
 Open access  Book Chapter  DOI:10.1007/978-3-642-21691-6_13

An elementary affine λ-calculus with multithreading and side effects
— Source link 

Antoine Madet, Roberto M. Amadio

Institutions: Paris Diderot University

Published on: 01 Jun 2011 - International Conference on Typed Lambda Calculi and Applications

Topics: Multithreading, Functional programming, Affine transformation, Linear logic and Lambda calculus

Related papers:

 Light linear logic

 Linear types and non-size-increasing polynomial time computation

 Soft linear logic and polynomial time

 Linear logic and elementary time

 A polytime functional language from light linear logic

Share this paper:    

View more about this paper here: https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-
3idksq1vl0

https://typeset.io/
https://www.doi.org/10.1007/978-3-642-21691-6_13
https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0
https://typeset.io/authors/antoine-madet-116q5c2da1
https://typeset.io/authors/roberto-m-amadio-1s0nl157z7
https://typeset.io/institutions/paris-diderot-university-13uqxj32
https://typeset.io/conferences/international-conference-on-typed-lambda-calculi-and-24rcutr2
https://typeset.io/topics/multithreading-1ucs9aoi
https://typeset.io/topics/functional-programming-22vhky10
https://typeset.io/topics/affine-transformation-1soc8sl1
https://typeset.io/topics/linear-logic-x23q52de
https://typeset.io/topics/lambda-calculus-1az83cm2
https://typeset.io/papers/light-linear-logic-3fwcym4ruj
https://typeset.io/papers/linear-types-and-non-size-increasing-polynomial-time-4kydpwqolk
https://typeset.io/papers/soft-linear-logic-and-polynomial-time-1d0pb2hhjy
https://typeset.io/papers/linear-logic-and-elementary-time-ec47uc9tjo
https://typeset.io/papers/a-polytime-functional-language-from-light-linear-logic-30bsq38q8i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0
https://twitter.com/intent/tweet?text=An%20elementary%20affine%20%CE%BB-calculus%20with%20multithreading%20and%20side%20effects&url=https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0
https://typeset.io/papers/an-elementary-affine-l-calculus-with-multithreading-and-side-3idksq1vl0


HAL Id: hal-00610012
https://hal.archives-ouvertes.fr/hal-00610012

Submitted on 26 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Elementary Affine λ-Calculus with Multithreading
and Side Effects

Antoine Madet, Roberto M. Amadio

To cite this version:
Antoine Madet, Roberto M. Amadio. An Elementary Affine λ-Calculus with Multithreading and Side
Effects. Typed Lambda Calculi and Applications 10th International Conference, Jun 2011, Novi Sad,
Serbia. pp.138-152, ฀10.1007/978-3-642-21691-6_13฀. ฀hal-00610012฀

https://hal.archives-ouvertes.fr/hal-00610012
https://hal.archives-ouvertes.fr


An Elementary Affine λ-calculus

with Multithreading and Side Effects⋆

Antoine Madet and Roberto M. Amadio

Laboratoire PPS, Université Paris Diderot
{madet,amadio}@pps.jussieu.fr

Abstract. Linear logic provides a framework to control the complex-
ity of higher-order functional programs. We present an extension of this
framework to programs with multithreading and side effects focusing on
the case of elementary time. Our main contributions are as follows. First,
we introduce a modal call-by-value λ-calculus with multithreading and
side effects. Second, we provide a combinatorial proof of termination in
elementary time for the language. Third, we introduce an elementary
affine type system that guarantees the standard subject reduction and
progress properties. Finally, we illustrate the programming of iterative
functions with side effects in the presented formalism.

Key words: Elementary Linear logic. Resource Bounds. Lambda Cal-
culus. Regions. Side Effects.

1 Introduction

There is a well explored framework based on Linear Logic to control the com-
plexity of higher-order functional programs. In particular, light logics [11,10,3]
have led to a polynomial light affine λ-calculus [14] and to various type systems
for the standard λ-calculus guaranteeing that a well-typed term has a bounded
complexity [9,8,5]. Recently, this framework has been extended to a higher-order
process calculus [12] and a functional language with recursive definitions [4]. In
another direction, the notion of stratified region [7,1] has been used to prove the
termination of higher-order multithreaded programs with side effects.

Our general goal is to extend the framework of light logics to a higher-order
functional language with multithreading and side effects by focusing on the case
of elementary time [10]. The key point is that termination does not rely anymore
on stratification but on the notion of depth which is standard in light logics.
Indeed, light logics suggest that complexity can be tamed through a fine analysis
of the way the depth of the occurrences of a λ-term can vary during reduction.

Our core functional calculus is a λ-calculus extended with a constructor ‘!’
(the modal operator of linear logic) marking duplicable terms and a related let !

⋆ Work partially supported by project ANR-08-BLANC-0211-01 “COMPLICE” and
the Future and Emerging Technologies (FET) programme within the Seventh Frame-
work Programme for Research of the European Commission, under FET-Open grant
number: 243881 (project CerCo).



destructor. The depth of an occurrence in a λ-term is the number of !′s that
must be crossed to reach the occurrence. In Section 2, following previous work
on an affine-intuitionistic system [2], we extend this functional core with parallel
composition and operations producing side effects on an ‘abstract’ notion of
state. In Section 3, we analyse the impact of side-effects operations on the depth
of the occurrences. Based on this analysis, we propose a formal system called
depth system that controls the depth of the occurrences and which is a variant of
a system proposed in [14]. In Section 4, we show that programs well-formed in
the depth system are guaranteed to terminate in elementary time. The proof is
based on an original combinatorial analysis of the depth system. In particular, as
a corollary of this analysis one can derive an elementary bound for the functional
fragment under an arbitrary reduction strategy ([10] assumes a specific reduction
strategy while [14] relies on a standardization theorem). In Section 5, we refine
the depth system with a second order (polymorphic) elementary affine type
system and show that the resulting system enjoys subject reduction and progress
(besides termination in elementary time). Finally, in Section 6, we discuss the
expressivity of the resulting type system. On the one hand we check that the
usual encoding of elementary functions goes through. On the other hand, and
more interestingly, we provide examples of iterative (multithreaded) programs
with side effects. The λ-calculi introduced are summarized in Table 1.1. For
each concurrent language there is a corresponding functional fragment and each
language (functional or concurrent) refines the one on its left hand side. The
elementary complexity bounds are obtained for the λ!

δ and λ!R
δ calculi while the

progress property and the expressivity results refer to their typed refinements
λ!
EA and λ!R

EA, respectively. Proofs are available in the technical report [13].

Functional λ! ⊃ λ!
δ ⊃ λ!

EA

∩

Concurrent λ!R ⊃ λ!R
δ ⊃ λ!R

EA

Table 1.1. Overview of the λ-calculi considered

2 A Modal λ-calculus with Multithreading and Regions

In this section we introduce a call-by-value modal λ-calculus endowed with par-
allel composition and operations to read and write regions. We call it λ!R. A
region is an abstraction of a set of dynamically generated values such as impera-
tive references or communication channels. We regard λ!R as an abstract, highly
non-deterministic language which entails complexity bounds for more concrete
languages featuring references or channels (we will give an example of such a
language in Section 6). To this end, it is enough to map the dynamically gen-
erated values to their respective regions and observe that the reductions in the



concrete languages are simulated in λ!R (see, e.g., [2]). The purely functional
fragment, called λ!, is very close to the light affine λ-calculus of Terui [14] where
the paragraph modality ‘§’ used for polynomial time is dropped and where the
‘!’ modality is relaxed as in elementary linear logic [10].

2.1 Syntax

The syntax of the language is described in Table 2.1. We have the usual set

x, y, . . . (Variables)
r, r′, . . . (Regions)
V ::= ∗ | r | x | λx.M | !V (Values)
M ::= V |MM | !M | let !x = M in M

set(r, V ) | get(r) | (M |M) (Terms)
S ::= (r ← V ) | (S | S) (Stores)
P ::= M | S | (P | P ) (Programs)
E ::= [ ] | EM | V E | !E | let !x = E in M (Evaluation Contexts)
C ::= [ ] | (C | P ) | (P | C) (Static Contexts)

Table 2.1. Syntax of programs: λ!R

of variable x, y, . . . and a set of regions r, r′, . . .. The set of values V contains
the unit constant ∗, variables, regions, λ-abstraction and modal values !V which
are marked with the bang operator ‘!’. The set of terms M contains values,
application, modal terms !M , a let ! operator, set(r, V ) to write the value V at
region r, get(r) to fetch a value from region r and (M | N) to evaluate M and
N in parallel. A store S is the composition of several stores (r ← V ) in parallel.
A program P is a combination of terms and stores. Evaluation contexts follow a
call-by-value discipline. Static contexts C are composed of parallel compositions.
Note that stores can only appear in a static context, thus M(M ′ | (r ← V )) is
not a legal term.

We define !0M = M , !n+1M = !(!nM), !n(P | P ) = (!nP | !nP ), and
!n(r ← V ) = (r ← V ). In the terms λx.M and let !x = N in M the occurrences
of x in M are bound. The set of free variables of M is denoted by FV(M). The
number of free occurrences of x in M is denoted by FO(x,M). M [V/x] denotes
the term M in which each free occurrence of x has been substituted by the value
V (we insist for substituting values because in general the language is not closed
under arbitrary substitutions). As usual, we abbreviate (λz.N)M with M ;N ,
where z is not free in N .

Each program has an abstract syntax tree as exemplified in Figure 1(a). A
path starting from the root to a node of the tree denotes an occurrence of the
program that is denoted by a word w ∈ {0, 1}∗ (see Figure 1(b)).



|

let !x

get(r) set(r)

!

x

r ←

!

λx

@

x ∗

(a)

ǫ

0

00 01

010

0100

1

10

100

1000

10000 10001

(b)

Fig. 2.1. Syntax tree and addresses of P = let !x = get(r) in set(r, !x) | (r ← !(λx.x∗))

P | P ′ ≡ P ′ | P (Commutativity)
(P | P ′) | P ′′ ≡ P | (P ′ | P ′′) (Associativity)

E[(λx.M)V ] → E[M [V/x]]
E[let !x = !V in M ] → E[M [V/x]]
E[set(r, V )] → E[∗] | (r ← V )
E[get(r)] | (r ← V ) → E[V ]
E[let !x = get(r) in M ] | (r ← !V ) → E[M [V/x]] | (r ← !V )

Table 2.2. Semantics of λ!R programs

2.2 Operational Semantics

The operational semantics of the language is described in Table 2.2. Programs
are considered up to a structural equivalence ≡ which is the least equivalence
relation preserved by static contexts, and which contains the equations for α-
renaming and for the commutativity and associativity of parallel composition.
The reduction rules apply modulo structural equivalence and in a static context
C. In the sequel,

∗
→ denotes the reflexive and transitive closure of →.

The let ! operator is ‘filtering’ modal terms and ‘destructs’ the bang of the
value !V after substitution. When writing to a region, values are accumulated
rather than overwritten (remember that λ!R is an abstract language that can
simulate more concrete ones where values relating to the same region are asso-
ciated with distinct addresses). On the other hand, reading a region amounts
to select non-deterministically one of the values associated with the region. We
distinguish two rules to read a region. The first consumes the value from the
store, like when reading a communication channel. The second copies the value
from the store, like when reading a reference. Note that in this case the value
read must be duplicable (of the shape !V ).

Example 1. Program P of Figure 2.1 reduces as follows:

P → set(r, !(λx.x∗)) | (r ← !(λx.x∗)) → ∗ | (r ← !(λx.x∗)) | (r ← !(λx.x∗))



3 Depth System

In this section, we analyse the interaction between the depth of the occurrences
and side effects. This leads to the definition of a depth system and the notion of
well-formed program. As a first step, we introduce a naive definition of depth.

Definition 1 (naive depth). The depth d(w) of an occurrence w is the number
of ! labels that the path leading to the end node crosses. The depth d(P ) of a
program P is the maximum depth of its occurrences.

With reference to Figure 2.1, d(0100) = d(100) = d(1000) = d(10000) =
d(10001) = 1, whereas other occurrences are at depth 0. In particular, occur-
rences 010 and 10 are at depth 0; what matters in computing the depth of an
occurrence is the number of !’s that precede strictly the end node. Thus d(P ) = 1.

By considering that deeper occurrences have less weight than shallow ones,
the usual proof of termination in elementary time [10] relies on the observation
that when reducing a redex at depth i the following holds:

(1) the depth of the term does not increase,
(2) the number of occurrences at depth j < i does not increase,
(3) the number of occurrences at depth i strictly decreases,
(4) the number of occurrences at depth j > i may be increased by a multi-

plicative factor k bounded by the number of occurrences at depth i+ 1.

If we consider the functional core of our language (i.e. by removing all oper-
ators dealing with regions, stores and multithreading), it is not difficult to check
that the properties above can be guaranteed by the following requirements: (1)
in λx.M , x may occur at most once in M and at depth 0, (2) in let !x = M in N ,
x may occur arbitrarily many times in N and at depth 1.

However, we observe that side effects may increase the depth or generate
occurrences at lower depth than the current redex, which violates Property (1)
and (2) respectively. Then to find a suitable notion of depth, it is instructive to
consider the following program examples where Mr = let !z = get(r) in !(z∗).

(A) E[set(r, !V )] (B) λx.set(r, x); !get(r)
(C) !(Mr) | (r ← !(λy.Mr′)) | (r

′ ← !(λy.∗)) (D) !(Mr) | (r ← !(λy.Mr))

(A) Suppose the occurrence set(r, !V ) is at depth δ > 0 in E. Then when evaluat-
ing such a term we always end up in a program of the shape E[∗] | (r ← !V )
where the occurrence !V , previously at depth δ, now appears at depth 0.
This contradicts Property (2).

(B) If we apply this program to V we obtain !V , hence Property (1) is violated
because from a program of depth 0, we reduce to a program of depth 1. We
remark that this is because the read and write operations do not execute at
the same depth.



(C) According to our definition, this program has depth 2, however when we
reduce it we obtain a term !3∗ which has depth 3, hence Property (1) is
violated. This is because the occurrence λy.Mr′ originally at depth 1 in the
store, ends up at depth 2 in the place of z applied to ∗.

(D) If we accept circular stores, we can even write diverging programs whose
depth is increased by 1 every two reduction steps.

Given these remarks, the rest of this section is devoted to a revised notion of
depth and to a related set of inference rules called depth system. Every program
which is valid in the depth system will terminate in elementary time. First, we
introduce the following contexts:

Γ = x1 : δ1, . . . , xn : δn R = r1 : δ1, . . . , rn : δn

where δi is a natural number. We write dom(Γ ) and dom(R) for the sets {x1, . . . , xn}
and {r1, . . . , rn} respectively. We write R(ri) for the depth δi associated with ri
in the context R. Then, we revisit the notion of depth as follows.

Definition 2 (revised depth). Let P be a program, R a region context where
dom(R) contains all the regions of P and dn(w) the naive depth of an occurrence
w of P . If w does not appear under an occurrence r ← (a store), then the revised
depth dr(w) of w is dn(w). Otherwise, dr(w) is R(r)+ dn(w). The revised depth
dr(P ) of the program is the maximum revised depth of its occurrences.

Note that the revised depth is relative to a fixed region context. In the sequel we
write d( ) for dr( ). On functional terms, this notion of depth is equivalent to the
one given in Definition 1. However, if we consider the program of Figure 2.1, we
now have d(10) = R(r) and d(100) = d(1000) = d(10000) = d(10001) = R(r)+1.

A judgement in the depth system has the shape R;Γ ⊢δ P and it should
be interpreted as follows: the free variables of !δP may only occur at the depth
specified by the context Γ , where depths are computed according to R. The
inference rules of the depth system are presented in Table 3.1. We comment
on the rules. The variable rule says that the current depth of a free variable
is specified by the context. A region and the constant ∗ may appear at any
depth. The λ-abstraction rule requires that the occurrence of x in M is at the
same depth as the formal parameter; moreover it occurs at most once so that no
duplication is possible at the current depth (Property (3)). The application rule
says that we may only apply a term to another one if they are at the same depth.
The let ! rule requires that the bound occurrences of x are one level deeper than
the current depth; note that there is no restriction on the number of occurrences
of x since duplication would happen one level deeper than the current depth. The
bang rule is better explained in a bottom-up way: crossing a modal occurrence
increases the current depth by one. The key cases are those of read and write:
the depth of these two operations is specified by the region context. The current
depth of a store is always 0, however, the depth of the value in the store is
specified by R (note that it corresponds to the revised definition of depth). We
remark that R is constant in a judgement derivation.



R;Γ, x : δ ⊢δ x R;Γ ⊢δ r R;Γ ⊢δ ∗

FO(x,M) ≤ 1 R;Γ, x : δ ⊢δ M

R;Γ ⊢δ λx.M

R;Γ ⊢δ Mi i = 1, 2

R;Γ ⊢δ M1M2

R;Γ ⊢δ+1 M

R;Γ ⊢δ !M

R;Γ ⊢δ M1 R;Γ, x : (δ + 1) ⊢δ M2

R;Γ ⊢δ let !x = M1 in M2

R, r : δ;Γ ⊢δ get(r)

R, r : δ;Γ ⊢δ V

R, r : δ;Γ ⊢δ set(r, V )

R, r : δ;Γ ⊢δ V

R, r : δ;Γ ⊢0 (r ← V )

R;Γ ⊢δ Pi i = 1, 2

R;Γ ⊢δ (P1 | P2)

Table 3.1. Depth system for programs: λ!R
δ

Definition 3 (well-formedness). A program P is well-formed if for some R,
Γ , δ a judgement R;Γ ⊢δ P can be derived.

Example 2. The program of Figure 2.1 is well-formed with the following deriva-
tion where R(r) = 0:

R;Γ ⊢0 get(r)

R;Γ, x : 1 ⊢1 x

R;Γ, x : 1 ⊢0 !x

R;Γ, x : 1 ⊢0 set(r, !x)

R;Γ ⊢0 let !x = get(r) in set(r, !x)

...

R;Γ ⊢0 (r ← !(λx.x∗))

R;Γ ⊢0 let !x = get(r) in set(r, !x) | (r ← !(λx.x∗))

On the other hand, the following term is not well-formed: P = λx.let !y =
x in !(y!(yz)). Indeed, the second occurrence of y in !(y!(yz)) is one level too
deep, hence reduction may increase the depth by one. For example, P !!V of
depth 2 reduces to !(!V !(!V )z) of depth 3.

We reconsider the troublesome programs with side effects. Program (A) is
well-formed with judgement (i):

R;Γ ⊢0 E[set(r, !V )] with R = r : δ (i)
R;Γ ⊢0 !Mr | (r ← !(λy.Mr′)) | (r

′ ← !(λy.∗)) with R = r : 1, r′ : 2 (ii)

Indeed, the occurrence !V is now preserved at depth δ in the store. Program (B)
is not well-formed since the read operation requires R(r) = 1 and the write
operations require R(r) = 0. Program (C) is well-formed with judgement (ii);
indeed its depth does not increase anymore because !Mr has depth 2 but since
R(r) = 1 and R(r′) = 2, (r ← !(λy.Mr′)) has depth 3 and (r′ ← !(λy.∗)) has
depth 2. Hence program (C) has already depth 3. Finally, it is worth noticing
that the diverging program (D) is not well-formed since get(r) appears at depth
1 in !Mr and at depth 2 in the store.



Theorem 1 (properties on the depth system). The following properties
hold:

1. If R;Γ ⊢δ M and x occurs free in M then x : δ′ belongs to Γ and all
occurrences of x in !δM are at depth δ′.

2. If R;Γ ⊢δ P then R;Γ, Γ ′ ⊢δ P .

3. If R;Γ, x : δ′ ⊢δ M and R;Γ ⊢δ
′

V then R;Γ ⊢δ M [V/x] and
d(!δM [V/x]) ≤ max (d(!δM), d(!δ

′

V )).

4. If R;Γ ⊢0 P and P → P ′ then R;Γ ⊢0 P ′ and d(P ) ≥ d(P ′).

4 Elementary Bound

In this section, we prove that well-formed programs terminate in elementary
time. To this end, we define a measure on programs based on the number of
occurrences at each depth.

Definition 4 (measure). Given a program P and 0 ≤ i ≤ d(M), let ωi(P ) be
the number of occurrences in P of depth i increased by 2 (so ωi(P ) ≥ 2). We
define µi

n(P ) for n ≥ i ≥ 0 as follows:

µi
n(P ) = (ωn(P ), . . . , ωi+1(P ), ωi(P ))

We write µn(P ) for µ0
n(P ). We order the vectors of n+ 1 natural number with

the (well-founded) lexicographic order > from right to left.

To simplify the proofs of the following properties, we assume the occurrences
labelled with | and r ← do not count in the measure and that set(r) counts for two
occurrences, such that the measure strictly decreases on the rule E[set(r, V )]→
E[∗] | (r ← V ).

Following this assumption, we derive a termination property by observing
that the measure strictly decreases during reduction.

Proposition 1 (termination). If P is well-formed, P → P ′ and n ≥ d(P )
then µn(P ) > µn(P

′).

Proof. By a case analysis on the reduction rules. The crucial cases are those that
increase the number of occurrences, namely both let ! reductions: the one that is
functional and the one that copies from the store. Thanks to the design of our
depth system, we observe that both rules generate duplication of occurrences in
the same way, hence we may only consider the functional case as an illustration
where P = E[let !x =!V in M ]→ P ′ = E[M [V/x]].

Let the occurrence of the redex let !x =!V inM be at depth i. The restrictions
on the formation of terms require that x may only occur in M at depth 1 and
hence in P at depth i + 1. We have that ωi(P

′) = ωi(P ) − 2 because the let !
node disappears. Clearly, ωj(P ) = ωj(P

′) if j < i. The number of occurrences of
x in M is bounded by k = ωi+1(P ) ≥ 2. Thus if j > i then ωj(P

′) ≤ k · ωj(P ).



Let’s write, for 0 ≤ i ≤ n, µi
n(P ) · k = (ωn(P ) · k, ωn−1(P ) · k, . . . , ωi(P ) · k).

Then we have:

µn(P
′) ≤ (µi+1

n (P ) · k, ωi(P )− 2, µi−1(P )) (4.1)

and finally µn(P ) > µn(P
′).

We now want to show that termination is actually in elementary time. We
recall that a function f on integers is elementary if there exists a k such that for
any n, f(n) can be computed in time O(t(n, k)) where:

t(n, 0) = 2n, t(n, k + 1) = 2t(n,k) .

Definition 5 (tower functions). We define a family of tower functions
tα(x1, . . . , xn) by induction on n where we assume α ≥ 1 and xi ≥ 2:

tα() = 0

tα(x1, x2, . . . , xn) = (α · x1)
2tα(x2,...,xn)

n ≥ 1

Then we need to prove the following crucial lemma.

Lemma 1 (shift). Assuming α ≥ 1 and β ≥ 2, the following property holds for
the tower functions with x,x ranging over numbers greater or equal to 2:

tα(β · x, x
′,x) ≤ tα(x, β · x

′,x)

Now, by a closer look at the shape of the lexicographic ordering during re-
duction, we are able to compose the decreasing measure with a tower function.

Theorem 2 (elementary bound). Let P be a well-formed program with α =
d(P ) and let tα denote the tower function with α+1 arguments. Then if P → P ′

then tα(µα(P )) > tα(µα(P
′)).

Proof. We exemplify the proof for α = 2 and the crucial case where

P = let !x = !V in M → P ′ = M [V/x]

Let µ2(P ) = (x, y, z) such that x = ω2(P ), y = ω1(P ) and z = ω0(P ). We want
to show that: t2(µ2(P

′)) < t2(µ2(P )). We have:

t2(µ2(P
′)) ≤ t2(x · y, y · y, z − 2) by inequality (4.1)
≤ t2(x, y

3, z − 2) by Lemma 1

Hence we are left to show that: t2(y
3, z−2) < t2(y, z), i.e. , (2y

3)2
2(z−2)

< (2y)2
2z

.

We have: (2y3)2
2(z−2)

≤ (2y)3·2
2(z−2)

. Thus we need to show: 3 · 22(z−2) < 22z

which is true. Hence t2(µ2(P
′)) < t2(µ2(P )).

This shows that the number of reduction steps of a program P is bounded
by an elementary function where the height of the tower only depends on d(P ).

We also note that if P
∗
→ P ′ then tα(µα(P )) bounds the size of P ′. Thus we can

conclude with the following corollary.

Corollary 1. The normalisation of programs of bounded depth can be performed
in time elementary in the size of the terms.

We remark that if P is a purely functional term then the elementary bound
holds under an arbitrary reduction strategy.



5 An Elementary Affine Type System

The depth system entails termination in elementary time but does not guarantee
that programs ‘do not go wrong’. In particular, the introduction and elimination
of bangs during evaluation may generate programs that deadlock, e.g.,

let !y = (λx.x) in !(yy) (5.1)

is well-formed but the evaluation is stuck. In this section we introduce an elemen-
tary affine type system (λ!R

EA) that guarantees that programs cannot deadlock
(except when trying to read an empty store).

The upper part of Table 5.1 introduces the syntax of types and contexts.
Types are denoted with α, α′, . . .. Note that we distinguish a special behaviour

t, t′, . . . (Type variables)
α ::= B | A (Types)
A ::= t | 1 | A ⊸ α | !A | ∀t.A | Reg

r
A (Value-types)

Γ ::= x1 : (δ1, A1), . . . , xn : (δn, An) (Variable contexts)
R ::= r1 : (δ1, A1), . . . , rn : (δn, An) (Region contexts)

R ↓ t R ↓ 1 R ↓ B

R ↓ A R ↓ α

R ↓ (A ⊸ α)

R ↓ A

R ↓ !A

r : (δ,A) ∈ R

R ↓ Reg
r
A

R ↓ A t /∈ R

R ↓ ∀t.A

∀r : (δ,A) ∈ R R ↓ A

R ⊢

R ⊢ R ↓ α

R ⊢ α

∀x : (δ,A) ∈ Γ R ⊢ A

R ⊢ Γ

Table 5.1. Types and contexts

type B which is given to the entities of the language which are not supposed to
return a value (such as a store or several terms in parallel) while types of entities
that may return a value are denoted with A. Among the types A, we distinguish
type variables t, t′, . . ., a terminal type 1, an affine functional type A ⊸ α, the
type !A of terms of type A that can be duplicated, the type ∀t.A of polymorphic
terms and the type Reg

r
A of the region r containing values of type A. Hereby

types may depend on regions.
In contexts, natural numbers δi play the same role as in the depth system.

Writing x : (δ, A) means that the variable x ranges on values of type A and
may occur at depth δ. Writing r : (δ, A) means that addresses related to region
r contain values of type A and that read and writes on r may only happen at
depth δ. The typing system will additionally guarantee that whenever we use a
type Reg

r
A the region context contains an hypothesis r : (δ, A).



Because types depend on regions, we have to be careful in stating in Table 5.1
when a region-context and a type are compatible (R ↓ α), when a region context
is well-formed (R ⊢), when a type is well-formed in a region context (R ⊢ α)
and when a context is well-formed in a region context (R ⊢ Γ ). A more informal
way to express the condition is to say that a judgement r1 : (δ1, A1), . . . , rn :
(δn, An) ⊢ α is well formed provided that: (1) all the region names occurring in
the types A1, . . . , An, α belong to the set {r1, . . . , rn}, (2) all types of the shape
Reg

ri
B with i ∈ {1, . . . , n} and occurring in the types A1, . . . , An, α are such

that B = Ai. We notice the following substitution property on types.

Proposition 2. If R ⊢ ∀t.A and R ⊢ B then R ⊢ A[B/t].

Example 3. One may verify that r : (δ,1 ⊸ 1) ⊢ Reg
r
(1 ⊸ 1) can be derived

while the following judgements cannot: r : (δ,1) ⊢ Reg
r
(1 ⊸ 1), r : (δ,Reg

r
1) ⊢

1.

A typing judgement takes the form: R;Γ ⊢δ P : α. It attributes a type
α to the program P at depth δ, in the region context R and the context Γ .
Table 5.2 introduces an elementary affine type system with regions. One can see

R ⊢ Γ x : (δ,A) ∈ Γ

R;Γ ⊢δ x : A

R ⊢ Γ

R;Γ ⊢δ ∗ : 1

R ⊢ Γ r : (δ′, A) ∈ R

R;Γ ⊢δ r : Reg
r
A

FO(x,M) ≤ 1
R;Γ, x : (δ,A) ⊢δ M : α

R;Γ ⊢δ λx.M : A ⊸ α

R;Γ ⊢δ M : A ⊸ α R;Γ ⊢δ N : A

R;Γ ⊢δ MN : α

R;Γ ⊢δ+1 M : A

R;Γ ⊢δ !M : !A

R;Γ ⊢δ M : !A R;Γ, x : (δ + 1, A) ⊢δ N : B

R;Γ ⊢δ let !x = M in N : B

R;Γ ⊢δ M : A t /∈ (R;Γ )

R;Γ ⊢δ M : ∀t.A

R;Γ ⊢δ M : ∀t.A R ⊢ B

R;Γ ⊢δ M : A[B/t]

r : (δ,A) ∈ R R ⊢ Γ

R;Γ ⊢δ get(r) : A

r : (δ,A) ∈ R
R;Γ ⊢δ V : A

R;Γ ⊢δ set(r, V ) : 1

r : (δ,A) ∈ R
R;Γ ⊢δ V : A

R;Γ ⊢0 (r ← V ) : B

R;Γ ⊢δ P : α R;Γ ⊢δ S : B

R;Γ ⊢δ (P | S) : α

Pi not a store i = 1, 2 R;Γ ⊢δ Pi : αi

R;Γ ⊢δ (P1 | P2) : B

Table 5.2. An elementary affine type system: λ!R
EA

that the δ’s are treated as in the depth system. Note that a region r may occur
at any depth. In the let ! rule, M should be of type !A since x of type A appears



one level deeper. A program in parallel with a store should have the type of
the program since we might be interested in the value the program reduces to;
however, two programs in parallel cannot reduce to a single value, hence we
give them a behaviour type. The polymorphic rules are straightforward where
t /∈ (R;Γ ) means t does not occur free in a type of R or Γ .

Example 4. The well-formed program (C) can be given the following typing
judgement: R; ⊢0 !(Mr) | (r ← !(λy.Mr′)) | (r′ ← !(λy.∗)) : !!1 where: R =
r : (1, !(1 ⊸ 1)), r′ : (2, !(1 ⊸ 1)). Also, we remark that the deadlocking
program (5.1) admits no typing derivation.

Theorem 3 (subject reduction and progress). The following properties
hold.

1. (Well-formedness) Well-typed programs are well-formed.
2. (Weakening) If R;Γ ⊢ P : α and R ⊢δ Γ, Γ ′ then R;Γ, Γ ′ ⊢δ P : α.
3. (Substitution) If R;Γ, x : (δ′, A) ⊢δ M : α and R;Γ ′ ⊢δ

′

V : A and R ⊢ Γ, Γ ′

then R;Γ, Γ ′ ⊢δ M [V/x] : α.
4. (Subject Reduction) If R;Γ ⊢δ P : α and P → P ′ then R;Γ ⊢δ P ′ : α.
5. (Progress) Suppose P is a closed typable program which cannot reduce. Then

P is structurally equivalent to a program

M1 | · · · |Mm | S1 | · · · | Sn m,n ≥ 0

where Mi is either a value or can be decomposed as a term E[get(r)] such
that no value is associated with the region r in the stores S1, . . . , Sn.

6 Expressivity

In this section, we consider two results that illustrate the expressivity of the
elementary affine type system. First we show that all elementary functions can
be represented and second we develop an example of iterative program with side
effects.

Completeness The representation result just relies on the functional core of the
language λ!

EA. Building on the standard concept of Church numeral, Table 6.1
provides a representation for natural numbers and the multiplication function.
We denote with N the set of natural numbers. The precise notion of represen-
tation is spelled out in the following definitions where by strong β-reduction we
mean that reduction under λ’s is allowed.

Definition 6 (number representation). Let ∅ ⊢δ M : N. We say M repre-

sents n ∈ N, written M 
 n, if, by using a strong β-reduction relation, M
∗
→ n.

Definition 7 (function representation). Let ∅ ⊢δ F : (N1 ⊸ . . . ⊸ Nk) ⊸
!pN where p ≥ 0 and f : Nk → N. We say F represents f , written F 
 f , if
for all Mi and ni ∈ N where 1 ≤ i ≤ k such that ∅ ⊢δ Mi : N and Mi 
 ni,
FM1 . . .Mk 
 f(n1, . . . , nk).



N = ∀t.!(t ⊸ t) ⊸ !(t ⊸ t) (type of numerals)

n : N (numerals)
n = λf.let !f = f in !(λx.f(· · · (fx) · · · ))

mult : N ⊸ (N ⊸ N) (multiplication)
mult = λn.λm.λf.let !f = f in n(m!f)

Table 6.1. Representation of natural numbers and the multiplication function

Elementary functions are characterized as the smallest class of functions con-
taining zero, successor, projection, subtraction and which is closed by compo-
sition and bounded summation/product. These functions can be represented in
the sense of Definition 7 by adapting the proofs from Danos and Joinet [10].

Theorem 4 (completeness). Every elementary function is representable in
λ!
EA.

Iteration with Side Effects We rely on a slightly modified language where
reads, writes and stores relate to concrete addresses rather than to abstract
regions. In particular, we introduce terms of the form νx M to generate a fresh
address name x whose scope is M . One can then write the following program:

νx ((λy.set(y, V ))x)
∗
→ νx ∗ | (x← V )

where x and y relate to a region r, i.e. they are of type RegrA. Our type system
can be easily adapted by associating region types with the address names. Next
we show that it is possible to program the iteration of operations producing a
side effect on an inductive data structure. Specifically, in the following we show
how to iterate, possibly in parallel, an update operation on a list of addresses of
the store. The examples have been tested on a running implementation of the
language.

Following Church encodings, we define the representation of lists and the
associated iterator in Table 6.2. Here is the function multiplying the numeral

List A = ∀t.!(A ⊸ t ⊸ t) ⊸ !(t ⊸ t) (type of lists)

[u1, . . . , un] : List A (list represent.)
[u1, . . . , un] = λf.let !f = f in !(λx.fu1(fu2 . . . (funx))

list it : ∀u.∀t.!(u ⊸ t ⊸ t) ⊸ List u ⊸ !t ⊸ !t (iterator on lists)
list it = λf.λl.λz.let !z = z in let !y = lf in !(yz)

Table 6.2. Representation of lists



pointed by an address at region r:

update : !Reg
r
N ⊸ !1 ⊸ !1

update = λx.let !x = x in λz.!((λy.set(x, y))(mult 2 get(x)))

Consider the following list of addresses and stores:

[!x, !y, !z] | (x← m) | (y ← n) | (z ← p)

Note that the bang constructors are needed to match the type !RegrN of the
argument of update. Then we define the iteration as:

run : !!1 run = list it !update [!x, !y, !z] !!∗

Notice that it is well-typed with R = r : (2,N) since both the read and the
write appear at depth 2. Finally, the program reduces by updating the store as
expected:

run | (x← m) | (y ← n) | (z ← p)
∗

→ !!1 | (x← 2m) | (y ← 2n) | (z ← 2p)

Building on this example, suppose we want to write a program with three
concurrent threads where each thread multiplies by 2 the memory cells pointed
by a list. Here is a function waiting to apply a functional f to a value x in three
concurrent threads:

gen threads : ∀t.∀t′.!(t ⊸ t′) ⊸ !t ⊸ B

gen threads = λf.let !f = f in λx.let !x = x in !(fx) | !(fx) | !(fx)

We define the functional F as run but parametric in the list:

F : List !RegrN ⊸ !!1 F = λl.list it !update l !!∗

And the final term is simply:

run threads : B run threads = gen threads !F ![!x, !y, !z]

where R = r : (3, !N). Our program then reduces as follows:

run threads | (x← m) | (y ← n) | (z ← p)
∗

→ !!!1 | !!!1 | !!!1 | (x← 8m) | (y ← 8n) | (z ← 8p)

Note that different thread interleavings are possible but in this particular case
the reduction is confluent.

7 Conclusion

We have introduced a type system for a higher-order functional language with
multithreading and side effects that guarantees termination in elementary time
thus providing a significant extension of previous work that had focused on
purely functional programs.

In the proposed approach, the depth system plays a key role and allows for a
relatively simple presentation. In particular we notice that we can dispense with
the notion of stratified region that arises in recent work on the termination of



higher-order programs with side effects [1,7]. Hence, it becomes possible to type
circular stores in λ!R

EA like e.g. (r ← λx.set(r, x); get(r)) whereas the stratification
condition precludes them. Note that this store is going to be consumed when
r is read. However, concerning duplicable stores (i.e. of the shape (r ← !V )),
the value V is implicitely stratified by the difference of depth between V and
r. We note that we can also dispense with the distinction between affine and
intuitionistic hypotheses [6,2].

As a future work, we would like to adapt our approach to polynomial time.
In another direction, one could ask if it is possible to program in a simplified
language without bangs and then try to infer types or depths.

Acknowledgements We would like to thank Patrick Baillot for numerous help-
ful discussions and a careful reading on a draft version of this paper, plus the
anonymous referees for their feedbacks.

References

1. R. M. Amadio. On stratified regions. In APLAS’09, volume 5904 of LNCS, pages
210–225. Springer, 2009.

2. R. M. Amadio, P. Baillot, and A. Madet. An affine-intuitionistic system of types
and effects: confluence and termination. Technical report, Laboratoire PPS, 2009.
http://hal.archives-ouvertes.fr/hal-00438101/.

3. A. Asperti and L. Roversi. Intuitionistic light affine logic. ACM Trans. Comput.

Log., 3(1):137–175, 2002.
4. P. Baillot, M. Gaboardi, and V. Mogbil. A polytime functional language from light

linear logic. In ESOP’10, volume 6012 of LNCS, pages 104–124. Springer, 2010.
5. P. Baillot and K. Terui. A feasible algorithm for typing in elementary affine logic.

In TLCA’05, volume 3461 of LNCS, pages 55–70. Springer, 2005.
6. A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347,

The Laboratory for Foundations of Computer Science, University of Edinburgh,
1996.

7. G. Boudol. Typing termination in a higher-order concurrent imperative language.
Inf. Comput., 208(6):716–736, 2010.

8. P. Coppola, U. Dal Lago, and S. Ronchi Della Rocca. Light logics and the call-by-
value lambda calculus. Logical Methods in Computer Science, 4(4), 2008.

9. P. Coppola and S. Martini. Optimizing optimal reduction: A type inference algo-
rithm for elementary affine logic. ACM Trans. Comput. Log., 7:219–260, 2006.

10. V. Danos and J.-B. Joinet. Linear logic and elementary time. Inf. Comput.,
183(1):123 – 137, 2003.

11. J.-Y. Girard. Light linear logic. Inf. Comput., 143(2):175–204, 1998.
12. U. D. Lago, S. Martini, and D. Sangiorgi. Light logics and higher-order processes.

In EXPRESS’10, volume 41 of EPTCS, pages 46–60, 2010.
13. A. Madet and R. M. Amadio. Elementary affine λ-calculus with multithread-

ing and side effects. Technical report, Laboratoire PPS, 2011. http://hal.

archives-ouvertes.fr/hal-00569095/.
14. K. Terui. Light affine lambda calculus and polynomial time strong normalization.

Archive for Mathematical Logic, 46(3-4):253–280, 2007.




