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AN ELEMENTARY APPROACH TO THE MULTIPLICITY 
THEORY OF MULTIPLICATION OPERATORS 

THOMAS L. KRIETE, III 

1. Introduction. The spectral theory of normal operators comprises one 
of the prettier and more complete chapters in the literature of operators 
on Hilbert space. The high point of this development is the multiplicity 
theory, due in original form to Hellinger and subsequently cast in the 
language of Lebesgue integration by Hahn [18], which answers for normal 
operators one of the favorite questions of any mathematician: how do you 
tell when two of these objects are "the same", that is, equivalent in the 
appropriate sense. 

Present day multiplicity theory comes in several levels of abstraction, 
generality and sophistication through the efforts of a number of mathe­
maticians; see [7, 10, 11, 12, 16] and the further references there. The 
most straightforward approach to the separable theory can easily make 
make an appearance (and often does) in a first graduate course in func­
tional analysis and operator theory, say just after the spectral theorem. 
The kind of treatment I have in mind can be found in an eminently read­
able book by Conway [9]. Of course, every good theory deserves some 
meaty but accestible examples, and there's the rub, pedagogically speak­
ing: the multiplicity theory of concrete normal operators is often either 
trivial or quite hard to compute. The class of examples that surely comes 
first to mind, multiplication operators on L2 spaces, was worked out only 
relatively recently [2]; the treatment given there uses in a crucial way one 
first of the more highbrow versions of multiplicity theory (direct integrals, 
replete with measurable fields of Hilbert spaces) plus a theorem on dis­
integration of measures. It is the purpose of this note to present a straight­
forward, rather bare-hands calculation of the spectral multiplicity func­
tion of a multiplication operator on L2(0, 1) which is compatible with the 
more elementary general theory and which, I hope, will be accessible to 
students seeing these ideas for the first time. The train of thought here 
has also been used by the author [15] and Ball [5] to analyze more com­
plicated operators. 
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The work of Hellinger and Hahn actually treated self-adjoint operators 
(A* = A), though the same ideas, with a little modification, work for the 
larger class of normal operators. The reader who feels more comfortable 
with the smaller class should not hesitate to substitute "self-adjoint" for 
"normal" throughout this paper; in this case the measures E, v and vx,y 

appearing below are supported on the real line rather than on the complex 
plane. 

2. Multiplicity theory for normal operators. Let us deal only with Hilbert 
spaces that are complex and separable and operators defined on them that 
are linear and bounded. Two operators A± and A2, acting respectively on 
Hilbert spaces K± and K2, are unitarily equivalent if there is a unitary 
operator U from K\ to K2 satisfying A2 = UAiU~l. For an operator 
theorist unitary equivalence is the appropriate version of being "the 
same", for unitary operators preserve all Hilbert space structure. 

Multiplicity theory gives a beautiful solution to the problem of unitary 
equivalence for the class of operators A which are normal, that is for 
which A A* = A*A. The first major fact about normal operators is the 
spectral theorem, which asserts the existence of a spectral measure E for 
A, defined on Borei sets of the complex plane, such that 

A = [xdE{X)\ 

see [12, 13]. The spectrum a(A) of A is precisely the closed support of E. 
Given the spectral theorem, the solution to the unitary equivalence prob­
lem comes in two pieces; they both involve what appears to be a special 
kind of normal operator which we now consider. 

Let /fTO denote the Hilbert space of all infinite complex sequences c = 
(ci, c2, . . .) with 

oo 

Lk/|2<oo; 

the norm ||c|| is the square root of this series. Let v be a finite Borei 
measure with compact support in the complex plane C (henceforth called 
simply a measure). We denote by L2(v, H^) the collection of all functions 
/ : C -• Hœ (so that f(X) = (/i(A), f2(X), • • •) for each X) such that each 
component function fj is Borei measurable and such that 

J ii/wii2 *<«<«>. 

Just as with the scalar space L2(v), we identify two elements in L2(v>, //TO) 
which agree v-a.e. With this understanding we can make L2(v, ifTO) into 
a Hilbert space with inner product 
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<f,g> = $<AX),g(X)>di>(X). 

For each i = 1, 2, 3, . . . let Ht be the subspace of H^ consisting of all 
sequences c with ck = 0 whenever k > i. Let « be a Borei function on C 
with values in {1, 2, 3, • • •} U {°°}; we call such a n « a multiplicity 
function. Let Q) denote the subspace of L2{v, H^) consisting of all / with 
f(X)£H„a) y-a.e. We are interested in the normal operator M on the 
Hilbert space Q) given by (Mf) (X) = Af(X)9fe @. We will say that Q) and 
M are associated with the pair (v, n). The first part of the Hellinger-Hahn 
solution is provided by the following theorem; see Theorem 9.18 and the 
succeeding remarks in [9]. 

REPRESENTATION THEOREM. If A is a normal operator, there exists a 
measure v and a multiplicity function n such that the associated operator M 
is unitarily equivalent to A. 

The main reason that this is so interesting is the second piece of the 
puzzle; see Corollary 9.12b in [9]. 

INVARIANCE THEOREM. Suppose that v\ and v2 are measures and that 
«! and n2 are multiplicity functions. Let Mx and M2 be associated with 
(vi, #i) and (\>2> nò respectively. Then M\ and M2 are unitarily equivalent if 
and only ifv\ and v2 have the same null sets and n\ — n2 V\ (or v2)-a.e. 

Given a normal operator A acting on the Hilbert space K, the repre­
sentation theorem produces v and n; the invariance theorem tells us that 
these two objects contain all the information about A that we could want. 
The customary terminology is that v is a scalar spectral measure and n 
is a multiplicity function for A. 

From the representation theorem we know there is a unitary operator 
U: K -* <3 with UAU~l = M. One easily sees that for each Borei set 
G, UE(G)U~1 is equal to MG, the operator on <@ of multiplication by 
3CG, the characteristic function of G. From this it is clear that E and v 
have the same null sets; by the invariance theorem this requirement pre­
cisely describes, in terms of E, the possible scalar spectral measures for A. 

How do we find nl We present a simple general principle for doing so. 
First observe that it is enough to determine n(X) v-a.e. on a(A) since C\ 
a(A) has v-measure zero. Let y be a countable spanning subset of K. 
Clearly {Ux\ x e &>} spans @. 

LEMMA 1. For valmost every A, {(Ux) (X): x e y} spans Hn^). 

PROOF. Fix k in {1, 2, • • •} U {oo} and put Gk = {X: n(X) = k}. Let 

us pick a countable dense subset $ of Hk and choose c in ê. Define a 
function/by/(A) = c for X in Gk and/(J) = 0 otherwise. Then/ i s in 3t 
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so there exists a sequence {/„} of functions in ££, each of which is a finite 
linear combination of {Ux: x e £?}, with 

J \\M) -mwdv(X) = HA - / p ->o 

as # -• oo. There is a subsequence {/„.} of {/„} and a set Yc of y-measure 
zero such that \\fnj(X) — f(X)\\ -> 0 as y -» oo whenever A £ Fc. But/W/(A) 
is in the closed linear span of {(Ux) (À): x e y } and therefore so is c. 
It follows that this linear span contains S whenever A e Gk\\J {Yc: ceé}. 
The union (J { Yc: ceé} has v-measure zero and thus we have shown that 

sp<in{(Ux)(X):xe<?} = HnU) 

y-a.e. on Gk. Since h is arbitrary, we are done. 

Now n(X), the object of our quest, is just the dimension of HnU). By 
Lemma 1, this is y-a.e. equal to the supremum of those natural numbers 
k for which there exist *!,•••, xk in Sf with (Ux{)(X), (Ux2)(X), •••, 
(Uxk)(X) linearly independent. Note that these vectors are linearly in­
dependent precisely when the Gram matrix 

K(uXi)(X), (c/*y)a)>]L=i 

has non-zero determinant; we will be in business if we can calculate this 
Grammian in terms of E. We choose vectors x and y in K and define a 
complex measure vXtV by 

vx,y(G) = <E(G)Xj y} 

for G a Borei set in the plane. Then 

vx,y(G) = <UE(G)x9 Uy> 

= <MGUx, Uy} 

= ^G((Ux)(X\(Uy)(X)ydv(X). 

Let dvxJdv be some choice of a Radon-Nikodym derivative of vx>y with 
respect to v. Since ^ is a countable collection of vectors, it must be the 
case that for v-almost every X, 

^L{X) = {{ux){X),(vy)(X)y 

for all x, y in Sf. Thus we have the following 

GENERAL PRINCIPLE. We may take n(X) to be the supremum of those 
natural numbers k for which there exist x\, • • •, xk in Sf such that 
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det dv,.x.. {Xj \k 

dv 

This makes sense v-a.e. and thus gives a v-a.e. determination ofn(X). 

3. Multiplication operators. Let a be a bounded, complex-valued Borei 
function on [0, 1] and consider the normal operator A on K = L2(0, 1) 
given by (Af)(x) = a(x)f(x). The reader who wishes to consider only 
self-adjoint operators should take a to be real valued. We know that ||̂ 4|| 
is equal to M«,, the essential sup norm of a with respect to Lebesgue 
measure m on [0, 1], and a(A) coincides with Re(à)9 the essential range of a 
with respect to m. The spectral measure E of A is easily seen to be given 
by E(G)f — #0-1(0/and thus we may take our scalar spectral measure v 
to satisfy v(G) = m(a~l(G)). The closed supports of v and E coincide with 
<j(A) = Re(a). 

The multiplicity function n for A is more interesting. First note that 
we only need to determine n v-a.e. on Re(a). Let us write #F for the 
cardinality of a finite set Fand put #F = oo if F is infinite. According to 
folk wisdom, n(X) = §a~l({X)). While this is false in general, it can be 
made correct by replacing the set-theoretic pre-image a~l({X}) by a certain 
measure-theoretic analogue. For each complex X let B§(X) denote the closed 
disk of radius ö centered at X. If X is in R£d) and S a. Borei set in [0, 1], 
we write 

D(S, A) - lim inf * 5 " £ % £ > » • 
510 m(a KB§(/())) 

For each X in Re(a), we define the essential pre-image of X, denoted a~\X), 
to be the set of those points x in [0, 1] such that D(U, X) > 0 whenever U 
is a (relatively) open subset of [0, 1] containing x. Note that this makes 
sense inasmuch as m(a~l(B§{X))) > 0 whenever X e Re{a). We define 
a~\X) to be empty if X $ Re(d). Heuristically, we can think of a~\X) as the 
set of those points x such that for every open set U containing x, there is 
a positive probability that a solution t of a(t) = X lies in U. The set a~\X) 
is always closed, and if a is continuous, then aj\X) is a subset of a~\{X}). 
For examples and further properties the reader should consult both [2], 
where the following determination of n was made, and the fine exposition 
by Abrahamse of the direct integral point of view [1]. For related work and 
further progress see [3, 4, 5, 14, 15]. 

THEOREM. n(X) = %a~\X) v-a.e. 

For our proof we will need a generalization due to Besicovitch [6] 
of a standard theorem in real variables. 
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BESICOVITCH'S THEOREM. Let a and ß be measures with a absolutely 
continuous with respect to ß. Then for ß-almost every X, 

lim oif^S exists and eauals -^rW-
5i0 PKBÔW) "ß 

If ß is planar Lebesgue measure (or linear Lebesgue measure if we are 
considering the self-adjoint case), this is just the usual differentiation 
theorem [17, Chap. 8]. In fact, if ß is absolutely continuous with respect 
to Lebesgue measure, we can multiply and divide in the above quotient by 
the Lebesgue measure of Bd(X) and recover the Besicovitch theorem from 
the standard version and the chain rule. 

To put this to use we fix a Borei set S in [0, 1] and define a measure 
Us on the complex plane by fis(G) = m(S f] Û - 1 (G)) . Then set a = 
fis and ß = v\ the Besicovitch theorem says that the lim inf defining 
D(S, X) is actually a limit v-a.e. and furthermore, D(S, X) is a legitimate 
choice of the Radon-Nikodym derivative of /Lts with respect to v. That is, 
we can take 

(1) daV(X)= t*S,X),XeRJLa). 

Let sé denote the algebra of all finite unions of intervals (open, closed, 
half-open, and degenerate) in [0, 1] with rational endpoints. sé is a count­
able collection of sets. We write S for the closure of the set S. 

LEMMA 2. For every X in Re(a) the set functions S -* D(S, X) is monotone 
on the class of all Borei sets in [0, 1]. For v-almost every X in Re(a), this set 
function is finitely additive on srf and D(S, X) = D(S, X)for every S in sé. 

PROOF. The first statement is obvious. If d > 0 is fixed, the remaining 
conclusions of the lemma hold for the set function S -• m(S Ç] a_1(^(/l))). 
If we divide by m(a~l(B§{X))) and let ö -> 0, we see, using Besicovitch's 
assertion that the limit of the quotient exists for v-almost every X, that the 
lemma follows. Note that the countability of sé and the fact that a count­
able union of sets of v-measure zero has y-measure zero are both strongly 
in use here. 

LEMMA 3. For v-almost every X in Re{a) we have D(F, X) = 0 whenever 
Fis a compact set disjoint from a~\X). For such X, aj\X) is non-empty. 

PROOF. Suppose that X is chosen so that the conclusions of Lemma 2 
hold. The definition of aj\X) tells us that for each x in F there is an open 
interval Vx in sé containing x with D(VX, X) = 0. We can select xl9 • • -, 
x„ in F so that Vxv • • •, VXn cover F. Then we have 
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DÇF, X) è ö(}J VXi, k) 

£ g D(VXi, X) = 0 

as desired. If ae\X) were empty we could take F = [0, 1] and contradict 
the fact that D([0, 1], A) = 1. This completes the proof. 

Our final lemma is a weak analogue for a~\X) of the triviality that 
a~H{h}) a n d ^_1({^2}) do not intersect when Ai # A2. A variant of this 
fact was used in [15]; we give the proof here for completeness. 

LEMMA 4. Let y be fixed in [0, 1] and let Xy be the set of all points A such 
that aj\X) is finite and contains y. Then Xy has v-measure zero. 

PROOF. Assume that 0 < y < 1. The cases y — 0 and y = 1 are entirely 
similar. Pick rational sequences {rn} and {tn} in [0, 1] with rn < y < tm 

rn î y and tn I y. For any z in Re(a), D((rm tn), z) is non-increasing in 
n by Lemma 2 and so we can define a function g on Re(a) (and thus v-a.e.) 
by 

g(z) = lim D((rn, tn\ z). 
«->oo 

By the monotone convergence theorem and (1) we have 

igdv = lim f d^rn,tn) dv 

J n->oo J CIV 

= lim m((rn9 tn)) 
n-+oo 

= 0. 

It follows that g = 0 v-a.e. We will be done if we can show that g > 0 
v-a.e. on Xr 

Let us fix A in A",; by keeping A outside of an appropriate set of v~ 
measure zero we can and do assume that the conclusions of Lemmas 2 
and 3 are in effect for this A. Let TV be so large that [rni t„] contains only 
the one point y of a~\X) whenever n ä N. Let V be an open set in jtf, 
disjoint from [rm tn] whenever n ^ N, and containing a71(A)\{>;}. Now 
when n ^ N, Fn = [0, l]\((rn9 tn) \J V) is a compact set in J / which con­
tains no points of (ÇX(X), and thus D(Fn, A) = 0 by Lemma 3. Thus, by 
finite additivity we find, whenever n è N, 

1 = D([0, 1], A) 

= D([0, 1]\FH, A) 

= £((rM, tn) U F, A) 

= D((rm a A) + Z>(K, A). 
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Thus D((rn, fw), X) is independent of n when n ^ N, and it is certainly 
positive since (rm tn) contains the point y in aj\X). Thus g(A) > 0 and 
the proof is complete. 

PROOF OF THE THEOREM. Let Q denote the rational numbers in [0, 1], 
and for each/ in Q let 2£t denote the characteristic function of [0, t]. 
We will apply the general principle of §2 to the countable spanning set 
y = {#*/.• t eQ and t > 0}. We write vStt for the measure %s,#y For 
any Borei set G and positive s, tin Q we have 

vs,t(G) = (E(G)3TS, 3Cty 

3Cs3Ct dm - J . 
= m([0, min(s, t)] f] a~\G)) 

= /"[0, min (s, *)](£)• 

Thus by (1) we may take, for any positive s, t in Q, 

dvs,t 
dv Q) = D([0,min(s,t)ll\leRe(a). 

Let us fix A in Re(a), pick rationals 0 < tx < t2 < 
put bj = £>([0, tj], X). Then our Gram matrix is 

< tk ^ 1, and 

' dvtutj 
dv (X) 

~bi bx bi-

b\ b2 b2" 
b\ b2 &3" • *3 

_b\b2b$' 
bk-i bk-i 

bk-i bk _ 

The determinant of such an "L-shaped" matrix has been calculated [8]. 
Indeed, if one subtracts the (k — l)th column from the kth, the (k - 2)th 

from the (k — l)th, etc., one arrives at a lower triangular matrix with 
diagonal entries bx, b2 — bx,- • •, bk - bk_i. Thus 

(2) det 
dvti,tj 

dv (A) 
\ij=l 

= 6 l ( * 2 - * l ) ( * 3 - * 2 ) - " ( * * - V l ) , 

and our general principle takes this form: n(X) can be taken to be the su-
premum of those natural numbers k for which there exist rationals 0 < t\ < 
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f2 < • • • < * * =5 1 such that the determinant (2) is positive. Note that there 
are such natural numbers because 

^±Q) = D([0, 1 U ) = 1. 

Without loss of generality we can make some assumptions on A. By 
avoiding an appropriate y-null set we can and do assume that the con­
clusions of Lemmas 2 and 3 are in effect for A. In addition, Lemma 4 
implies that U {Xy\ y e Q} has v-measure zero. We will stipulate that this 
union does not contain A, which is to say: if a~\X) is finite, it contains no 
rational numbers. From Lemma 2 we have 

*•• - V-i = D([0, til A) - Z>([0, f,_d, A) 

this will allow us to interpret (2). 
We know that a~\X) is non-empty, so first suppose that aj\X) contains 

at least k points, sx < s2 < • • • < sk. Whether a~\X) is finite or not, we 
can assume that sk < 1. Clearly we can choose rationals 0 < tx < t2 < 
• • - < tk S 1 with si e [0, ti), and st- e 0,_i, tt), i = 2, • • •, k. Then by the 
definition of a~\X), D([0, tx), X) and D((tt_u tt), A), i = 2, • •. , fc, are all 
positive and (3) implies that our determinant (2) is positive. Our general 
principle then implies that n{X) ^ k, giving us half of the conclusion: 

For the other direction, assume that a~\X) = {sh s2, • • •, sp} with 
S/_i < Sj for y = 2, • • •, /?. Let k > p, consider any rationals 0 < t± < 
t2 < • • • < tk ^ 1, and put r0 =0. To show that «(A) ^ /? (and thus 
complete the proof) it will suffice to argue that the determinant (2) is zero. 
Since each sj is irrational, none of the t/s coincides with any sy-; further­
more 0 < SQ and sx < 1. Since k > p, one of the closed intervals [0, t{\, 
[ti, t2], • • -, [tk-h tk\ call it [/,_!, ti], must lie inside one of the intervals 
[0, si), (si, s2), • • •, (sp, 1]. It follows from Lemma 3 that D([^_i, *,-], X) = 
0. On invoking (3) and Lemma 2 we see that bx = 0 (if / = 1), or 
b{ —bi_i = 0 (if / > 1). In either case the Gram déterminent (2) vanishes 
and the proof is complete. 
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