough of the slow wave (pink). (c) Group level (n = 20) average waveforms in

electrode Fz during N3 (blue), REM sleep (green) and wakefulness (red; mean ± SEM). (d) Left: Slow wave events per minute in wakefulness (red), N3

(blue) and REM (green) in scalp EEG channel FZ (n = 20). In black mean ± SEM. Permutation t-tests: ***p<0.001. Right: Slope of slow wave events on

the group level (n = 20; averaged across all 19 EEG electrodes) in wakefulness (red), N3 (blue) and REM sleep (green). Mean ± SEM in black.

Permutation t-tests: ***p<0.001.
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not differ in effect size (Figure 1—figure supplement 4e) or their goodness of fit to the
power spectrum (Figure 2—figure supplement 9d).

b. Model fit
We further compared a linear regression with polyfit (see above) and the model fit of the
FOOOF algorithm (Haller et al., 2018). Both algorithms resulted in similar slope esti-
mates (anesthesia: Figure 1—figure supplement 4a,b; sleep: Figure 2—figure supple-
ment 9a) and followed the overall slope pattern with a more negative slope for sleep
compared to rest and anesthesia compared to wakefulness. Moreover, slope estimates
derived from both algorithms were strongly correlated (p<0.0001; Figure 1—figure sup-
plement 4d, Figure 2—figure supplement 9b) and did not differ in effect size (Figure 1—
figure supplement 4e) or their goodness of fit to the power spectrum (Figure 2—figure
supplement 9d).

Taken together, the pattern of a more negative slope during sleep and anesthesia compared to

wakefulness was robustly observed across a wide spectrum of parameters. A Multitaper approach

(Prerau et al., 2017) to calculate the power spectral density was characterized by a higher signal-to-

noise ratio in comparison to other methods (Figure 2—figure supplement 6). The choice of seg-

ment length depends on the cortical state where quasi-stationarity can be assumed (Figure 1—fig-

ure supplement 3, Figure 2—figure supplement 7). Here, we observed slope effects on very

different timescales ranging from milliseconds (Figure 4) to full night recordings (Figure 2). The ref-

erence scheme did not have a significant effect on the overall observed pattern (Figure 2—figure

supplement 8) and can be selected depending on the precise research question: e.g. a bipolar or

Laplacian reference might be more suited to examine local phenomena. In sleep, center frequencies

from 20 Hz up to 40 Hz (±10 Hz) and fit length of 20 Hz or more (from 30 Hz onwards) exhibited a

significant relationship with the hypnogram (Figure 2—figure supplement 5a,b). Spectral slope esti-

mated from fits to lower frequencies e.g. 1 to 20 Hz, on the other hand, had a significantly lower MI

with the hypnogram than the 30 to 45 Hz frequency range (Figure 2—figure supplement 5d). Under

anesthesia, both fits to 1 to 40 and 30 to 45 Hz led to a comparable slope pattern with more nega-

tive slopes under anesthesia compared to wakefulness (Figure 1—figure supplement 4). Thus, while

the 30 to 45 Hz frequency range is well suited to differentiate wakefulness from both sleep and anes-

thesia, other frequency ranges might be advantageous when examining only one state (e.g. lower

frequency fits under anesthesia than in sleep). The use of different slope fitting algorithms (polyfit,

robustfit (eBOSC), FOOOF) did not impact the overall observed slope pattern in both sleep and

under anesthesia and the derived slope values were strongly correlated (Figure 1—figure supple-

ment 4, Figure 2—figure supplement 9). Hence, all three algorithms can be used interchangeably

in the examined states and frequency ranges. A model fit via e.g. the FOOOF algorithm

(Haller et al., 2018) might be the preferred choice when a bend in the PSD (also called ‘knee’) is

observed.

The relationship of connectivity and the spectral slope
Rodent studies suggest that fronto-parietal theta and high-gamma network connectivity correlates

with arousal levels in both sleep and general anesthesia (Pal et al., 2018; Pal et al., 2016). We

tested this notion and directly compared connectivity estimates to the spectral slope metric: We

found that the spectral slope was superior to fronto-parietal theta connectivity in tracking sleep

stages and in reliably differentiating REM and N3 sleep (Figure 2—figure supplement 10). Note

that our dataset did not have a sufficient number of intracranial electrodes in the parietal lobe to

analyze fronto-parietal connectivity since the parietal lobe is an infrequent site for clinical exploration

for epilepsy. Hence, we restricted our analyses to theta-band connectivity in scalp EEG. Future stud-

ies will be needed to address the relationship of high gamma-band connectivity and the spectral

slope.

Discussion
Our results demonstrate that the spectral slope, which reflects one parameter describing the aperi-

odic component of the electrophysiological power spectrum, facilitates the reliable discrimination of

wakefulness from propofol anesthesia, NREM and REM sleep. Here, we present results from four
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independent studies providing converging evidence that the spectral slope constitutes a marker that

tracks arousal levels in humans.

Neurophysiological markers of arousal states
Consciousness is commonly assessed on two axes – content (e.g. the experience) and level (e.g. vigi-

lance; Boly et al., 2013; Laureys, 2005). While conscious content is thought to fluctuate during

sleep, mostly in the form of dreams during REM (Siclari et al., 2017), the arousal level is generally

reduced as compared to wakefulness. Both components are typically judged by verbal report of the

research subject or patient leading to the approximation that content is equivalent to conscious

experience as related by the subject whereas the arousal level corresponds to the subject’s ability to

respond. Notably, there are some obvious restrictions to these definitions (e.g. the reduced arousal

level in REM sleep prevents the subject from relating his experience to the experimenter unless

awakened), which make more objective electrophysiological measures desirable.

Several neurophysiological metrics of conscious content such as the Perturbational Complexity

Index (PCI; Casali et al., 2013) have been introduced. While PCI is decreased in N3 sleep and

GABAergic (e.g. propofol) anesthesia, it resembles wakefulness during REM sleep and ketamine

anesthesia, which are both associated with vivid dreams (Casali et al., 2013; Pal et al., 2015;

Siclari et al., 2017). A recent EEG study under anesthesia with propofol, xenon and ketamine found

that the PCI correlated with the spectral exponent derived from the 1 to 40 Hz frequency range

(Colombo et al., 2019). A related study reported that the spectral slope derived from the 0.5 to 35

Hz frequency range became progressively steeper from wakefulness to REM sleep, N2 and N3 sleep

(Miskovic et al., 2019). Critically, these metrics did not reliably differentiate arousal levels, i.e. they

did not generalize to distinguishing wakefulness from REM sleep.

The overall slowing of EEG activity and the occurrence of oscillations in lower frequency bands

has previously been linked to reduced arousal levels (e.g. slow waves and spindles in sleep

[Prerau et al., 2017], delta waves and alpha oscillation under propofol anesthesia [Purdon et al.,

2013]). REM sleep, also called ‘paradoxical’ sleep (Siegel, 2011), is characterized by a ‘wake-like’

EEG without prominent oscillations in humans. Differentiating between wakefulness and REM solely

from the electrophysiological brain state has been challenging and to date still requires simultaneous

EMG and EOG recordings to detect muscle atonia and rapid eye movements (Iber et al., 2007).

Here, we demonstrate that the non-oscillatory, aperiodic part of the power spectrum, which is

devoid of prominent low-frequency oscillatory components and can be approximated by the 1/f

decay of the power spectrum estimated from the 30 to 45 Hz frequency range, reliably differentiates

wakefulness from all three states of reduced arousal level, namely REM, N3 sleep and general anes-

thesia with propofol.

The neurophysiologic basis of 1/f dynamics
1/f dynamics are observed across a variety of tasks (He et al., 2010; Miller et al., 2009a;

Miller et al., 2009b; Voytek et al., 2015), change with lifespan (Voytek et al., 2015), and exhibit

state-dependent variations during sleep (Freeman and Zhai, 2009; Leemburg et al., 2018;

Miskovic et al., 2019; Robinson et al., 2011) and anesthesia (Colombo et al., 2019; Gao et al.,

2017). Critically, these dynamics can be observed irrespective of the employed recording modality

and species (Colombo et al., 2019; Freeman and Zhai, 2009; Gao et al., 2017; He et al., 2010;

Leemburg et al., 2018; Miskovic et al., 2019). However, to date, the underlying neural mechanisms

giving rise to the prominent 1/f decay of the electrophysiological power spectrum are not well

understood (Buzsáki et al., 2012; He et al., 2010; Miller et al., 2009a; Pesaran et al., 2018).

For instance, it had been observed that broadband activity (~2 to 150 Hz) and high frequency

power (>80 Hz) correlate with population neuronal firing rates in macaques and humans (Ray and

Maunsell, 2011; Manning et al., 2009) as well as task performance across a range of behavioral

experiments (Honey et al., 2012; Miller et al., 2009b; Miller et al., 2014). Furthermore, several

lines of research indicate that the spectral slope not only tracks the overall firing rate (Buzsáki et al.,

2012; Miller et al., 2009a) but also correlates with a variety of related phenomena, including metrics

that can be derived from electrophysiological time-series analysis such as entropy (Miskovic et al.,

2019), ensemble synchronization (Shen et al., 2003) or signal complexity (Pereda et al., 1998).
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Moreover, a link to the local balance between excitation and inhibition (E/I-balance; Gao et al.,

2017) as well as dendritic filtering (Buzsáki et al., 2012) has been suggested previously.

Notably, the EEG power spectrum in log-log space does not follow a straight line with a constant

spectral exponent, but is characterized by the occurrence of so called ‘knees’ (bends). Different knee

frequencies have been reported, such as around 1 ~ 2 Hz (He et al., 2010),~20 Hz (Robinson et al.,

2011; Robinson et al., 2001) and ~75 Hz (Miller et al., 2009a). The characteristic form of the power

spectrum can be modeled by the multiplication of Lorentzian functions (He, 2014; He et al., 2010;

Miller et al., 2009a; Miller et al., 2014) where the knee frequencies are directly related to the time

constants of the exponential decay (e.g. 2 ~ 3 ms for the 75 Hz knee and ~100 ms for the 1 ~ 2 Hz

knee). Although the origin of these time constants remains unclear, it has been suggested that the

2 ~ 3 ms time constant originates from synaptic currents, while the 100 ms time constant reflects

membrane leak (He, 2014; Miller et al., 2009a). Other studies attributed the 20 Hz knee to the low

pass filtering properties of dendrites (Robinson et al., 2011; Robinson et al., 2001). Critically, the

1/f dynamics in between those knee frequencies exhibit different spectral exponents: While an expo-

nent of 2–3 is observed for center frequencies (~1 to 80 Hz; Freeman and Zhai, 2009; He et al.,

2010; Miller et al., 2009a), higher frequencies (80 to 500 Hz) exhibited an exponent closer to 4

(Miller et al., 2009a), thus, suggesting that the spectral slopes in different frequency ranges might

be the consequence of different generative mechanisms.

A recent study proposed that the shape of the power spectrum of human intracranial EEG is the

product of local (fast) and distributed (slow) recurrent networks that are balancing excitation and

inhibition in such a way that the network is tuned to the edge of dynamic instability, thus, maximizing

information processing capacities (Chaudhuri et al., 2018). Further in-silico modeling of E/I-balance

suggested that the spectral slope in the 30 to 50 Hz range functions as an index of this balance

where an increase in inhibition is accompanied by a decrease of spectral slope (Gao et al., 2017).

One testable hypothesis that arises from these observations is that cell-type-specific causal manipu-

lations by e.g. optogenetics through selective targeting of excitatory pyramidal or inhibitory parval-

bumin- or somatostatin-positive interneurons should bias the spectral slope in opposite directions.

Future studies involving single neuron recordings and optogenetic manipulation will be needed

to unravel the precise relationship between population firing statistics and changes in the spectral

slope. Comparative studies in rodents (Gao et al., 2017; Leemburg et al., 2018), non-human pri-

mates (Gao et al., 2017) and humans (Colombo et al., 2019; He et al., 2010; Miller et al., 2009a;

Miller et al., 2009b; Miskovic et al., 2019) combined with modeling work (Chaudhuri et al., 2018;

Robinson et al., 2011; Robinson et al., 2001) has the potential to integrate the divergent findings

into a coherent framework, which is critical to further elucidate the neurophysiologic basis of 1/f

dynamics and their relationship to arousal levels.

Functional significance of 1/f dynamics in arousal states
Here, we found a decreased 1/f slope in N3 sleep, REM sleep and under general anesthesia com-

pared to wakefulness in four independent studies. If the spectral slope reflects the local E/I-balance

(Gao et al., 2017), then our results would indicate that decreased arousal states are characterized

by increased inhibition. In support of this consideration, several previous studies reported that pro-

pofol anesthesia and N3 sleep are associated with increased inhibition (Brown et al., 2011;

Gao et al., 2017; Timofeev et al., 2001) as well as prominent changes in neuronal firing rates

(Lewis et al., 2012; Timofeev et al., 2001; Vyazovskiy et al., 2009; Watson et al., 2016). Notably,

there is little evidence supporting a similar association for REM sleep. However, a recent two-photon

calcium imaging study in rodents reported a reduction of the overall cortical firing rate during slow-

wave and even further during REM sleep (Niethard et al., 2016). Critically, this study also demon-

strated that reduced firing rates during REM sleep were accompanied by a selective increase of

inhibitory parvalbumin interneuron activity, thus, reflecting a relative shift towards inhibition

(Niethard et al., 2016). These results parallel the pattern as observed in this present study (Fig-

ure 2—figure supplement 11) where the steepest decay of the power spectrum (the most negative

PSD slope) occurred during REM sleep.

Jointly, these findings imply that REM sleep could be associated with the highest level of cortical

inhibition, thus, resulting in a steeper decay of the power spectrum. This notion of increased inhibi-

tion during REM sleep offers a likely mechanistic explanation for certain REM-defining phenomena,

such as muscle atonia (Scammell et al., 2017) or the clinical observation that epileptic seizures
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during the night predominantly occur out of more excitable, highly synchronized NREM sleep and

only rarely out of less excitable, desynchronized REM sleep (Ng and Pavlova, 2013).

Practical considerations for analyzing 1/f dynamics
A wide array of settings has been employed to examine 1/f features in electrophysiological record-

ings. Practical guidelines on how to select parameters for spectral slope estimation remain scare.

Here, we explored a range of different settings for a series of parameters to reliably estimate 1/f

activity in arousal states.

The estimation of 1/f background activity first requires a spectral decomposition of the underlying

time-series. Here, we directly compared several algorithms (multiple slepian tapers, single Hanning

window, Periodogram, Welch’s method) and found that the Multitaper approach yielded the highest

signal-to-noise ratio (Figure 2—figure supplement 6). Critically, window length and spectral

smoothing parameters need to be adjusted to a reasonable time window where stationarity of the

time series can be assumed (e.g. 30 s segments for sleep; Figure 2—figure supplement 7). The

choice of different reference schemes or slope fitting algorithms, namely a linear regression (see

Methods), the eBOSC algorithm (Kosciessa et al., 2020a) as well as the FOOOF algorithm

(Haller et al., 2018), resulted in a comparable overall spectral slope pattern with strongly correlated

slope estimates (Figure 1—figure supplement 4, Figure 2—figure supplement 9).

Additionally, we also explored a range of different fit frequencies (Figure 1—figure supplement

4, Figure 2—figure supplement 5). Collectively, our results indicate that the spectral slope should

be approximated in a frequency range where no pronounced oscillatory activity and no prominent

bend (‘knee’) are present. Therefore, the optimal choice of frequency range might differ between

arousal states.

In sleep, fitting the power spectrum to frequencies above 30 Hz (and <45 Hz to avoid the Euro-

pean line noise frequency at 50 Hz) shared the highest Mutual Information with the hypnogram (Fig-

ure 2—figure supplement 5). An inclusion of lower frequencies (e.g. 10 to 30 Hz or various fits

length from 1 Hz onwards (compare Figure 2—figure supplement 5a,d) diminished this relation-

ship, indicating a conflation of background and oscillatory activity. Critically, our results from a gen-

eral linear model demonstrated that the slope in higher frequencies (above 30 Hz) carried

independent information from slow oscillatory activity about the current brain state (Figure 3).

Incorporating frequencies below 20 Hz resulted in a better separation between wakefulness and

anesthesia (Figure 1—figure supplement 4), possibly due to the inclusion of the alpha range (~8–10

Hz) where prominent oscillations are observed under propofol anesthesia (Figure 1).

Taken together, a fit to the 30 to 45 frequency range reliably differentiated wakefulness from

anesthesia, NREM three and REM sleep.

Conclusions
Collectively, our results from four independent studies provide five main advances: First, the spectral

slope tracks changes in arousal levels in both propofol anesthesia and sleep in humans with high

temporal precision and is observable on a wide range of timescales from sub-second epochs to full

night recordings.

Second, our results provide empirical evidence for the notion that the slope in the range from 30

to 45 Hz correlates well with all stages of arousal. Previous studies analyzing the spectral slope dur-

ing states of reduced arousal have either employed different frequency ranges (Colombo et al.,

2019; Freeman and Zhai, 2009; He et al., 2010; Miskovic et al., 2019) or focused either on anes-

thesia (Colombo et al., 2019; Gao et al., 2017) or sleep (Miskovic et al., 2019; Pereda et al.,

1998; Shen et al., 2003). Here, we demonstrate that this frequency range is well suited to track

arousal in both anesthesia and different sleep levels including REM and NREM sleep.

Third, the spectral slope mirrored the rapid changes in excitability observed over the course of a

slow wave directly tracking cortical ‘up- ‘and ‘down-states’, hence, providing a mechanistic link

between the spectral slope and population synchrony during slow oscillations.

Fourth, our observations support the premise that anesthesia is a brain-wide state (Brown et al.,

2010), whereas sleep exhibits network-specific activity patterns. Here, we observed that sleep

dependent slope modulations were strongest in the medial temporal lobe and medial PFC, two key
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regions for sleep-dependent memory consolidation (Diekelmann and Born, 2010; Preston and

Eichenbaum, 2013; Stickgold and Walker, 2013).

Fifth, the spectral slope can be reliably estimated from scalp EEG recordings, thus, providing an

accessible marker that can easily be incorporated into intraoperative neuromonitoring or automatic

sleep stage classification algorithms. In the future, this marker could potentially be utilized to moni-

tor other states of reduced arousal such as epileptic seizures, coma, the vegetative or minimally con-

scious state.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

MATLAB Release
2015a and 2018a;
Signal Processing
Toolbox, Curve
Fitting Toolbox,
Statistics and
Machine Learning
Toolbox

The MathWorks Inc, 2020,
Natick, Massachusetts, USA

ID_source:
SCR_001622

Software,
algorithm

Adobe Illustrator
CS6 and CC 2018

Adobe Inc, 2020, Dublin,
Republic of Ireland

ID_source:
SCR_010279

Software,
algorithm

FieldTrip 20170829 Oostenveld et al., 2011;
Stolk et al., 2018

ID_source:
SCR_004849

http://www.fieldtriptoolbox.org/

Software,
algorithm

EEGLAB_14_0_0b Delorme and Makeig, 2004 ID_source:
SCR_007292

https://sccn.ucsd.edu/eeglab/
index.php

Software,
algorithm

FreeSurfer 5.3.0 Dale et al., 1999;
Fischl, 2012

ID_source:
SCR_001847

https://surfer.nmr.mgh.harvard.edu/

Software,
algorithm

LCMV Beamformer Van Veen et al., 1997

Software,
algorithm

IRASA (Irregular Resampling
Auto-Spectral Analysis)

Wen and Liu, 2016b

Software,
algorithm

Multitaper Spectral Analysis Prerau et al., 2017

Software,
algorithm

FOOOF (Fitting Oscillations
and One Over F)

Haller et al., 2018 https://pypi.org/project/fooof/

Software,
algorithm

eBOSC (extended Better
OSCillation detection)

Kosciessa et al., 2020b https://github.com/jkosciessa/
eBOSC

Software,
algorithm

Mutual Information Quian Quiroga and
Panzeri, 2009

http://prerau.bwh.harvard.
edu/multitaper/

Software,
algorithm

BioSig Toolbox -
Logit transformation

Schlogl and Brunner, 2008 ID_source:
SCR_008428

Software,
algorithm

General Linear Model Siegel et al., 2015

Software,
algorithm

Slow wave detection Helfrich et al., 2018;
Staresina et al., 2015

Software,
algorithm

Random Block
Swapping (statistics)

Canolty et al., 2006;
Aru et al., 2015

Software,
algorithm

Connectivity iPLV (imaginary Phase
Lock Value) -
Nolte et al., 2004;
rhoortho (orhtogonalized
power correlation) -
Hipp et al., 2012

Other NA
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Participants
We collected four independent datasets for this study to assess the neurophysiological basis of

states of reduced arousal, namely general anesthesia and sleep. We recorded either non-invasive

scalp electroencephalography (EEG) or intracranial EEG (electrocorticography; ECoG) using subdural

grid and strip electrodes and stereotactically placed depth electrodes (SEEG; for coverage see Fig-

ure 1—figure supplement 1).

Anesthesia
The EEG and intracranial anesthesia studies were conducted at the University Hospital of Oslo. All

participants or their parents provided informed written consent according to the local ethics commit-

tee guidelines (Regional Committees for Medical and Health Research Ethics in Oslo case number

2012/2015 and extension 2012/2015–8) and the Declaration of Helsinki.

Study 1 - Anesthesia scalp EEG
Ten patients (two female) undergoing anterior cervical discectomy and fusion participated in Study

one and received a total intravenous anesthesia with remifentanil and propofol. They had an Ameri-

can Society of Anesthesia status of I - III, were between 46 and 64 years old (53.3 ± 5.7 years;

mean ± SD) and otherwise healthy. Data were recorded from the induction of anesthesia to the

recovery from 25 channel EEG according to the 10–20 layout (EEG Amplifier, Pleasanton, California,

USA) with an additional row of electrodes (F9, F10, T9, T10, P9, P10) at a digitization rate of 512 Hz,

or in the case of one patient at 256 Hz. The electrode for referencing was placed at CP1. Three

patients were not recorded for the planned entire time span – one recording was only started after

induction, while two were stopped before recovery (Juel et al., 2018).

Study 2 - Anesthesia intracranial EEG
A total of 12 patients (three female) with intractable epilepsy participated in Study 2. They were

between 8 and 52 years old (26.6 ± 13.2 years; mean ± SD). Data were collected during the explan-

tation of the intracranial electrodes from induction of anesthesia up to the point of their removal. All

patients received total intravenous anesthesia with propofol and remifentanil at the University Hospi-

tal of Oslo. All patients were placed back on their usual antiepileptic medication before the proce-

dure. Data were recorded on a Natus NicoletOne system with a 128-channel capacity and a

digitization rate of 1024 Hz for up to 64 or 512 Hz for up to 128 channels.

Anesthetic management
All patients received a premedication with 3.75 to 7.5 mg midazolam (Dormicum, Basel, Switzer-

land); the anesthesia scalp EEG group (Study 1) received additional 1 g oral paracetamol (Paracet,

Weifa, Oslo, Norway) as well as 10 mg oxycodone sustained release tablet (OxyContin, Dublin, Ire-

land) for postoperative pain management. Propofol (Propolipid, Fresenius Kabi, Uppsala, Sweden)

and remifentanil (Ultiva, GlaxoSmithKline, Parma, Italy) were administered by computer-controlled

infusion pumps (B Braun Perfusor Space, Melsungen, Germany) using a target-controlled infusion

(TCI) program (Schnider for propofol and Minto for remifentanil) in order to achieve plasma concen-

trations sufficient for anesthesia and analgesia. Prior to start of anesthesia all patients received an

infusion of Ringer’s-Acetate (5 ml /kg) to prevent hypotension during anesthesia induction, as well as

3–5 ml 1% lidocaine intravenously to prevent pain during propofol injection. All patients were pre-

oxygenated with 100% oxygen and received the non-depolarizing muscle relaxant cisatracurium for

intubation (Nimbex, GlaxoSmithKline, Oslo, Norway). After intubation the inspiratory oxygen fraction

was reduced to 40%; nitric oxide was not used.

Sleep
Study 3 - Sleep scalp EEG
Study three was conducted at the University of California at Berkeley. All participants were informed

and provided written consent in accordance with the local ethics committee (Berkeley Committee

for Protection of Human Subjects Protocol Number 2010-01-595). We analyzed recordings from 20

young healthy participants (20.4 ± 2.0 years, mean ± SD; 12 females). Polysomnography was

recorded during an 8 hour period as well as during 5 min quiescent rest with eyes closed before and
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after sleep. Data were recorded on a Grass Technologies Comet XL system (Astro-Med, Inc, West

Warwick, RI) with a 19-channel EEG using the standard 10–20 setup as well as three electromyogra-

phy (EMG) and four electro-oculography (EOG) electrodes at the outer canthi. The EEG was refer-

enced to the bilateral linked mastoids and digitized at 400 Hz (0.1 to 100 Hz; Helfrich et al., 2018;

Mander et al., 2015; Mander et al., 2014; Mander et al., 2013). Sleep staging was carried out by

trained personnel (B.A.M.) and according to recent guidelines (Iber et al., 2007).

Study 4 - Sleep intracranial EEG
Study four was conducted at the University of California at Irvine, Medical Center. Ten epilepsy

patients (six females) undergoing invasive pre-surgical localization of their seizure focus were

included in this study. All patients provided informed consent according to the local ethics commit-

tees of the University of California at Berkeley and at Irvine (University of California at Berkeley Com-

mittee for the Protection of Human Subjects Protocol Number 2010-01-520; University of California

at Irvine Institutional Review Board Protocol Number 2014–1522, UCB relies on UCI Reliance Num-

ber 1817) and gave their written consent before data collection. They were between 22 and 55 years

old (33.1 ± 11.5 years; mean ± SD). Electrode placement was solely dictated by clinical criteria (Ad-

Tech, SEEG: 5 mm inter-electrode spacing; Integra, Grids: 1 cm, 5 or 4 mm spacing). Data were

recorded with a Nihon Kohden recording system (256 channel amplifier, model JE120A), analogue-

filtered above 0.01 Hz and digitally sampled at 5 kHz. To facilitate gold-standard sleep staging,

simultaneous EOG, electrocardiography (ECG) from five leads and EEG was recorded by exemplary

electrodes of the 10–20 setup depending on the localization of the intracranial electrodes but mostly

consisting of Fz, Cz, C3, C4 and Oz. A surrogate EMG signal was derived from the ECG and EEG by

high-pass filtering above 40 Hz. Sleep staging was carried out by trained personnel (B.A.M.) accord-

ing to recent guidelines (Iber et al., 2007).

Data preprocessing
Study 1 - Anesthesia scalp EEG
Data were imported into FieldTrip (Oostenveld et al., 2011) and epoched in 10 s segments. An

Independent Component Analysis (fastica; Hyvärinen, 1999) was used to clean the data from sys-

tematic artifacts such as the ECG. Further data cleaning was done manually after inspection by a

neurologist (R.T.K.) and an anesthesiologist (J.D.L). On average, the patients had 1183 ± 81.42 ten-

second epochs of which 196 ± 103.19 were marked as noisy (15.81 ± 3.15%). No channels were

excluded or interpolated. Data were referenced using the common average, demeaned and

detrended. Wake periods were defined as time before induction and after anesthesia when the

patients responded reliably to verbal commands of the study personnel. Anesthesia periods were

defined as time after induction until the termination of propofol application.

Study 2 – Anesthesia intracranial EEG
Data were recorded with a 512 Hz digitization rate in eight patients. Four additional patients were

recorded with a digitization rate of 1024 Hz and these datasets were down-sampled to 512 Hz. Data

were then imported to FieldTrip (Oostenveld et al., 2011), epoched into ten-second segments and

inspected by a neurologist (R.T.K.) for epileptic activity and then manually cleaned of epileptic and

other non-neural artifacts. The awake state was defined as time before start of propofol, anesthesia

was defined as time after loss of consciousness (unresponsiveness to verbal commands assessed by

study personnel and attending anesthetist). After fusing the pre-implantation T1-weighted MRI and

the post-implantation Computer Tomography (CT) scans, electrodes were automatically localized by

an openly available brain atlas (Freesurfer; Fischl, 2012) using the FieldTrip toolbox (Stolk et al.,

2018) and cross-validated by independent manual inspection by two neurologists (R.T.K.; R.F.H.).

Contacts in white matter or lesions were discarded. The remaining signals were then bipolar refer-

enced to their lateral neighbor, demeaned and detrended.

Study 3 - Sleep scalp EEG
The EEG was referenced to bilateral linked mastoids and data were imported to EEGLAB

(Delorme and Makeig, 2004) and epoched into 5 s segments. Epochs that contained artifacts (e.g.

eye blinks or movement) were manually inspected and rejected by a trained scorer (B.A.M.). None of
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the channels were discarded or interpolated. On average, the participants had 5748.9 ± 10.01 of

these five second epochs and 946.95 ± 542.68 of them were rejected (16.44 ± 2.98%), comparable

to the anesthesia scalp EEG recordings. The data from the healthy sleep participants have been

reported before and were cleaned in a comparable approach (Helfrich et al., 2018; Mander et al.,

2015; Mander et al., 2014; Mander et al., 2013). For further analysis in MATLAB (MATLAB Release

R2018b, The MathWorks, Inc, Natick, Massachusetts, United States), the data were then imported

into FieldTrip (Oostenveld et al., 2011).

Study 4 – Sleep intracranial EEG
Data were imported to FieldTrip (Oostenveld et al., 2011), downsampled to 500 Hz and segmented

into 30 s segments for subsequent data analysis. Anatomical localization was carried out by fusing

pre-implantation T1-weighted Magnetic Resonance Imaging (MRI) scans with post-implantation MRI

and both automatic and manual labeling of the electrode position (Stolk et al., 2018). As above,

epileptic, white matter and channels with other artifacts were discarded. The data were bipolar ref-

erenced, demeaned and detrended.

Spectral analysis
(1)To obtain average power spectra, after artifact removal the data were epoched into ten-second

segments for anesthesia and 30 s segments for sleep. (2) Time-frequency decomposition was accom-

plished using a Fast Fourier Transformation (mtmfft, FieldTrip (Oostenveld et al., 2011) from 0.5 Hz

to 45 Hz in 0.5 Hz steps. The analysis was limited to 45 Hz due to line noise at 50 Hz in the Oslo

recordings and then adopted to all consecutive studies for consistency. To obtain reliable spectral

estimates we utilized a Multitaper approach (Prerau et al., 2017) based on discrete prolate slepian

sequences (dpss; anesthesia: 9 tapers for 10 s segments, no overlap, frequency smoothing of ± 0.5

Hz; sleep: 29 tapers for 30 s segments, no overlap, frequency smoothing of ± 0.5 Hz). (3) The power

spectrum of each state was averaged over all samples of the state (wake and anesthesia or rest,

wake, non-rapid eye movement sleep stage 3 (N3) and rapid eye movement sleep (REM)), channels

and subjects (Figure 1b,c and Figure 2b,c). For better comparison, we visualized the effect at the

scalp level. For Study 2 simultaneous EEG recordings were not available.

For the control analysis of the influence of segment length and number of tapers on the spectral

slope estimate, anesthesia EEG recordings were epoched into 30 s segments, while sleep was

epoched into 10 s segments. Time frequency decomposition was again done with FieldTrip’s mtmfft

with a frequency smoothing of ± 0.5 Hz and dpss tapers resulting in 29 for anesthesia and nine for

sleep. Note that the number of tapers is a direct result of the choice of segment length and fre-

quency smoothing (Prerau et al., 2017):

Number of dpss tapers¼ ð2 � ð
Segment length secð Þ � frequency smoothing Hzð Þ

2
ÞÞ� 1

Comparison of Multitaper, Single-taper, Periodogram and Welch’s
Method
For the comparison of the signal-to-noise ratios of different power calculations (Figure 2—figure

supplement 6), the Multitaper spectral decomposition (Prerau et al., 2017) was calculated as out-

lined above. For all further computations, sleep data were epoched into 30 s segments.

For the Single-taper analysis, power was calculated using the Fast Fourier Transformation mtmfft

of FieldTrip (Oostenveld et al., 2011) with no overlap after applying a Hanning taper. Spectral esti-

mates were obtained between 0.5 and 45 Hz in 0.5 Hz steps.

For the calculation of the Periodogram, we used MATLAB’s periodogram.m function (MATLAB

and Signal Processing Toolbox Release R2018b, MathWorks, Inc, USA) and the default rectangular

window and number of points as defined by the sampling rate of 400 Hz. To get the same number

of observations as in the Multi- and Single-taper approaches, the frequencies closest to the ones

chosen in the Multi- and Single-taper approach above (0.5 to 45 Hz in 0.5 Hz steps) were chosen for

further analysis.

For the Welch’s method, power was calculated with a 30 s window size and no overlap resulting

in a single Hamming window employing MATLAB’s pwelch.m function (MATLAB and Signal Process-

ing Toolbox Release R2018b, MathWorks, Inc, USA). The number of points were defined by the
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sampling rate. Again, the frequencies closest to the Multi-/Single-taper approach were selected for

further analysis to enable a direct comparison of signal-to-noise ratios (SNR).

SNR was calculated by dividing the average power of each frequency at every channel by the

standard deviation of this frequency and channel.

Spectral slope estimation
We calculated the spectral slope by fitting a linear regression line to the power spectrum in log-

log space between 30 and 45 Hz, since it had been shown previously that this range correlates

best with changes in arousal in rodents and monkeys, as well as with different excitation-inhibition

ratios in simulations (Gao et al., 2017). In line with previous reports, we excluded the low frequen-

cies that contain strong oscillatory activity, which may distort the linear fit as well as the range over

50 Hz, which is confounded by both line noise (50 Hz in Europe, 60 Hz in the US) as well as broad-

band muscle artifacts.

We then adapted this range to the calculation of the slope in the other studies for consistency

reasons. To compute a time resolved estimate of the spectral slope, we calculated the best line fit to

the 10 (anesthesia) or 30 (sleep) second segments of the Multitapered power spectra (see above) in

log-log space using polynomial curve fitting (polyfit.m, MATLAB and Curve Fitting Toolbox Release

R2015a, The MathWorks, Inc, Natick, Massachusetts, United States). One subject in Study 3 (sleep

EEG) exhibited an excessive noise level during wakefulness; therefore, his data had to be excluded

from all slope comparisons to wakefulness.

Control analyses of spectral slope estimation
For the evaluation of different center frequencies for the linear regression, the spectral slope was

estimated from intracranial sleep recordings (Study 4) as a function of different center frequencies

(±10 Hz around center frequency starting from 20 up to 150 Hz) and different fit lengths (from 30 Hz

onward with a 10 Hz increase of fit length up to 100 Hz) using the same procedure as outlined above

(Figure 2—figure supplement 5).

Moreover, the spectral slope was estimated from low frequencies in different recordings: (1)

Anesthesia scalp EEG (Study 1) in the 1 to40 Hz range as previously reported (Colombo et al.,

2019) and (2) in Sleep scalp EEG (Study 3) from 1 to 5 Hz with an increasing length of additional 5

Hz per fit after discounting the oscillatory components from the power spectrum by means of irregu-

lar resampling (IRASA; Wen and Liu, 2016a; Figure 2—figure supplement 5c). The rationale for

using this method was to exclude strong low frequency oscillations, such as slow waves, which could

possibly distort the slope estimate.

Furthermore, we estimated the spectral slope from the 30 to45 Hz range using two additional

algorithms, the FOOOF package (Haller et al., 2018) and the eBOSC algorithm (Kosciessa et al.,

2020a) in both anesthesia and sleep scalp EEG (Study 1 and 3). While eBOSC performs a linear

regression in log-log space using MATLAB’s robustfit.m, FOOOF estimates both the oscillatory and

aperiodical part of the power spectrum with a model fit: First an exponential fit is performed to the

power spectrum in semi-log space, then this fit is subtracted from the power spectral density (PSD).

The residual signal is treated as a combination of oscillations and noise and is repeatedly fit with

multiple Gaussian fits to detect possible oscillatory peaks until the noise floor is reached. The

detected peaks are then validated against the mixed oscillatory/noise signal and subtracted from

the original PSD. The new residual signal is then fit again for a better estimate of the aperiodic sig-

nal. Both, the Multi-Gaussian fits and the improved aperiodic fit are then combined into a model

(compare to Figure 3 (Haller et al., 2018). When the PSD does not contain a bend, also called

knee, in the aperiodic signal, then the algorithm is equivalent to fitting a line in log-log space

(Haller et al., 2018).

Mutual Information
Mutual Information (MI) is an information theoretical metric, which quantifies the mutual dependence

of the two signals, specifically the amount of information gained about one variable when observing

the other (Quian Quiroga and Panzeri, 2009). This is particularly useful for non-linear, binned sig-

nals. Mutual information between the two signals X and Y was defined as
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MI X;Yð Þ ¼
x 2X

X

y 2 Y

X

p x;yð Þ�log2
p x;yð Þ

p xð Þ�p yð Þ

� �

where p(x,y) depicts the joint probability function and p(x) and p(y) indicate the class probabilities.

Probabilities were normalized by their sum. For MI analysis (Figure 2b, Figure 2—figure supple-

ments 2, 5, 8 and 10), we epoched the time-resolved slope into 30 s segments (the hypnogram was

staged in 30 s epochs) and discretized it into five bins (Wake, REM, N1, N2, N3) using the discretize.

m function of MATLAB Signal Processing Toolbox Release R2015a (MathWorks Inc, USA). Mutual

Information was calculated using the MutualInformation.m function from MATLAB Central File

Exchange (Dwinell, 2010).

Beamformer analysis
We source-localized the slope difference between wakefulness and sleep in scalp EEG (Study 3,

n = 19; one patient had to be excluded due to insufficient wake trials; Figure 2—figure supplement

3). Cortical sources of the sensor-level EEG data were reconstructed by using a LCMV (linearly con-

straint minimum variance) beamforming approach (Van Veen et al., 1997) to estimate the time

series for every voxel on the grid. A standard T1 MRI template and a BEM (boundary element

method) headmodel from the FieldTrip toolbox (Oostenveld et al., 2011) were used to construct a

3D template grid at 1 cm spacing in standard MNI space. Electrode location was derived from a

standard 10/20 template from the FieldTrip toolbox (Oostenveld et al., 2011). Prior to source pro-

jection, sensor level data were common average referenced and epoched into 30 s segments. To

minimize computational load, we selected a two second data segment from the center of every

epoch to construct the covariance matrix. The LCMV spatial filter was then calculated using the

covariance matrix of the sensor-level EEG data with 5% regularization. Spatial filters were con-

structed for each of the grid positions separately to maximally suppress activity from all other sour-

ces. The resulting time courses in source space then underwent spectral analysis using a Fourier

transform after applying a Hanning window. The PSD slope of every segment was then estimated

using linear regression in the range from 30 to 45 Hz as outlined before. Mean slope values during

sleep were subtracted from the mean slope during wakefulness at every voxel in source space and

then source-interpolated onto a standard template brain in MNI space.

We employed a regions-of-interest (ROI) based approach focusing on prefrontal cortex (PFC) sub-

regions since a reliable source localization of medial temporal lobe (MTL) activity using 19-channel

EEG remains challenging. In line with our results from the intracranial sleep study (Study 4,

Figure 2C and Figure 2—figure supplement 4), we defined the mPFC and dorsolateral PFC (dlPFC)

as ROI. To identify ROI at source level, we used the Automated Anatomical Labeling (AAL) atlas as

implemented in FieldTrip (Oostenveld et al., 2011). The ROI mPFC encompassed the following

regions: 23 and 24 – ‘Frontal_Sup_Medial_L and R’, 25 and 26 – ‘Frontal_Med_Orb_L and R’, 27 and

28 – ‘Rectus_L and R’, 31 and 32 – Cingulum_Ant_L and R’. The ROI dlPFC consisted of the following

atlas tissue labels: 3 and 4 – ‘Frontal_Sup_L and R’, 7 and 8 – ‘Frontal_Mid_L and R’, 11 and 12 –

‘Frontal_Inf_Oper_L and R’, 13 and 14 – ‘Frontal_Inf_Tri_L and R’ and 15 and 16 ‘Frontal_Inf_Orb_L

and R’.

Classification analysis
We employed a linear discriminant analysis (LDA) to assess if slow wave power or the spectral slope

were a better predictor of wakefulness or sleep (Figure 1—figure supplement 4, Figure 3a–c). We

utilized a leave-one-exemplar-out cross-validation approach that was repeated 50 times after ran-

domly sampling an equal number of sleep and REM trials to equate the number of samples (classify.

m, MATLAB and Statistics and Machine Learning Toolbox Release R2015a, MathWorks Inc, USA).

Then every sample of the subsampled distribution was held out of the training dataset once. The

LDA classifier was trained on the remaining samples and tested on the held-out test sample. The

classifier performance was then assessed as percent correct. Two of the 20 sleep EEG participants

had to be excluded due to insufficient number of wake trials. LDA performances were logit-trans-

formed (logit.m from the BioSig toolbox (Schlogl and Brunner, 2008) and averaged across channels

prior to statistical comparison.
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Multivariate General Linear Model
In order to model the unique contributions as well as the interaction between slow wave power

(<1.25 Hz) and spectral slope in the prediction of arousal states, we first scaled both parameters by

means of a z-score and then calculated a general linear model using the MATLAB fitlm.m function

(MATLAB and Statistics and Machine Learning Toolbox Release R2018b, MathWorks Inc, USA). This

method offered the possibility to model both the main effects as well as the interaction between the

two predictors (Figure 3d–f). Critically, we utilized an unbalanced design, which implicitly orthogon-

alizes the contribution of different factors and hence, distills non-overlapping unique explained vari-

ance (Siegel et al., 2015), which was subsequently quantified by means of the effect size (eta

squared).

Spectral slope estimation during a slow wave
Slow wave events (Figure 4, Figure 2—figure supplement 10) were detected for each channel

based on established algorithms (Helfrich et al., 2018; Staresina et al., 2015): The raw signal was

bandpass-filtered between 0.16 and 1.25 Hz and zero crossings were detected. Events were then

selected using a time (0.8 to 2 s duration) and an amplitude criterion (75% percentile). The raw data

were then epoched relative to the trough of the slow wave (±2.5 s). Time-frequency decomposition

was computed in 500 ms time windows with a 250 ms overlap using FieldTrip (Oostenveld et al.,

2011) (mtmfft, frequency smoothing of ±2 Hz and one dpss taper). The spectral slope was calculated

by the best line fit in these time windows in log-log space between 30 and45 Hz using polynomial

curve fitting (polyfit.m, MATLAB and Curve Fitting Toolbox Release R2015a, MathWorks Inc, USA).

Statistical testing
The spectral slope of the awake and anesthetized state was compared using Student’s t-test for

paired samples (Figure 1b,c). The observed t-values were then compared against a surrogate distri-

bution after re-calculating the test statistic 10,000 times with randomly shuffled labels (called permu-

tation t-test in the manuscript). Post hoc t-tests were Bonferroni-corrected for multiple comparisons.

To compare three states (awake, NREM and REM), we utilized Greenhouse-Geisser corrected 1-

way repeated measures analysis of variance (Figure 2b and c; RM-ANOVA). We adopted an

approach similar to the permutation t-test, where the original RM-ANOVA output was compared to

a shuffled distribution after randomly flipping condition labels 10,000 times (repeated-measures

ANOVA permutation test). Effect size was calculated using Cohen’s d.

To assess the spatial extent of the observed effects in EEG, we calculated cluster-based permuta-

tion tests to correct for multiple comparisons as implemented in FieldTrip (Oostenveld et al., 2011)

(Monte-Carlo method; maxsize criterion; 1000 iterations). A permutation distribution was obtained

by randomly shuffling condition labels and then compared to the actual distribution to obtain an

estimate of significance. Spatial clusters are formed by thresholding independent t-tests of slope dif-

ferences between wake and anesthesia (Figure 1b) or wake and sleep (Figure 2b) at a p value < 0.05.

All results were Bonferroni-corrected for multiple comparisons. In order to control for EMG as a

potential confound in the sleep EEG (Study 3), we utilized a partial correlation (Spearman) that parti-

alled the slope of the EMG out of the correlation before computing the cluster-based permutation

test (Figure 2—figure supplement 2b). Correlation coefficients (r-values) were transformed into

t-values using the following formula (N = number of subjects):

t¼
r � sqrt N� 2ð Þ

sqrt 1� r2ð Þ

For statistical assessment of the Mutual Information (MI), we employed surrogate testing

(Figure 2b, Figure 2—figure supplement 2a). To obtain a surrogate distribution from the observed

data, we utilized a random block swapping procedure (Aru et al., 2015; Canolty et al., 2006). The

number of repetitions was equal to the number of available sleep stages. On every iteration, we re-

calculated the MI of these block swapped hypnograms with the discretized time-resolved slope to

create a surrogate distribution against which we could compare our original observation. To com-

pare the results across subjects, we z-scored the values by subtracting the mean of the surrogate dis-

tribution from the observed MI and dividing by the standard deviation of the surrogate distribution.

Note that a z = 1.96 reflects an uncorrected two-tailed p-value of 0.05, while a z-score of >2.8
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indicates a Bonferroni-corrected significant p-value (p<0.05/19 channels=0.0026). The z-values were

transformed into p-values for topographic depiction (Figure 2b; Figure 2—figure supplement 2a)

based on a normal cumulative distribution function (two-tailed).

Connectivity
For the analysis of fronto-parietal connectivity (Figure 2—figure supplement 10), we choose elec-

trode Fz and Pz in our sleep EEG recordings (Study 3; n = 20) to calculate the magnitude squared

coherence from frequencies of 0.1 to 64 Hz in 0.1 Hz steps using the mscohere.m function from the

MATLAB Signal Processing Toolbox (Release R2015a, MathWorks, Inc, USA) as described previously

(Pal et al., 2016; Pal et al., 2015). Note that coherence estimates reflect both power changes as

well as changes in phase synchrony. Therefore, we also calculated the Phase-Locking Value (PLV)

and amplitude correlations (rho) to disentangle the effects of phase and power, respectively. To dis-

count the effects of volume spread, we calculated the imaginary PLV (Nolte et al., 2004) (iPLV) and

orthogonalized power correlations (Hipp et al., 2012) (rhoortho).

We then quantified the Mutual Information (MI; see above) to compare how well the results cap-

ture the changes between different sleep stages across the night (Quian Quiroga and Panzeri,

2009). For this analysis we only utilized the slope values of electrode Fz (as we were calculating the

other measures in Fz-Pz) and defined theta from 4 to 10 Hz analog to Pal et al., 2016; Pal et al.,

2015.
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Pereda E, Gamundi A, Rial R, González J. 1998. Non-linear behaviour of human EEG: fractal exponent versus
correlation dimension in awake and sleep stages. Neuroscience Letters 250:91–94. DOI: https://doi.org/10.
1016/S0304-3940(98)00435-2, PMID: 9697926

Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R. 2018.
Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nature
Neuroscience 21:903–919. DOI: https://doi.org/10.1038/s41593-018-0171-8, PMID: 29942039

Prerau MJ, Brown RE, Bianchi MT, Ellenbogen JM, Purdon PL. 2017. Sleep neurophysiological dynamics through
the Lens of multitaper spectral analysis. Physiology 32:60–92. DOI: https://doi.org/10.1152/physiol.00062.2015,
PMID: 27927806

Preston AR, Eichenbaum H. 2013. Interplay of Hippocampus and prefrontal cortex in memory. Current Biology
23:R764–R773. DOI: https://doi.org/10.1016/j.cub.2013.05.041

Pritchard WS. 1992. The brain in fractal time: 1/f-like power spectrum scaling of the human
electroencephalogram. International Journal of Neuroscience 66:119–129. DOI: https://doi.org/10.3109/
00207459208999796, PMID: 1304564

Purdon PL, Pierce ET, Mukamel EA, Prerau MJ, Walsh JL, Wong KF, Salazar-Gomez AF, Harrell PG, Sampson AL,
Cimenser A, Ching S, Kopell NJ, Tavares-Stoeckel C, Habeeb K, Merhar R, Brown EN. 2013.
Electroencephalogram signatures of loss and recovery of consciousness from propofol. PNAS 110:E1142–
E1151. DOI: https://doi.org/10.1073/pnas.1221180110, PMID: 23487781

Quian Quiroga R, Panzeri S. 2009. Extracting information from neuronal populations: information theory and
decoding approaches. Nature Reviews Neuroscience 10:173–185. DOI: https://doi.org/10.1038/nrn2578,
PMID: 19229240

Ray S, Maunsell JH. 2011. Different origins of gamma rhythm and high-gamma activity in macaque visual cortex.
PLOS Biology 9:e1000610. DOI: https://doi.org/10.1371/journal.pbio.1000610, PMID: 21532743

Robinson PA, Rennie CJ, Wright JJ, Bahramali H, Gordon E, Rowe DL. 2001. Prediction of
electroencephalographic spectra from neurophysiology. Physical Review E 63:021903. DOI: https://doi.org/10.
1103/PhysRevE.63.021903

Robinson PA, Phillips AJK, Fulcher BD, Puckeridge M, Roberts JA. 2011. Quantitative modelling of sleep
dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
369:3840–3854. DOI: https://doi.org/10.1098/rsta.2011.0120

Scammell TE, Arrigoni E, Lipton JO. 2017. Neural circuitry of wakefulness and sleep. Neuron 93:747–765.
DOI: https://doi.org/10.1016/j.neuron.2017.01.014, PMID: 28231463

Schlogl A, Brunner C. 2008. BioSig: a free and open source software library for BCI research. Computer 41:44–
50. DOI: https://doi.org/10.1109/MC.2008.407

Shen Y, Olbrich E, Achermann P, Meier PF. 2003. Dimensional complexity and spectral properties of the human
sleep EEG. Clinical Neurophysiology 114:199–209. DOI: https://doi.org/10.1016/S1388-2457(02)00338-3,
PMID: 12559226

Siclari F, Baird B, Perogamvros L, Bernardi G, LaRocque JJ, Riedner B, Boly M, Postle BR, Tononi G. 2017. The
neural correlates of dreaming. Nature Neuroscience 20:872–878. DOI: https://doi.org/10.1038/nn.4545,
PMID: 28394322

Siegel JM. 2011. REM sleep: A biological and psychological paradox. Sleep Medicine Reviews 15:139–142.
DOI: https://doi.org/10.1016/j.smrv.2011.01.001

Lendner et al. eLife 2020;9:e55092. DOI: https://doi.org/10.7554/eLife.55092 28 of 29

Research article Neuroscience

https://doi.org/10.1016/j.cub.2016.08.035
https://doi.org/10.1016/j.cub.2016.08.035
http://www.ncbi.nlm.nih.gov/pubmed/27693142
https://doi.org/10.1016/j.neuron.2011.02.043
http://www.ncbi.nlm.nih.gov/pubmed/21482364
https://doi.org/10.1016/j.clinph.2004.04.029
https://doi.org/10.1016/j.clinph.2004.04.029
http://www.ncbi.nlm.nih.gov/pubmed/15351371
https://doi.org/10.1155/2011/156869
http://www.ncbi.nlm.nih.gov/pubmed/21253357
https://doi.org/10.1093/bja/aev095
http://www.ncbi.nlm.nih.gov/pubmed/25951831
https://doi.org/10.1097/ALN.0000000000001342
https://doi.org/10.1097/ALN.0000000000001342
http://www.ncbi.nlm.nih.gov/pubmed/27617688
https://doi.org/10.1016/j.cub.2018.05.025
https://doi.org/10.1016/j.cub.2018.05.025
http://www.ncbi.nlm.nih.gov/pubmed/29937348
https://doi.org/10.1073/pnas.1216855110
http://www.ncbi.nlm.nih.gov/pubmed/23401536
https://doi.org/10.1038/s41593-018-0108-2
http://www.ncbi.nlm.nih.gov/pubmed/29507407
https://doi.org/10.1016/S0304-3940(98)00435-2
https://doi.org/10.1016/S0304-3940(98)00435-2
http://www.ncbi.nlm.nih.gov/pubmed/9697926
https://doi.org/10.1038/s41593-018-0171-8
http://www.ncbi.nlm.nih.gov/pubmed/29942039
https://doi.org/10.1152/physiol.00062.2015
http://www.ncbi.nlm.nih.gov/pubmed/27927806
https://doi.org/10.1016/j.cub.2013.05.041
https://doi.org/10.3109/00207459208999796
https://doi.org/10.3109/00207459208999796
http://www.ncbi.nlm.nih.gov/pubmed/1304564
https://doi.org/10.1073/pnas.1221180110
http://www.ncbi.nlm.nih.gov/pubmed/23487781
https://doi.org/10.1038/nrn2578
http://www.ncbi.nlm.nih.gov/pubmed/19229240
https://doi.org/10.1371/journal.pbio.1000610
http://www.ncbi.nlm.nih.gov/pubmed/21532743
https://doi.org/10.1103/PhysRevE.63.021903
https://doi.org/10.1103/PhysRevE.63.021903
https://doi.org/10.1098/rsta.2011.0120
https://doi.org/10.1016/j.neuron.2017.01.014
http://www.ncbi.nlm.nih.gov/pubmed/28231463
https://doi.org/10.1109/MC.2008.407
https://doi.org/10.1016/S1388-2457(02)00338-3
http://www.ncbi.nlm.nih.gov/pubmed/12559226
https://doi.org/10.1038/nn.4545
http://www.ncbi.nlm.nih.gov/pubmed/28394322
https://doi.org/10.1016/j.smrv.2011.01.001
https://doi.org/10.7554/eLife.55092


Siegel M, Buschman TJ, Miller EK. 2015. Cortical information flow during flexible sensorimotor decisions. Science
348:1352–1355. DOI: https://doi.org/10.1126/science.aab0551, PMID: 26089513

Staresina BP, Bergmann TO, Bonnefond M, van der Meij R, Jensen O, Deuker L, Elger CE, Axmacher N, Fell J.
2015. Hierarchical nesting of slow oscillations, spindles and ripples in the human hippocampus during sleep.
Nature Neuroscience 18:1679–1686. DOI: https://doi.org/10.1038/nn.4119

Stickgold R, Walker MP. 2013. Sleep-dependent memory triage: evolving generalization through selective
processing.Nature Neuroscience 16:139–145. DOI: https://doi.org/10.1038/nn.3303

Stolk A, Griffin S, van der Meij R, Dewar C, Saez I, Lin JJ, Piantoni G, Schoffelen J-M, Knight RT, Oostenveld R.
2018. Integrated analysis of anatomical and electrophysiological human intracranial data. Nature Protocols 13:
1699–1723. DOI: https://doi.org/10.1038/s41596-018-0009-6
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