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Abstract. We prove that there exist (infinitely many) values of the real parameters a and b for
which the matrices

a

(
1 1
0 1

)
and b

(
1 0
1 1

)

have the following property: all infinite periodic products of the two matrices converge to zero, but
there exists a nonperiodic product that doesn’t. Our proof is self-contained and fairly elementary;
it uses only elementary facts from the theory of formal languages and from linear algebra. It is not
constructive in that we do not exhibit any explicit values of a and b with the stated property; the
problem of finding explicit matrices with this property remains open.
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1. Introduction. The Lagarias–Wang finiteness conjecture was introduced in
1995 in connection with problems related to spectral radius computation of finite sets
of matrices. Let ρ(A) be the spectral radius1 of the matrix A and let Σ be a finite set
of matrices. The generalized spectral radius of Σ is defined by

ρ(Σ) = lim sup
k→+∞

max{ρ(A1 · · ·Ak)
1/k : Ai ∈ Σ, i = 1, . . . , k}.

This quantity was introduced in [7, 8]. The generalized spectral radius is known
to coincide (see [1]) with the earlier defined joint spectral radius [13]; we refer to
these quantities simply as “spectral radius.” The notion of the spectral radius of
a set of matrices appears in a wide range of contexts and has led to a number of
recent contributions (see, e.g., [2, 3, 6, 8, 11, 15, 16, 17]); a list of over a hundred
related contributions is given in [14]. We describe below one particular occurrence in
a dynamical system context.

We consider systems of the form xt+1 = Atxt, where Σ is a finite set of matrices,
and At ∈ Σ for every t ≥ 0. We do not impose any restrictions on the sequence
of matrices At. These are exactly the discrete-time linear time-varying systems for
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which the dynamics is taken from a finite set at every time instant. Starting from the
initial state x0, we obtain

xt+1 = At · · ·A1A0x0.

The spectral radius of Σ is known to characterize how fast xt can possibly grow with
t; see [6, 7]. In particular, the trajectories all converge to the origin if and only if
ρ(Σ) < 1.

We now describe the finiteness conjecture. It is known that

ρ(Σ) ≥ max{ρ(A1 · · ·Ak)
1/k : Ai ∈ Σ, i = 1, . . . , k}

for all k ≥ 0.
Finiteness conjecture. Let Σ be a finite set of matrices. Then there exists

some k ≥ 1 and a matrix A = A1 . . . Ak with Ai ∈ Σ such that ρ(A)1/k = ρ(Σ).
This conjecture appears in [12]. The problem of determining if the conjecture is

true appears under a different guise in [5], where it is attributed to E. S. Pyatnicky.
In terms of the dynamical system interpretation given above, this conjecture can

be restated as saying that the convergence to zero of all periodic products of a given
finite set of matrices implies the same for all possible products.

The conjecture has recently been proved to be false [4]. The existence of a coun-
terexample is proved in [4] by using iterated function systems, topical maps, and
Sturmian sequences. The proof relies in part on a particular fixed point theorem
known as Mañé’s lemma. In this contribution, we provide an alternative proof. We
prove that there are uncountably many values of the real parameter α for which the
pair of matrices

(
1 1
0 1

)
, α

(
1 0
1 1

)

does not satisfy the finiteness conjecture. Our proof is not constructive in that we
do not exhibit any particular value of α for which the corresponding pair of matrices
violates the finiteness conjecture. The problem of finding an explicit counterexample
and the problem of determining if there exist matrices with rational entries that violate
the conjecture remain open questions. As compared to the proof in [4], our proof has
the advantage of being self-contained and fairly elementary; it uses only elementary
facts from linear algebra.

2. Proof outline. Let us now briefly outline our proof. We define

A0 =

(
1 1
0 1

)
, A1 =

(
1 0
1 1

)

and

Aα
0 =

1

ρα
A0, Aα

1 =
α

ρα
A1

with ρα = ρ({A0, αA1}). Since ρ(λΣ) = |λ| ρ(Σ), the spectral radius of the set
Σα = {Aα

0 , A
α
1 } is equal to one. Let I = {0, 1} be a two-letter alphabet and let

I+ = {0, 1, 00, 01, 10, 11, 000, . . . } be the set of finite nonempty words. We will also
denote the empty word by ∅ and use the notation I∗ = I+ ∪ {∅}. To the word w =
w1 . . . wt ∈ I+ we associate the products Aw = Aw1 . . . Awt and Aα

w = Aα
w1

. . . Aα
wt
.



COUNTEREXAMPLE TO THE FINITENESS CONJECTURE 965

A word w ∈ I+ will be said to be optimal for some α if ρ(Aα
w) = 1. We use Jw to

denote the set of α’s for which w ∈ I+ is optimal. If the finiteness conjecture is true,
the union of the sets Jw for w ∈ I+ covers the real line. We show that this union does
not cover the interval [0, 1].

In section 4, we show that if two words u, v ∈ I+ are essentially equal, then
Ju = Jv. Two words u, v ∈ I+ are essentially equal if the periodic infinite words
U = uu . . . and V = vv . . . can be decomposed as U = xww . . . and V = yww . . .
for some x, y, w ∈ I+. Words that are not essentially equal are essentially different.
Obviously, if u and v are essentially different, then so are cyclic permutations of u
and v. We show in the same section that the sets Ju and Jv are disjoint if u and v
are essentially different. This part of the proof requires some properties of infinite
words presented in section 3. The proof is then almost complete. To conclude, we
observe in section 5 that the sets Jw ∩ [0, 1] are closed subintervals of [0, 1]. There are
countably many words in I+, and so ∪w∈I+(Jw∩ [0, 1]) is a countable union of disjoint
closed subintervals of [0, 1]. Except for a trivial case that we can exclude here, there
are always uncountably many points in [0, 1] that do not belong to such a countable
union. Each of these points provides a particular counterexample to the finiteness
conjecture.

3. Palindromes in infinite words. The length of a word w = w1 . . . wt ∈ I∗

is equal to t ≥ 0 and is denoted by |w|. The mirror image of w is the word w̃ =
wt . . . w1 ∈ I∗. A palindrome is a word in I∗ that is identical to its mirror image.
In particular, the empty word is a palindrome. For u, v ∈ I∗, we write u > v if u is
lexicographically larger than v, that is, ui = 1, vi = 0 for some i ≥ 1 and uj = vj
for all j < i. This is only a partial order since, for example, 101000 and 1010 are not
comparable. For an infinite word U , we denote by F (U) the set of all finite factors of
U .

Lemma 3.1. Let u, v ∈ I+ be two words that are essentially different. We denote
U = uuu . . . and V = vvv . . . . Then there exists a pair of words 0p0 and 1p1 in the
set F (U) ∪ F (V ) such that p ∈ I∗ is a palindrome.

Proof. Let m and n be the minimal periods of U and V , respectively. The values
of m and n are invariant under cyclic permutations of u and v. Let us use induction
on m + n. The result is obvious for m + n = 2 since in this case U and V must be
equal to 111 . . . and 000 . . . , and we may then take p = ∅. Consider now u, v ∈ I+.
If the words 00 and 11 both belong to the set F (U) ∪ F (V ), then we can set p = ∅.
So assume without loss of generality that 11 does not belong to F (U) ∪ F (V ). We
may also assume that both u and v begin with 0; otherwise, we can take appropriate
cyclic permutations of u and v. Then u and v can be factorized in a unique way by
factors 0′ = 0 and 1′ = 01.

In the new alphabet {0′, 1′}, the resulting words u′ and v′ are still essentially
different and the minimal periods m′ and n′ of U ′ = u′u′ . . . and V ′ = v′v′ . . . satisfy
m′ + n′ < m + n. By induction, there exists a pair of words 0′q′0′ and 1′q′1′ in
F (U ′) ∪ F (V ′) such that q′ = q̃′. Let q be the word obtained from q′ by replacing 0′

by 0 and 1′ by 01. From 1′q′1′ ∈ F (U ′) ∪ F (V ′) we get 01q01 ∈ F (U) ∪ F (V ). Since
0′q′0′ ∈ F (U ′)∪F (V ′) we have 0′q′0′0′ ∈ F (U ′)∪F (V ′) or 0′q′0′1′ ∈ F (U ′)∪F (V ′),
and thus 0q00 ∈ F (U) ∪ F (V ). Define now p = q0 and observe that 0p0, 1p1 ∈
F (U) ∪ F (V ).

Finally, let us show that if q′ is a palindrome in {0′, 1′}, then q0 is a palindrome
in {0, 1}. We use induction on |q′|. For |q′| = 0, 1 the statement is obviously true.
Suppose that |q′| ≥ 2. Then q′ = 0′s′0′ or q′ = 1′s′1′ for s′ ∈ {0′, 1′}∗, and s′ is a
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palindrome in {0′, 1′}. By induction hypothesis, s0 is then a palindrome in {0, 1}. We
then have that either q = 0s00 or q = 01s010, but since s0 is a palindrome it follows
that p is also a palindrome.

Corollary 3.2. Let u, v ∈ I+ be two essentially different words and let U =
uuu . . . and V = vvv . . . . Then there exist words a, b, x, y ∈ I+ satisfying |x| = |y|,
x > y, x̃ > ỹ, x > ỹ, x̃ > y, and a palindrome p ∈ I∗ such that

U = apxpxp . . . and V = bpypyp . . .

or one of the words U and V , say U , can be decomposed as

U = apxpxp · · · = bpypyp . . . .

Proof. By Lemma 3.1, there exists a pair of words 0p0 and 1p1 in the set F (U)∪
F (V ) such that p is a palindrome. Without loss of generality, assume that 1p1 occurs
in U . Then it occurs in U infinitely many times because U is periodic. Let us write

U = a′1p1d1p1d . . .

and, analogously,

W = b′0p0f0p0f . . . ,

where W is either U or V . Without loss of generality we may assume |d| = |f |;
otherwise, we can always take d′ = d1p1d . . . 1p1d instead of d and f ′ = f0p0f . . . 0p0f
instead of f in such a way that |f ′| = |d′|. It remains to set a = a′1, b = b′0, x = 1d1,
and y = 0f0.

4. Optimal words are essentially equal. For a given word w ∈ I+ we define
Jw = {α : ρ(Aα

w) = 1}. Our goal in this section is to prove that Ju and Jv are equal
when u and v are essentially equal, and have otherwise empty intersection.

Lemma 4.1. Let u, v ∈ I+ be two words that are essentially equal. Then Ju = Jv.
Proof. Assume u, v ∈ I+ are essentially equal. Then U = uu . . . and V = vv . . .

can be written as U = ss . . . and V = tt . . . with |s| = |t| and t a cyclic permutation
of s. The spectral radius satisfies ρ(AB) = ρ(BA), and so the spectral radius of
a product of matrices is invariant under cyclic permutations of the product factors.
From this it follows that ρ(Aα

s ) = ρ(Aα
t ), and hence u is optimal whenever v is.

We need two preliminary lemmas for proving the next result.
Lemma 4.2. For any word w ∈ I+ we have

Aw̃ −Aw = k(w)T,

where k(w) is an integer and

T = A0A1 −A1A0 =

(
1 0
0 −1

)
.

Moreover, k(w) is positive if and only if w > w̃.
Proof. Let us prove by induction that

Aw =

(
a b
c d

)
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implies

Aw̃ =

(
d b
c a

)
.

Indeed, this is true for w = 0 and w = 1. Notice also that

A0

(
a b
c d

)
=

(
a+ c b+ d
c d

)

and (
d b
c a

)
A0 =

(
d b+ d
c a+ c

)
,

and similarly for A1. From this it follows that Aw̃ − Aw = k(w)T . The sign relation
follows from the fact that

A0

(
a b
c d

)
A1 −A1

(
d b
c a

)
A0 =

(
a+ b+ c 0

0 −(a+ b+ c)

)
.

We say that a matrix A dominates B if A ≥ B componentwise and trA > trB
(tr denotes the trace). The eigenvalues of the 2 × 2 matrix A are given by (trA ±√
(trA)2 − 4 detA))/2. For all words w, the matrix Aw satisfies det(Aw) = 1 and

tr(Aw) ≥ 2. We therefore have ρ(Au) > ρ(Av) whenever Au dominates Av.
Lemma 4.3. For any word of the form w = psq, where s > s̃ and q < p̃, the

matrix Aw′ with w′ = ps̃q dominates Aw.
Proof. We have Aw′ − Aw = k(s)ApTAq, k(s) > 0. The relations AiTAi = T ,

i = 0, 1, and

A1TA0 =

(
1 1
1 0

)

finish the proof.
Let w = psq. If s > s̃ and q < p̃, we say that s → s̃ is a dominating flip. We are

now ready to prove the main result of this section.
Lemma 4.4. Let u, v ∈ I+ be two words that are essentially different. Then

Ju ∩ Jv = ∅.
Proof. Let u, v ∈ I+ be two words that are essentially different. We assume

without loss of generality that neither U = uu . . . nor V = vv . . . is equal to 00 . . .
or 11 . . . because 11 . . . is not optimal for any α ∈ [0, 1] and 00 . . . is only optimal
for α = 0, but no other word is optimal for α = 0. In order to prove the result we
show that if ρ(Aα

u) = ρ(Aα
v ) for some value of α, then there exists a word w satisfying

ρ(Aα
w) > ρ(Aα

u).
By Corollary 3.2, there exist words a, b, x, y ∈ I+ satisfying |x| = |y|, x > y,

x̃ > ỹ, x > ỹ, x̃ > y, and a palindrome p ∈ I∗ such that

U = apxpxp . . . and V = bpypyp . . .

or

U = apxpxp . . . = bpypyp . . . .
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Since neither U nor V is equal to 00 . . . or 11 . . . , the matrices Axp and Ayp are
strictly positive.

Let us consider the word xpxpxpypypyp. Setting s = xpy, we make a dominating
flip in this word and get the word xpxpỹpx̃pypyp. Then we set s = xpỹpx̃py and make
another dominating flip. As a result, the matrix Axpxpxpypypyp is dominated by the
matrix Axpỹpxpypx̃pyp. Analogously, any matrix AsAvAr, v ∈ I∗, is dominated by the
matrix As′AvAr′ where s = xpxpxp, r = ypypyp, s′ = xpỹpxp, and r′ = ypx̃pyp. Let
us denote the linear operators A → AsAAr and A → As′AAr′ acting in R

4 as well
as their 4×4 matrices by L and L′, respectively. It is known that L = AT

r ⊗ As and
L′ = (A′

r)
T ⊗A′

s, where ⊗ is used to denote the Kronecker (tensor) product (see [10,
Lemma 4.3.1]). Both L and L′ are strictly positive. The minimal closed convex cone
in R

4 containing all matrices Av, v ∈ I∗, is the cone of all nonnegative 2×2 matrices.
Indeed, any nonnegative matrix X with det(X) = 0 can be approximated by matrices
of the form βAw, β > 0, w ∈ I∗. In particular, this is true for the matrices

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
.

Hence L′ ≥ L elementwise and L �= L′. From the Perron–Frobenius theory (see, for
instance, Problem 8.15 in [9]) we get ρ(L′) > ρ(L). The spectral radius of a Kronecker
product is the product of the spectral radii (see [10, Theorem 4.2.12]), and so

ρ(L′) = ρ(As′)ρ(Ar′) > ρ(As)ρ(Ar) = ρ(L).

Since the flips performed do not change the average proportion of matrices A0

and A1 in the product, we can also write

ρ(Lα) = ρ(Aα
s )ρ(A

α
r ) and ρ(L

′α) = ρ(Aα
s′)ρ(A

α
r′)

for each α > 0, where Lα and L
′α are defined analogously to L and L′. Suppose

that ρ(Aα
u) = ρ(Aα

v ) = 1. Then ρ(Aα
s ) = ρ(Aα

r ) = 1 and, hence, either ρ(Aα
s′) > 1 or

ρ(Aα
r′) > 1, which is a contradiction.

5. Finiteness conjecture. We are now ready to prove the main result.
Theorem 5.1. There are uncountably many values of the real parameter α for

which the pair of matrices

(
1 1
0 1

)
, α

(
1 0
1 1

)

does not satisfy the finiteness conjecture.
Proof. It is clearly equivalent to prove the statement for the matrices Aα

0 and Aα
1 .

For α = 0, all optimal words w are essentially equal to 0. For any other word w, the
set Jw ∩ [0, 1] can be written as

Jw ∩ [0, 1] = {α ∈ (0, 1] : ρ(Aα
w) = 1}

or, equivalently,

Jw ∩ [0, 1] =

{
α ∈ (0, 1] : (ρ(Aw)α

|w|1)
1

|w| = sup
v∈I+

(ρ(Av)α
|v|1)

1
|v|

}
.(5.1)
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In this expression |w|1 denotes the number of 1’s in the word w. Associated to w ∈ I+

we define the affine function

hw(β) =
1

|w| (ln ρ(Aw) + |w|1β)

and let

h(β) = sup
w∈I+

hw(β).

Passing to the logarithmic scale in the expression (5.1), we get

Jw ∩ [0, 1] = {eβ : β ∈ R, hw(β) = h(β)} ∩ [0, 1].(5.2)

The functions hw are affine, h is convex and continuous, and h(β) ≥ hw(β) for all
w ∈ I+ and β ∈ R. From this it follows that the set {β ∈ R : hw(β) = h(β)} is an
interval of the real line. This interval is the zero set of a continuous function, and it
is therefore closed. From (5.2) we conclude that Jw ∩ [0, 1] is a closed subinterval of
[0, 1].

Let us finally show that [0, 1] cannot be covered by countably many disjoint closed
intervals Hi, i ≥ 1 (possibly, single points), unless this is a single interval, which is,
obviously, not the case here.

We define a function g(α) : [0, 1] → [0, 1] as follows. We set g(0) = 0, g(1) = 1
and then set g(α) = 1/2 for all α ∈ H1. For each subsequent index i, we define
g(α) = gi = (a+ + a−)/2 for all α ∈ Hi, where a− is the current highest value of g(·)
at the left of Hi and a+ is the current lowest value of g(·) at the right of Hi.

As a result, the function g(·) is well-defined on [0, 1] ∩ (∪i=1,2,...Hi) and non-
decreasing. It can be then extended to the whole segment [0, 1] by continuity be-
cause between any two segments Hi and Hj there exists a segment Hk with k > i, j.
Since g(0) = 0 and g(1) = 1, the range of g(α) coincides with [0, 1] for α ∈ [0, 1].
Therefore, there exist uncountably many values of α ∈ [0, 1] such that g(α) �= gi,
i = 1, 2, . . . .
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