
210 Progress of Theoretical Physics Supplement No. 94, 1988 

An Elementary Introduction to Sato Theory 

Yasuhiro 0HTA, Junkichi SATSUMA, Daisuke TAKAHASHI and Tetsuji TOKIHIRO 

Department of Applied Physics, Faculty of Engineering 

University of Tokyo, Tokyo 113 

(Received April 26, 1988) 

An .elementary introduction to Sato theory is given. Starting with an ordinary 
differential equation, introducing an infinite number of time variables, and imposing a certain 
time dependence on the solutions, we obtain the Sato equation which governs the time 
development of the variable coefficients. It is shown that the generalized Lax equation, the 
Zakharov-Shabat equation and the IST scheme are generated from the Sato equation. It is 
revealed that the r-function becomes the key function to express the solutions of the Sato 
equation. By using the results of the representation theory of groups, it is shown that the 
r-function is governed by the partial differential equations in the bilinear forms which are 
closely related to the PlUcker relations. 

§ 1. Introduction 

It has been more than two decades since the inverse scattering transform (1ST) 

method was discovered by Gardner, Green, Kruskal and Miura1> to solve the initial 

value problems for the Korteweg-de Vries (KdV) equation, 

(1·1) 

Though the method was at first thought to be applicable to a very restricted class of 

nonlinear wave equations, it has been revealed that it actually applies to a wide class 

of equations, i.e., the soliton equations. The Lax scheme plays an important role in 

extending the applicability.2> 

If we introduce the differential operators, 

L=a2 +2u, 

B=a3 +3ua+ ~ ux, 

(1·2) 

(1·3) 

where a denotes ajax, then the inverse scattering scheme for the KdV equation may 

be written by 

L¢=J..¢' (1·4) 

~~ =B¢. (1·5) 

If the eigenvalue ). is independent of x and t, the compatibility condition of Eqs. (1· 4) 

and (1· 5) yields 
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An Elementary Introduction to Sato Theory 211 

aL 
ar-=[B, L]=BL- LB, (1·6) 

which reduces to the KdV equation (1·1). We shall call Eq. (1· 6) the Lax equation. 

Zakharov and Shabat succeeded in solving the nonlinear Schrodinger equation by 

extending L to a non-selfadjoint operator.3> Ablowitz, Kaup, Newell and Segur gave 

a unified way of giving the 1ST scheme for various equations including the sine

Gordon equation by means of the expansion in eigenvalues.4> We can in principle 

solve the initial value problems of soliton equations by the 1ST method. 

A formal extension of the 1ST scheme has also been given by Zakharov and 

Shabat.5> From the compatibility condition between arf;/atm=Bmr/1 and a¢/atn=Bnr/1, 

we obtain 

(1·7) 

By choosing suitable differential operators Bn and Bm, we can reduce Eq. (1·7) to 

several soliton equations. The Kadomtsev-Petviashvili (KP) equation, 

(1·8) 

is one example of such an equation. We shall call Eq. (1· 7) the Zakharov-Shabat 

equation. In the 1ST method, N-soliton solutions are obtained by solving the alge

braic equations derived from the Gel'fand-Levitan-Marchenko equation. The solu

tions are expressed in determinant forms. 

Hirota's method is another powerful way of obtaining soliton solutions.6> In this 

method, we introduce dependent variable transformations to reduce the soliton 

equations into bilinear forms. . Then by using a kind of perturbation technique, 

N-soliton solutions can be constructed in a systematic way. For example the KP 

equation is reduced to 

(4DxDt- Dx4 -3Di)r· r=O, 

by the dependent variable transformation, 

u=(log r)xx, 

(1·9) 

(1·10) 

where the operators Dx, etc., are called Hirota's operators and are defined by 

an I =-a na(x+s)b(x-s) . 
S s=O 

(1·11) 

If we apply a formal expansion on r, we obtain the N-soliton solution in the form of 

a polynomial in exponential functions. In this method, the transformed dependent 

variable r becomes a key function. We shall call it the r-function hereafter. 

Hirota's method has been used to obtain not only soliton solutions but several types 

of special solutions for many nonlinear evolution equations. 

There is another way of expressing soliton solutions. It is by means of the 
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212 Y. Ohta,]. Satsuma, D. Takahashi and T. Tokihiro 

Wronski determinanC> Freeman and Nimmo have given the Wronskian representa

tion of soliton solutions for various equations .. 8> 

The diversity of expressing solutions reflects the richness of algebraic structures 

which the soliton equations possess in common. It is Sato that unveiled the struc

tures by means of the method of algebraic analysis. He noticed that the r-function 

of the KP equation is closely related to the PlUcker coordinates appearing in the 

theory of Grassmann manifolds and then discovered that the totality of solutions of 

the KP equation as well as of its generalization constitutes an infinite dimensional 

Grassmann manifold.9> In the concrete, it has been shown that the r-functions of 

soliton equations are governed in common by the Plticker relations and can be 

expressed in terms of determinants with the Wronskian structure. 

Shortly after this discovery, Date, Jimbo, Kashiwara and Miwa extended Sato's 

idea and developed the theory of transformation groups for soliton equations.10> All 

these results make it possible to understand the soliton theory from a unified point of 

view. For example, the relationship among theIST method, Hirota's method and the 

Backlund transformation is clearly explained by the infinite dimensional Lie algebra 

and its representation on a function space. 

A lot of important results have already been presented on these subjects.11> 

However, they are rather mathematical and we think it is not so easy to have full 

understanding of the grand theory. Moreover, the progress after Sato's discovery 

has been so fast that the detail of original work seems not to be popular even at 

present. Though there are several lecture notes based on the talks given by Sato/2> 

they are mostly written in Japanese. There are only two short papers which Sa to 

himself wrote in English.9>· 13> 

Considering this situation, we attempt in this paper to explain Sato theory in an 

elementary fashion. Almost all the results included in the following are due to Sato. 

Since our aim is to introduce the theory in plain language, we make no attempt to be 

mathematically rigorous. We hope that this paper may serve as an entrance to this 

magnificent theory. 

In § 2, we introduce the microdifferential operator and discuss the relationship 

between the solutions and the variable coefficients of an ordinary differential equa

tion. In § 3, we impose an assumption that the solutions also depend on an infinite 

number of time variables. By giving the dependency explicitly, we obtain an equa

tion governing the time development of the variable coefficients. We call it the Sato 

equation, in which the r-function plays an important role to express the solutions. It 

is shown in § 4 that a generalization of the Lax equation and the Zakharov-Shabat 

equation can be derived from the Sato equation. In § 5 we introduce a linear system 

associated with the generalized Lax equation. We see that the system reduces to the 

IST scheme if a certain condition is imposed. The structure of the r-function is 

investigated in § 6. It has a close relationship to the representation theory of groups. 

We find that, as a result, the r-function satisfies partial differential equations which 

relate to the Plticker relations. The KP equation in its bilinear form comes up as the 

simplest nontrivial one of such differential equations. In § 7 we explicitly express the 

solutions of the Sato equation in terms of the r-function. The result also gives the 

explicit expression of the solutions of the generalized Lax equation and the eigenfunc-
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An Elementary Introduction to Sato Theory 213 

tion of its associated linear scheme in terms of the r-function. The concluding 

remarks are given in § 8. Finally in the Appendix, we present some results of the 

representation theory of groups which are useful for discussing the structures of the 

r-function. 

§ 2. Basis of Sato theory 

Let us introduce a microdifferential operator, 

W =1 + Wia- 1+ W2a-2+ W3a-3+ ···, 

where Wj (j = 1, 2, · · ·) are functions of x and a-n is formally defined by 

If we employ the Leibniz rule, 

(2·1) 

(2·2) 

anJ(x)=i: n(n-1)···(n-r+1) dr~an-r' (2·3) 
r=O r! dx 

then an can be a well-defined operator even for negative integer n. For example, we 

have 

a-iJ=.ra-i-J'a-2 +ra-3 - ... , 

a-2/= .ra-2 -2/'a-3 +3/" a-4 - ···, 

where the prime denotes the differentiation in x. 

For Eq. (2 ·1), the inverse operator w- 1 exists and is written by 

w-1=1 +Via-l+ V2a-2+ V3a-3+ ···, 

where 

v1=-w1, 

V3 = - W3 + 2 WI W2- W1 W1'- W13 , 

(2·4) 

(2·5a) 

(2·5b) 

(2·5c) 

Though the general theory is developed for W=~;=own(x)a-n, wo=1, we confine 

ourselves to 

(2·6) 

for simplicity.14> It is noted that the essence of the general theory is still kept in this 

simplification. 

Let us consider the ordinary differential equation, 

(2·7) 

which has m linearly independent solutions, j 0 >(x ), f'2>(x ), · · ·, j<m>(x ). We assume 
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214 Y. Ohta, ]. Satsuma, D. Takahashi and T. Tokihiro 

that jU>(x ), j = 1, 2, · · ·, m, are analytic, i.e., 

j=1, 2, ···, m. (2·8) 

Then the rank of the oo X m matrix, 

(2·9) 

is m and E satisfies 

(2·10) 

For an m x m regular constant matrix R, ER also satisfies Eq. (2 ·10), i.e., E is only 

unique up to a multiplicative factor in GL (m, C). Hence E can be regarded as an 

element of 

{oo X m matrix of rank m} /GL(m, C), 

which is called the Grassmann manifold GM(m, oo ). 

We introduce a shift operator, 

0 1 

0 1 0 

A= 
0 1 

(2·11) 

0 

Then, we have 

1 X x 2/2! x 3 /3! 

1 X x 2 /2! 

1 X (2 ·12) 

0 1 

Moreover, we find 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

4
.2

1
0
/1

8
7
8
3
4
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



An Elementary Introduction to Sato Theory 215 

/(1) /(2) /(m) 

aJ<O aj<2l aj<m> 

(2·13) 

We now consider the problem to determine Wm from the solutions, / 0 >, j<2>, ···, 

pm>. Equation (2 · 7) yields 

(am-1j0l)W1 +(am-2jCO)W2 + ... + jOlWm =- amj<1l' 

(am-1jCm>)w1 +(am-2j<m>)w2+ ... + j<m>wm= _ amj<m>. 

By solving these simultaneous equations, we find 

am-1J<I) -amj<1> ... po 

am-1/(m) -amj<m> j<m> 
Wi am-1/(1) am-JjOl po (2·14) 

am-1pm> am-Jpm> ••• pm> 

or (from Eq. (2·6)), 

/(1) j<m) a-m 

am-1j<I) am-1/(m) a-1 

Wm 
amj<1l amj(m) 1 

po j<m> 
(2·15) 

am-1/(1) am-1pm> 

In Eq. (2 ·15), the operator aj has to be put in the rightmost position when we evaluate 

the determinant of the numerator. The denominator of Eq. (2 ·14) or (2 ·15) is the 

determinant of the matrix consisting of the first m rows of H(x), and is a Wronskian. 

§ 3. Sato equation 

We here assume that Wj (j=1, 2, ···) in Eq. (2·1) are also the functions of an 

infinite number of time variables t =Ct1, t2, t3, ··· ). Then the solutions of Eq. (2 · 7),/u>, 

include t1, t2, t3, · · · as parameters, 

jUl=jU>(x; t)=jU>(x; t1, t2, ···), 

and hence H defined by Eq. (2·13) may also be written as H(x; t). 
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216 Y. Ohta, ]. Satsuma, D. Takahashi and T. Tokihiro 

Let us impose the condition that H(x; t) evolves in time as 

H(x; t)=exp xA exp r;(t, A)E', 

where 

00 

r;(t, A)=~ fnA n. 
n=l 

If we formally expand the operator, 

exp{(x+ t1)A + t2A2+ taA 3+ "·}= :f: PnAn, 
n=O 

we find 

The first few Pn's are 

Po=1, 

These polynomials have the property 

(Pn=O for n<O) 

and, especially, 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3·5a) 

(3·5b) 

(3·5c) 

(3·5d) 

(3·6) 

(3·7) 

We remark that the Pn's play an important role in the representation theory of groups 

(see the Appendix). By means of these polynomials, H(x; t) is expressed by 

1 P1 P2 Pa 
~~1) ~~2) ••• ~~m) 

1 P1 P2 
~p> ~f2l ••• ~fml 

H(x; t)= 1 pl 
~~1) ~~2) ~~m) 

0 1 ... 

( h.\0 (x; I) hb"(x; t) .. · h.\"'(x; t)) 
= h\0 (;; t) h\2>(x; t) ... hlm>(x; t) . (3·8) 

. . . ... . . . 
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An Elementary Introduction to Sato Theory 

The elements of the above matrix, h<j>(x; t), have the following properties: 

h!Jl(x; 0)= jU>(x) 

and 

anhbil(x; t) 
axn 

217 

(3·9) 

(3·10) 

Namely, hbi>(x; t) is the solution of a set of linear partial differential equations, 

( a an ) 
atn- axn h(x; t)=O' n=1, 2, ··· 

with the initial value 

h(x; 0)= jU>(x). 

We consider that Wm (and wJ in Eq. (2·6) also depend on t so that 

Wm(x; t)amhbi>(x; t)=(am+wi(x; t)am-1+···+wm(x; t))hbi>(x; t) 

=o, j=1, 2, ···, m. 

(3·11) 

(3·12) 

(3·13) 

In the similar way to § 2, we see that wix; t) and Wm(x; t) are expressed by 

h (l) 
m-i -hW 

(3·14) 
h(m) -hi:) hbm) 

wi(x; t) 
m-i 

h(l) h(l) .... hb1) m-i m-J 

h(m) m-i h(m). ••• m-J hbm) 

and 

hb1) hbm) a-m 

h(l) m-i h(m) m-i a-i 

Wm(x; t) 
hW h~m) 1 

hb1) hbm) 
(3·15) 

h~~i h(m) 
m-1 

respectively. In§ 7, we will show that the numerators of wi(x; t) can be expressed by 

certain derivatives of the denominator. Hence, the denominator of Eq. (3·14) or 

(3·15) becomes an important function which yields all the w/s. We shall also see in 

§ 6 that it actually gives the r-function mentioned in § 1. 

We now pose a problem to determine the time evolution equation for Wm(x; t). 

Differentiating (3·13) by tn and employing the property (3·10), we have 

(3·16) 
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218 Y. Ohta, ]. Satsuma, D. Takahashi and T. Tokihiro 

which is the ordinary differential equation of (m+n)-th order and shares the same 

linearly independent solutions as Eq. (3 ·13). Therefore the differential operators in 

Eq. (3 ·16) has to be factorized as 

(3·17) 

where Bn is a differential operator. By applying a-m Wm - 1 from the right, we have 

B = awm w; -1+ w; anw; -1 
n atn m m m . (3·18) 

From the properties of the operators Wm and Wm -I, we know that the first term of the 

right-hand side of Eq. (3·18) consists only of the terms with a-n(n=1, 2, ···). Hence 

we have 

(3·19) 

where ( )+ denotes the differential part of the operator. Consequently, it is shown 

that the time evolution of Wm(x; t) is governed by 

~~ =BnW- wan, (3·20) 

(3·21) 

which we call the Sato equation hereafter. The first few of Bn are explicitly given 

by 

B3=a3-3w1,xa-3w2,x+3w1W1,x-3W1,xx, 

-4 W3,x- 6W2,xx- 4 W1,xxx + 4 W1 W2,x + 4 W1,xW2 

where Wj,X.~? denotes a1w)ax 1• 

(3·22a) 

(3·22b) 

(3·22c) 

(3·22d) 

Since a similar argument is possible for the operator W defined by Eq. (2 ·1), we 

have dropped the suffix m in Eqs. (3·20) and (3·21). It is an important fact in the 

following discussion that the solutions of Eqs. (3·20) and (3·21) are given in the form 

of Eq. (3 ·15). From the results in this section, we see that t1 plays the same role as 

x. Hence, we will use t1 or x without distinction hereafter. 

§ 4. Generalized Lax equation 

We have shown in the preceding section that the time evolution of W(x; t) is 

governed by the Sato equation, (3·20) and (3·21), and the coefficients in W(x; t) are 

expressed in terms of the set of linearly independent solutions of the ordinary 
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An Elementary Introduction to Sato Theory 219 

differential equations (3·13). In this section we show that a generalization of the Lax 

equation (1·6) and the Zakharov-Shabat equation (1·7) can be derived from the Sato 

equation. 

We define an operator L by 

L= waw-1, (4 ·1) 

which can be written as 

L=a+ u2a-1+ u3a-2+ u4a-3+ ···. (4·2) 

Substituting Eqs. (2 ·1) and (2 · 4) into Eq. ( 4 ·1), we find that the coefficients Uj in Eq. 

(4·2) are related to Wj as 

U3= -w2,x+W1W1,x, 

U4 = - W3,x + W1 W2,x + W1,xW2- W1 2 W1,x- wf,x , 

Differentiating L by tn, and using Eq. (3·20), we have 

aL = aw aw-1+ wa aw-1 

atn atn atn 

=(BnW- wan)aw-1- WaW- 1(BnW- wan)W-1 

=BnWaW-1- waw-1Bn, 

where we have used the fact that 

Consequently, we obtain 

aL 
atn =[Bn, L]=BnL- LBn, 

which may be called a generalized Lax equation. 

It is clear from the definition of L that 

and therefore Bn may be written by 

Bn=(L n)+. 

If we use uJ instead of Wj, Eqs. (3·22a)~(3·22d) are expressed as 

B1=a, 

B2=a2+2u2, 

B3=a3+3u2a+3u3+3u2,x, 

(4·3a) 

(4·3b) 

(4·3c) 

(4·4) 

(4·5) 

(4·6) 

(4. 7) 

(4·8) 

(4 ·9a) 

(4·9b) 

(4·9c) 
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220 Y. Ohta·,]. Satsuma, D. Takahashi and T. Tokihiro 

(4·9d) 

respectively. 

We now show that an infinite number of equations are derived from the general

ized Lax equation. For n=2, Eq. (4·6) is written by 

au2 a-t+ au3 a-2+ au4 a-3+ ... 
at2 at2 at2 

=(a2+2u2)(a+ u2a-l+ u3a-2+ ···)-(a+ u2a-l+ u3a-2+ ... )(a2+2u2) 

By equating the coefficients of a-i, j=l, 2, ... , we get 

au2 +2 at2 = U2,xx U3,x , (4 ·lOa) 

(4 ·lOb) 

(4 ·lOc) 

Similarly from Eq. (4·6) with n=3, we get 

(4 ·lla) 

(4·11b) 

~~ 3 4 = U4,xxx + 3us,xx + 3 Us,x- 3 U2 U3,xx- 3 U2,xxU3 

(4·11c) 

Following this procedure for n=4, 5, ... , we get an infinite set of equations for the 

dependent variables U2, U3, U4, .... If we eliminate U3, U4 from Eqs. (4·10a), (4·10b) 

and (4 ·lla), we obtain an equation for U2, 

_1_(4 au2 -12 au2- a3u2)-3 a2u2 =0 
ax at3 U2 ax ax3 at22 ' 

(4 ·12) 

which is nothing but the KP equation (1·8). Because this equation is the simplest 

nontrivial one which is obtained by this formalism, we call the infinite set of equations 

the KP hierarchy. 

It is readily shown that 
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An Elementary Introduction to Sato Theory 221 

(4·13) 

for m, n = 1, 2, 3, · · ·. Hence we have 

(4·14) 

If we write 

(4·15) 

then Enc consists only of the terms with a-i, j>O. Substitution of Eq. (4·15) into Eq. 

(4·14) yields 

a~nm- ~~: =[Ln+Enc, Lm]-[Em, Bn-Enc] 

=[Enc, Em- Bmc]-[Em, En- Bnc] 

=[En, Bm]-[Enc, Emc]. 

Taking the differential part of Eq. (4·16), we obtain 

aEm aBn [E E ] ar;:- atm = n, m ' 

(4·16) 

(4·17) 

which is the Zakharov-Shabat equation (1·7). If we choose m=2 and n=3, then we 

recover the KP equation (4·12) from Eq. (4·17). 

§ 5. Linear system associated with the generalized Lax equation 

A linear system associated with the generalized Lax equation may be written as 

follows: 

L¢=A¢, (5·1) 

a¢-
atn -En¢' (5·2) 

a A 
atn =O. (5·3) 

In fact, Eq. (4·6) is derived from the compatibility condition among Eqs. (5·1)~(5·3). 

Equation (5·1) is considered as an eigenvalue problem for the microdifferential 

operator L and Eq. (5 · 2) describes the evolution of the eigenfunction for each of the 

time variables t1, tz, ···. 
In this section, we first investigate the structure of the eigenfunction. From the 

definition of L, we find that Eq. (5 ·1) is rewritten as 

(5·4) 

where 
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1/Jo= w-!¢. 

Integration of Eq. (5·4) yields 

I/Jo=g(t2, ta, ···; A)e•x 

or 

(5·5) 

(5·6) 

(5·7) 

where g is an arbitrary function of the arguments. We may assume that g is analytic 

in A. 

On the other hand, by noticing Eq. (4·15), we have from Eq. (5·2) that 

~t =(Ln+Bnc)I/J. (5·8) 

As mentioned in § 4, Bnc consists only of the terms with a-1, j >0. From the Leibniz 

rule (2·3), we see that, for j=1, 2, ···, 

(5·9) 

which means that a-J can be expressed in terms of Las 

where if1z's are suitable functions of t1, t2, ···. Hence, Eq. (5·8) may be written by 

where vn.i's are also suitable functions of t1, t2, · · ·. 

From Eq. (5 ·1), we have 

V¢=Ai¢. (5·12) 

Substituting Eq. (5 ·12) into Eq. (5 ·11), we obtain 

a¢ =(An+ Vn! + Vn2 +···)¢ 
atn A A2 (5·13a) 

or 

__Llog '''= 1n+ Vn! + Vn2 +··· 
atn 'f' II A A2 . (5·13b) 

From Eq. (5 ·13b), we obtain 

co co 

log¢= ~A 1 t1+ to+~ VJA-1, 
i=! i=! 

(to: canst) (5·14) 

which may be considered as the Laurent expansion of log¢ at A=oo and the first term 

of the right-hand side corresponds to its principal part. In Eq. (5·14), v/s are again 

suitable functions of t1, t2, · · ·. From Eq. (5 ·14), we have 
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co 

¢=exp(:l: vjl~-i)exp(to+ tlt1 + A2t2+ ···). 
j=l 

(5·15) 

Expanding exp(:l:7=1VjA-i) in 1/tl and imposing the condition that the resultant ¢ 

coincides with Eq. (5·7) at t2, t3, ···=0, we finally obtain 

¢=( 1 + ~ 1 + ~; +···)exp(to+tltl +tl2t2+···). (5·16) 

Consequently, the eigenfunction of the linear system (5·1) and (5·2) can be directly 

related to w/s which are included in the solution of the Sato equation, (3·20) and 

(3·21). 

We now show that the linear system (5·1)~(5·3) reduces to the 1ST scheme 

mentioned in § 1, if a certain condition is imposed. Let us assume that V consists 

only of its differential part Bn for a certain l, 

(5·17) 

This condition also implies that 

k=1,2, .... (5·18) 

Then, Eq. (5 ·1) reduces to 

k=1, 2, .... (5·19) 

Moreover, Eq. (5·2) gives 

k=1, 2, .... (5·20) 

Comparing Eq. (5 · 20) with Eq. (5 ·16), we find 

j, k=1, 2, ... ' (5·21) 

which means that all of w/s are independent of tz, t21, t3z, ···. This situation is called 

/-reduction. 

In the case of 2-reduction, Eq. (5·19) with k=1 is written by 

(5·22) 

which is the Schrtidinger-type eigenvalue problem. From Eq. (5·17), V=B2, all of 

the coefficients of a~i, j>O in V must be zero. Then we have, for example, 

(5·23a) 

(5·23b) 

(5 · 23c) 

Here, Eq. (5·2) with n=3 gives 
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224 Y. Ohta, ]. Satsuma, D. Takahashi and T. Tokihiro 

~~ =( l1+3u2a+ ~ Uz,x )¢. (5·24) 

Equations (5 · 22) and (5 · 24) taken together are essentially the same as the IST scheme 

for the KdV equation (1·1). 

If we consider 

(5·25) 

instead of Eq. (5 · 24), we recover the IST scheme for the fifth-order KdV equation of 

the Lax-type. 

In the case of 3-reduction, we have the third-order eigenvalue problem, 

(5·26) 

If we here consider 

(5·27) 

as the associated equation for the time development of ¢, then the compatibility 

condition of Eqs. (5·26) and (5·27) yields the Boussinesq-type equation, 

(5·28) 

Finally, in the case of 4-reduction, the eigenvalue problem, B4¢=;14¢, is of the 

fourth-order. If a¢1at3=B3¢ is considered as the associated equation, then the 

compatibility condition yields the coupled KdV equation discussed in Ref. 15). 

§ 6. r-function 

In the preceding two sections we have shown that various analytical schemes to 

treat soliton equations may be derived from the Sato equation, (3·20) and (3·21). 

Furthermore, we have seen that not only the solutions of soliton equations but the 

eigenfunctions in the IST scheme are directly related to the solutions of the Sato 

equation. As mentioned in § 3, the latter solutions are expressed in terms of the 

r-function, 

hb1) hbm) 

r(x; t)= 
h~1) him) 

(6·1) 

h(l) 
m-1 

h(m) 
m-1 

In this context, we here study the structures of the r-function in more detail. 

Since the r-function is the determinant of the matrix made of the first m rows of 

H(x; t), it may be written as 
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An Elementary Introduction to Sato Theory 

1 PI P2 Ps 

r(t)=det 
1 PI P2 

0 
1 

=det(Eotexp TJ(t, A)E), 

where Eot is an m x oo matrix defined by 

1 0 0 

Sot= 
1 0 0 

0 
1 0 0 

.;p> .;f2l 
.;~!) .;~2) 

225 

(6·2) 

(6·3) 

In this expression we have omitted x-dependence because t1 plays the same role as x. 

As a consequence, the Pn's in Eq. (6·2) are defined by 

(6·4) 

Using the expansion theorem on the determinant of product of matrices, r(t) can be 

expanded as a sum of the products of determinants, 

Pli P1. Plm .;!:> .;!~) .;gn> 

r(t)= ~ 
Pli-I Pt.-! Plm-I .;g> .;g> .;g~·> 

(6·5) 
o,;; It< 12<···< lm 

Pzt-m+I Pz.-m+I Pzm-m+I .;!!? .;!;! .;!:::> 

where the summation is taken over all possible combinations of m nonnegative 

numbers, (Pn=O for n<O as in Eq. (3·6)). 

For each set of numbers (II, l2, ···, lm), it is possible to define a corresponding 

diagram. Let us prepare a chain of cells, each of which is numbered in numerical 

order (Fig. 1). We put Fermi particles in (i) all of the cells numbered less than and 

equal to - m, and (ii) each of the cells numbered /1-m+ 1, /2-m+ 1, · · ·, lm- m + 1. 

For example, if a set of numbers (2, 3, 5, 7) is given, then the cells are occupied by 

Fermi particles as Fig. 2. If no number is assigned (m=O), the diagram is as Fig. 3, 

which may be considered to be the vacuum state. This type of diagram is called the 

Maya diagram after Sato. It is noted that the correspondence between the set of 

numbers and this diagram is one to one for fixed m. 

There is also the one to one correspondence between a Maya diagram and a 

Young diagram. Suppose that we have a Maya diagram. If a cell is occupied by a 

particle in the diagram, assign a vertical line t, and if it is empty, assign a horizontal 

line --+, respectively. Then we obtain a connected line. For the vacuum state we 

have a line with one corner. The diagram surrounded by these two lines gives the 
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. . . -5 -4 -3 -2 -1 0 1 2 3 4 5 . . . . . . -5 -4 -3 -2 -1 0 1 2 3 4 5 .. . 

... I I I I I I I I I 1... ... lolol I lolol lol lol 1 .. . 

Fig. 1. The c_hain of cells to construct the Maya Fig. 2. The Maya diagram expressing the set of 

diagram. numbers (2, 3, 5, 7). 

. . . -5 -4 -3 -2 -1 0 1 2 3 4 5 .. . 

... lolololololol I I 1 .. . 

Fig. 3. The Maya diagram expressing the vacuum Fig. 4. The procedure to construct the Young 

state. diagram corresponding to the Maya diagram 

of Fig. 2 and the resultant Young diagram. 

corresponding Young diagram. Figure 4 shows the procedure to construct the Young 

diagram for the Maya diagram of Fig. 2. The vacuum state itself corresponds to the 

Young diagram ¢. 

Thus we find the one to one correspondence between a set of numbers and a 

Young diagram for fixed m via a Maya diagram. This correspondence is quite 

reasonable. In fact, the Young diagram is introduced to classify the irreducible 

representation of the symmetric group. Also the determinants composed of P/s in 

Eq. (6·5) are the Schur functions themselves which appear in symmetric group theory. 

Since the correspondence is one to one, we may denote 

Pz, Pz. Pzm 

Sv(t)= 
P~t-l Pz.-1 Pzm-l 

(6·6) 

P~t-m+l Pz.-m+l Pzm-m+1 

and 

.:l!) .;l~) .;l;n> 

.:v= 
.;l~) .;l;> .;l:') 

(6·7) 

.;l!! .;l;! .;l:::> 

where the suffix Y means the Young diagram corresponding to the set of numbers 

(ll, !2, · · ·, lm). It is noted that, although different sets of numbers may correspond to 

a certain Y if m is not fixed, the right-hand side of Eq. (6·6) gives the same function 

for those sets. With these notations, Eq. (6·5) may be written by 

(6·8) 
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An Elementary Introduction to Sato Theory 227 

where the summation is taken over all Young diagrams which have less than m + 1 
rows. The case m=2 gives a simple example of this expansion: 

r(t)=det [ Po P1 P2 ···] ~p> ~f2> [ [ 

~~I) ~~2) ]] 

0 Po PI ··· • • 

=I ~ 0 ~:II;~:: ;~::I+ I ~ 0 ~:II ~1:: ~1:: II ~ 0 ~:II~~:: ~~::I+··· 
= Sfl~fl + So~o + Srn~ rn + ... · (6·9) 

As shown in the Appendix, it is possible to expand an arbitrary analytic function 

j(t) in SY(t), 

(6·10) 

The coefficient Cy is uniquely determined from the orthogonality condition as 

Cy=Sy( §t)f(t)it=O, 

where at is defined by 

- (a1a1a) 
at= at!· 2 at2 • 3 at3 • ·· · · 

(6·11) 

(6·12) 

Equation (6·8) is also considered to be the expansion of r(t) in Sy(t). Since the 

expansion ( 6 ·1 0) is unique, this is also unique. 

For the coefficients ~y's of r-function, there exists an important property that they 

always have to satisfy constraints called the PlUcker relations. Let us derive these 

relations in an elementary way. We first consider the simplest nontrivial case m=2. 

For the r-function (6·9), we choose four numbers, k, l1 < l2< l3, and notice a trivial 

identity, 

~kl) ~~~) ~g> ~g> ~kl) 0 0 0 

~J.2) ~~~) ~g> ~~;> ~J.2) 0 0 0 
(6·13) 

0 ~g> ~g> ~g> 0 ~~~) ~g> ~~~) 
=0. 

0 ~~~) ~~;> ~g> 0 ~~~) ~g> ~~;> 

By applying the Laplace expansion to the first determinant, we obtain 

which gives constraints among ~y's. 

=(0, 1, 2, 3), Eq. (6·14) is reduced to 

(6·14) 

For example, if we choose (k, l1, l2, l3) 
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228 Y. Ohta, ]. Satsuma, D. Takahashi and T. Tokihiro 

Similarly we have 

.;:fl.;:ffiJ-.;:o .;"EfTI+.;:o::o.;-:8 =O for (k, /1, /2, ls)=(O, 1, 2, 4), 

.;:fl.;:BIJ- .;"rn.;"EfTI+ .;"O::O.;"Efl=O for (k, /1, /2, ls)=(O, 1, 3, 4), 

respectively. 

(6·15) 

(6·16a) 

(6·16b) 

(6·16c) 

(6·16d) 

Generally for an arbitrary m, by choosing k1 < k2< ··· < km-I and /1 < !2< ... < lm+I, 

and applying the Laplace expansion to 

.;"'J/2 .;:~1; .;:~~-1 .;:l:> .;:g> .;"l!!+l 

.;:~~) .;:~~) .;:~~~~ .;"l~) .;"l~) .;:l:::!, 
------------------------------------------- ------------------------------------------- =0, (6·17) 

.;:g> .;:g> .;"l!,>+l 

0 
.;"l~) .;"l~) .;:l:::!, 

we obtain 

(6·18) 

8=m+i-j, (6·19) 

where Yi is the Young diagram corresponding to (k1, .. ·, kj, l;, kj+I, ... , km-I) and Yi to 

(II, ... , l;-I, li+I, ... , lm+I), and where kj< l;<kJ+I is satisfied. For all combinations of 

ku and lu, Eq. (6·18) gives an infinite number of constraints on the .;"y's. These 

constraints are the PlUcker relations. 

On the other hand, if a function !(t) is given as !(t)=2:ySy.;"y, and if the .;"y's 

satisfy all the PlUcker relations, then !(t) becomes the r-function, that is, j(t) is 

written in the form of Eq. (6·2). For example, if .;"91=1, the matrix E in the r-function 

may be expressed as 
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m 

1 

1 
0 

0 1 

~§ -~8 ~0 

... ~~ -~EP ~rn 
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(6·20) 

We have shown that the ~y's in Eq. (6·8) satisfy an infinite number of bilinear 

relations. We now show that the r-function itself also satisfies partial differential 

equations with the same form as the PlUcker relations. 

From the definition of r(t), Eq. (6·2), we may write 

r(t + s)=det(Eote~<t,A> e~<~.A> E) . (6·21) 

If we denote 

(6·22) 

Eq. (6·21) is rewritten as 

(6· 23) 

where the ~y(s)'s are in the same form as Eq. (6·7) and satisfy all the PlUcker relations 

with parameters s=(sl, Sz, S3, ···). Applying Sy( at) to Eq. (6·23) and using the orthog

onality condition of SY (see the Appendix), 

we obtain 

~y(s)= Sy( at)r(t + s)lt=O 

= Sy( as)r(t + s)lt=O 

= Sy( Js)r(s). 

Substitution of Eq. (6·25) into Eq. (6·18) yields 

~( -1)8{Sy,( at)r(t)}{Sy.( at)r(t)}=O, 

(6·24) 

(6·25) 

(6·26) 

where o is given by Eq. (6·19). Equation (6·26) is the bilinear equation for the 

r-function. For example, Eq. (6·15) gives 

S(J( at)r(t)SEB( at)r(t)- S0 ( at)r(t)SEP( at)r(t) + Srn( at)r(t)SB( at)r(t)=O. 

(6·27) 
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Noticing that 5;=1, So=ti, Srn=tN2+t2, sa=tN2-t2, SEP=tN3-ta and SEE 

= t14/12- td3+ t22, we obtain 

(6·28) 

which is essentially the same as the bilinear form of the KP equation. 

It is also possible to directly derive the bilinear equations which are written by 

Hirota's operators defined by Eq. (1·11). For the purpose, we evaluate 

Ptm 

Ptm-i 

Ptm-m+i 

where a1, a2, · · ·, am are arbitrary parameters and the summation is taken over all 

possible combinations of m nonnegative numbers. In the following, we assume that 

the set of numbers (II, /2, · .. , lm) corresponding to the Young diagram Y need not 

satisfy the condition /1 < l2< ··· < lm. Even though the assumption may change the 

signs of Sv and ~v defined by Eqs. (6·6) and (6·7), respectively, the essence of the 

argument below is still kept. 

We have 

ailipl! 

aiai 1'-1Pl!-I 

co 

a1 :l: ail!-Ipt,-I 
1•=0 

a2 1 'P~z 

a2a2 12- 1P12-I 

co 

a2 :l: a2 12 - 1Pt.-I 
12=0 

Noticing Eq. (3·3) and that Pn=O for n<O, we find 

e~(t,ai) 

aie~<t,ai) 

e~(t,a•) 

a2e~<t,a•> 

am1mPtm 

amamlm-Iplm-i 

co 

am :l: amlm-Iplm-i 
lm=O 

co 

amm-i :l: amlm-m+Iplm-m+i 
lm=O 

e~(t,am) 

ame~(t,am) 
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An Elementary Introduction to Sato Theory 

m 

=Ll(ai, az, ···,am) exp~ TJ(t, aJ), 
j=I 

is the V andermonde's determinant. 

Let us introduce a function [;(t; a1, az, ···,am) by 

[;(t; a1, az, ···, am)=Ll(ai, az, ···, am)(expiiTJ(at, aJ))r(t). 

From Eq. (6·29), we have 

[;(t; a1, az, ···, am)=~ai 1 'az 1 ····am 1 mSv(at)r(t). 
l. 

By using Eq. (6·25), Eq. (6·32) is reduced to 

which shows that [;plays the role of the generating function for .;v(t). 

From Eqs. (6·18) and (6·33), we have the following identity: 

=0, 

231 

(6·29) 

(6·30) 

(6·31) 

(6·32) 

(6·33) 

(6·34) 

where 8 is defined by Eq. (6·19). It is noted that the Young diagrams Yi and Y2 are 

the same as those in Eq. (6·18). 

On the other hand, Eq. (6·31) gives 

m+I 
~ ( -1)•-l [;(t; b1, •••, bm-I, a,) [;(t; a1, •• ", a,-1, a;+I, "" ", am +I) 
i=I 

Hence we have 

m+I 
~ ( -1)i-lLJ(bi, •••, bm-I, a,)LJ(ai, ···, a;-I, a;+I, ···, am+I) 
i=l 

(6·35) 
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=0. (6·36) 

Noticing that 

( 1 (m-1 m+1 ) 1 (m-1 . m+1 ·) ) 
=r t1+-2 ~ bn+ ~an , ···, t1+-2 . ~ bnJ+ ~a;/ , ··· , 

n=1 n=1 J n=1 n=1 
(6·37) 

and rewriting t1 for t1+(~'it~lbn 1 + ~':~la/)/2j, we have from Eq. (6·36) that 

( m-1 ( 1 - ) ( 1 - )) Xexp ,t;!1 TJ -zas, bn + 7J -zas, a; 

Xexpc~:TJ(- ~as, an)+TJ( ~as, a;))r(f+s)r(f-s)ls=O 

=0. (6·38) 

Then, by means of Eq. (6·29), we obtain 

~ 1 ( -1)i- 1 ~b1k'···bmk~1-'a1z.···a~~1'Sy.( ~ as )sy.(- ~ as) 

X r(t +s)r(t- s)ls=o =0. (6·39) 

(6·40) 

If Hirota's operators defined by Eq. (1·11) are employed, Eq. ( 6 · 40) reduces to 

For example, the PlUcker relation (6·15) gives 

(4DttDt.-Dt, 4 -3Dt/)r(t)· r(t)=O, 

(6·41) 

(6·42) 

which is nothing but the bilinear form of the KP equation, Eq. (1·9). Similarly, Eqs. 

(6·16a)~(6·16d) give 

(6·43a) 
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An Elementary Introduction to Sato Theory 

(Dtt 6 + 4Dtt 3 Dts- 9Dtt 2 Dt. 2 + 36Dt.Dt.- 32Dts 2) r( t) · r( t) = 0 , 

Dtt(Dtt2 Dt. -2Dt,Dt.Dts + Dt.3)r(t) · r(t)=O, 

respectively. These equations form a subset of the KP hierarchy. 

§ 7. Explicit expression of solutions by the -z--function 
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(6·43b) 

(6·43c) 

(6·43d) 

As mentioned in § 3, the solutions of the Sato equation can be written in terms of 

certain derivatives of the r-function. Then, through the transformations (4·3), the 

solutions of the generalized Lax equation are expressed by the r-function. Moreover, 

from Eq. (5·16), the eigenfunction of the linear system (5·1)~(5·3) is also expressed 

by the r·function. In this section, we give explicit expression of those functions. 

Following Freeman and Nimmo,8> we introduce the notation, 

hW hW ··· hCm) 
11 

l/1, /2, ···, lml= 
hW M~> M~> 

(7·1) 

h(l) 
lm 

h(2) 
lm 

h(m) 
lm 

where hW> satisfies Eq. (3·10). Then, the r-function (6·1) and the solution (3·14) of the 

Sato equation are simply written by 

r(x; t)=IO, 1, ···, m-11 (7·2) 

and 

w-(x· t)=(- 1)JIO, 1, ···, m-j-1, m-j+1, ···, ml 
J ' lo 1 ··· m-11 ' 

' ' ' 
(7·3) 

respectively. 

By using the Vandermonde's determinant defined by Eq. (6·30), the r-function 

may also be expressed as 

If we differentiate Eq. (7 · 4) by t1, we obtain 

(7·5) 

where we have used Eq. (3·10). 

Let us operate Sy( at) on Eq. (7 ·4) for a certain Young diagram Y. From Eq. 

(A·20), we have 

(7·6) 
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By using Eqs. (7 · 5) and (A· 5), Eq. (7 · 6) is reduced to 

5y( at)r=--!,- ~xJhp( ij axk)a'···( ij axk m)am 
m. P k=1 k=1 

XLJ(ax,, "', axm)hb1)(X1; t)···hbm)(Xm; t)IX!,""•Xm=X • 

If we take €; =ax, in Eq. (A ·15), we have 

where ax means (ax" ax.,···, axm). We then obtain 

5y( Jt)r= m1 
1 ~ ~hpxJxJ' 
• IY'I=m p 

(7·7) 

(7·8) 

X §y,(ax)Ll(ax" ···, axm)hb1>(x1; t)···hbm>(xm; t(I, .. ·,Xm=X. (7·9) 

The orthogonality condition for the irreducible characters, Eq. (A· 4), yields 

(7·10) 

By taking E;=ax, in Eq. (A·13) and substituting SY(ax) into Eq. (7·10), we have 

ax, Vm ax, Vm-t+l ax, Vt+m-1 

ax. Vm ax. 11m-t+l ax. v,+m-1 

5y( Jt)r= hb0 (x1; t)·· · hbml(xm; t)lx,,-.. ,xm=x 

axm Vm axm J.Jm-t+l axm v1+m-1 

(7·11) 

where [!II, l.lz, ···, l.lm] is the partition corresponding to the Young diagram Y. 

If we consider the partition[~, 1, ; .. , 11 0, 0, ... , 0] or the Young diagram~}j, then 
J m-J 

Eq. (7 ·11) gives 

5~}/ at)r=IO, 1, ···, m- j-1, m-i+ 1, ... , mi. (7·12) 

Substituting Eq. (7·12) into Eq. (7·3), we find 

1 -
Wj=( -1Yz:-5~}/ at)r. (7·13) 

This is an explicit expression for the solutions of the Sato equation in terms cif the 

r-function. 

The expression (7 ·13) may be simplified by using some properties of the Schur 

function. From Eq. (A ·18), we have 

- 1 ~L( a )a'( a )a. ( a )a1 
5~}/ at)=]T~hPXP ar; atz ··· atj (7·14) 

and 
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An Elementary Introduction to Sato Theory 235 

j ' 

s (- at)=(-1)at+a•+ou+a,_J_~hpx~(~)at(~)a 2 ···(~)a'. (7·15) 
~ ;! p at, at2 atj 

j 

By using the relation between the irreducible characters xJII:O and x~, Eq. (A· 2), and 

noticing that 

we finally obtain 

w·=lp.(- at)r 
j r j ' 

(7·16) 

(7 ·17) 

which is the simplified expression for the solutions of the Sato equation. For exam

ple, we have 

(7·18a) 

(7·18b) 

(7·18c) 

The solutions of the generalized Lax equation can also be expressed in terms of 

the r-function through the transformation (4·3). For example, 

(7·19a) 

(7·19b) 

(7·19c) 

Especially, Eq. (7 ·19a) is nothing but the dependent variable transformation (1·10) to 

reduce the KP equation to its bilinear form; 

It is also possible to express the eigenfunction (5 ·16) in terms of the r-function. 

Substitution of Eq. (7 ·17) into Eq. (5 ·16) yields 

'''=l{r+ p,(- at)r + P2(- at)r +· .. }eto+Ut+A•t.+··· 
'~' r A 112 

(7·20) 

Thus we obtain 
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( 1 1 ) r t1-- tz-- ··· 
A' 2A2

' to+At!H•to+ ... 

r(ti, tz, ... ) e · (7·21) 

§ 8. Concluding remarks 

We have made an introduction to Sa to theory in the preceding sections. It has 

been shown that the Sato equation generates the generalized Lax equation, the 

Zakharov-Shabat equation and the IST scheme. It has also been shown that an 

infinite number of nonlinear evolution equations (the KP hierarchy), of which the KP 

equation is the simplest nontrivial one, share solutions. The r-function is the key 

function to express the solutions. By employing the results of the representation 

theory of groups, we have shown that the partial differential equations governing the 

r-function are closely related to the PlUcker relations and may be written in bilinear 

form. The solutions of the Sato equation, and consequently those of the generalized 

Lax equation and the eigenfunction in the IST scheme, are explicitly expressed by the 

r-function. 

Since the aim of this paper is the elementary introduction to Sato theory, we did 

not include any further results. The extension to the multi-component systems 

includes nonlinear evolution equations such as the nonlinear Schrodinger equation 

and the sine-Gordon equation. The theory also applies to discrete systems such as 

the Toda equation. Date, Jimbo, Kashiwara and Miwa have extended this theory by 

using the method of field theory. In this approach, the relationship between the 

soliton equations and the infinite dimensional Lie algebra becomes apparent. More

over, the vertex operator is shown to have a close relation to the B~cklund transfor

mation. Interested readers may refer to Refs. 10)~ 14) and 16). 
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Appendix 

--Results from the Representation Theory of Groups --

In this appendix, we present some results of the representation theory of groups 

which are useful to discuss the structures of the r-function. 

A.l. Irreducible character 

We consider the symmetric group Sm, i.e., the permutation group of m numbers. 

The number of elements is m! . 

Example The elements of Ss are 

(1 2 3) 
3 1 2 ' 
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An Elementary Introduction to Sato Theory 237 

(1 2 3) 
3 2 1 , (1 2 3) 

2 1 3 , (1 2 3) 
1 2 3 . 

The elements of Sm are classified into the classes (1a', 2a•, ···, mam), where a1+2az 

+···+mam=m. 

Example For S3, we have 

(31) 3G 2 ~), G 
2 n. 3 1 

(1\ 21) 3G 2 n. (~ 
2 ~), G 

2 ~), 3 2 1 

(13) 3(~ 2 ~). 2 

Irreducible representation of Sm is characterized by the partition [A], where 

[A]= [A1, Az, · · ·, Am] 

means the set of numbers satisfying 

A1+Az+···+Am=m, 

A1~Az~··· ~Am~O. 

To each partition [A] there corresponds a Young diagram. 

Example For S3, we have 

3+0+0~[3, 0, 0] or [3] ~ITJJ, 

2+1+0~[2,1,0] or [2,1]~SJ, 

1+1+1~[1, 1, 1] or [13] ~§. 

The partition has the one to one correspondence to the set of numbers 

(II, lz, ···, lm) introduced in § 6. Namely, 

[A]~(ll, lz -1, · · ·, lm- m + 1)~(11, lz, · · ·, lm) . 

Example For S3, we have 

[3] ~<o.o,3)~(o,1,5), 

[2, 1]~(o, 1, 2)~(o, 2, 4), 

[13] ~(1, 1, 1)~(1, 2, 3). 

If a is an element of Sm belonging to the class (1 a,, 2a•, · · ·, mam), then we have a 

relation, 

(A·1) 
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where sy is defined by Eq. (6·6), xY(a) is the irreducible character, I Yi is the size (the 

number of D's) of the Young diagram, and the summation is taken over all the Young 

diagrams of size m. 

Example If aE(31), then we have 

ts1= ~ { xiTIJ(a)SITIJ(t)+ xBJ(a)SBJ(t)+ x§(a)S[t)}. 

The values of the irreducible characters are determined by Eq. (A ·1). The 

values for all elements belonging to the same class are identical. Hence xY(a) may 

be written as xJ. where p is the class to which a belongs. 

Example For Ss, we have the following chart of the irreducible characters: 

irreducible character 

class number of elements 

xB=l X§ xiTIJ 

(1") 1 1 2 1 

(1', 21) 3 1 0 -1 

(3') 2 1 -1 1 

From the definition of the irreducible characters, we especially have 

(A·2) 

There exists an orthogonality relation of the first kind among the irreducible charac

ters, 

(A·3) 

where the summation is taken over all the elements of Sm. Since the irreducible 

characters are identical for all elements belonging to the same class p, Eq. (A·3) may 

be rewritten by 

where 

1 "'h y Y'-S' 
- 1 £..... PXPXP -uyy', 
m. P 

m! 

is the number of elements belonging to the class p. 

A.2. Schur function 

Let us define F(x) and ({Jj, j=1, 2, ···,by 

(A·4) 

(A·5) 

(A·6) 
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An Elementary Introduction to Sato Theory 

By equating the same powers of x in Eq. (A· 6), we obtain 

On the other hand, we have 

where 

Integration of Eq. (A ·8) yields 

00 

F(x)=exp~ ttx 1 , 
l=! 

which, by means of Eq. (3·3), reduces to 

Then, from Eqs. (A· 6) and (A ·11), we find 

rpj(€)=pJ(t). 

The Schur function is usually defined by 

€111m €!llm-1+l 

€2 11m €211m-1+l 

€mllm €mllm-1+l 

S\v](€)= 
€!0 €!1 

€20 €21 

€mo €m 
I 

€!111+m-1 

€2111+m-1 

€m 
111+m-1 

€! 
m-1 

€2 
m-1 

€m 
m-1 

239 

(A·7) 

(A·8) 

(A·9) 

(A ·10) 

(A·ll) 

(A ·12) 

(A·13) 

where [v] means the partition [v1, v2, ···, vm]. (See for example Ref. 17).) It is noted 

that the denominator is the Vandermonde's determinant L1(€I, €2, ···, €m). Equation 

(A ·13) may be rewritten as 

r{Jvm r{Jvm-1 +I r[Jv1+m-! 

.Sy(€)= 
r{Jvm-! r{Jvm-1 r[Jv1+m-2 

(A·l4) 

r{Jvm-m+! r{Jvm-1-m+2 
... 

r{Jv1 

where Y is the Young diagram corresponding to the partition [ v]. 

By substituting Eq. (A·12) into Eq. (A·l4), we find that Sy(€) is equal to Sy(t) 

defined by Eq. (6·6). Then, by using Eq. (A·9), we see that Eq. (A·1) is equivalent to 
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(A·15) 

A.3. Expansion of functions in S y( t) 

An arbitrary analytic function !(t) may be written by 

f(t)= f: 1: c<m>(at, az, ···, am)tta'(2tz)a•(3ts)a····(mtm)am' 
m=O a1+Za•+-·+mam=m 

(A·16) 

where c<m>(at, az, ···, am) is constant. It is clear that all the elements of the set 

{t1a'(2t2)a•(3t3)a•···} are linearly independent. 

From Eq. (A ·1), we have 

The orthogonality relation (A· 4) gives 

Sy(t)=-.!., l:hPxJtta1(2tz)a•···(mtm)am. 
m. P 

(A·17) 

(A·18) 

Equations (A ·17) and (A ·18) show that there exists a linear transformation between 

{Sy(t); I Yl=m} and {tta'(2tz)a•···(mtm)am; a1 +2az+ ··· + mam=m}. Hence we find that 

f(t) can be uniquely expressed in Sy(t) as 

Substituting Eq. (A· 5) into Eq. (A ·18), we have 

which gives 

Then, using the orthogonality relation (A ·4), we find 

Sy(Jt)Sy•(t)it=o=oyy•. 

Furthermore, if we apply Eq. (6·24) to Eq. (6·10), we obtain 

cy= sy< at)f<t)lt=O. 
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