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Asymptotic expansion of the second-order linear ordinafferéntial equationl”’ + k2 f(z)¥ = 0, in which the real
constantt is large andf = O(1), can be carried out in the manner of Liouville and Green mtedif does not vanish.

If f does vanish, however, at say, then Liouville-Green expansions can be carried oheegide of the turning point

x = xo, butitis then necessary to ascertain how to connect theravilds first accomplished by Jeffreys, by a comparison
of the differential equation with Airy’s equation. Sooneafvards, the situation was found to arise in quantum mechani
and was discussed by Brillouin, Wentzel and Kramers, aftesrwthe method was initially named. It arises throughout
classical physics too, and is encountered frequently whedysg waves propagating in stars. This brief introduttio
is aimed at clarifying the principles behind the method, andlustrated by considering the resonant acoustic-gyavi
oscillations (normal modes) of a spherical star.
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1 Introduction 2 TheLiouville-Green expansion

It is common, and often apparently most straightforward, t§ modern times, the term WKB approximation has com-

approach problems in macroscopic stellar physics by solflonly bgen aSS|g_ned to Whﬁ}t IS more properly regarded as

ing the governing equations numerically. However, simpi&€ léading term in the Carlini-Liouville-Green (LG) ex-

ter it is usually necessary to idealize the situation in hanffrential equation

sometimes grossly so, to render the equations tractabde. Tiry )

outcome can reveal the phenomenon under study in a vefyz +Ef(2)¥ =0, (1)

different light frqm that prowded_ by specific numerical X \which % is real (positive) and large, anfl — O(1) is

amples. In particular, because in some respects analytlcie\l T St
o : slowly varying, in the sense thats |H; '| = |—dIn f/dz|.

results are more general, appreciation of their structare ¢ . . ! o

Such equations arise throughout classical physics in itescr

guide one more easily towards greater understanding. Evi%é} waves, and asymptotic approximations to their solgion

viewed merely as a diagnostic tool, that understanding, a%gpear to have been considered first by Carlini (1817), ac-

sometimes just the analytical solutions themselves, hatuaIIy in a study of a problem in celestial mechanics, and

proved to be useful in the past simply for finding errors in o
numerical computations, both before and after publicatioﬁUbsequently by Green (183.7) and by L|ouy|lle (1837).
One of the simplest physical examples is that of small-

Numerical and analytical investigations are complementar ) _ ! : . .
and each would be much poorer without the other. amplitude adiabatic acoustic waves in an otherwise homo-

. ) ) o ) . baric fluid, whose linearized governing equations are
This is the first of a short series of invited articles in-

tended to illucidate some of the analytical techniques th (’53_25 R )
are used in macroscopic stellar physics. It discusses one 0fot? ’

t_he most us_eful te_chnlqu_es for §tudy|ng j[he wave-like SO|I75-/ = 0p=c2p=c(p + EVpo) = —pocidiv € , 3)
tions of ordinary linear differential equations of secomd o

der: namely, the so-called Liouville-Green expansion comvherep = py + p’ is pressurep = py + p' is density
bined with the method of Jeffreys for connecting solutionand¢ is displacement, the zero denoting equilibrium value,
across turning points, more commonly known as the WKBhe prime, Eulerian perturbation, afidenoting Lagrangian
approximation. The method is presented and, | hope, maplerturbation. The square of the sound speed in the unper-
plausible, giving a slight flavour of the background arguturbed fluid is given byc? = ~1po/po, Where~, is the
ments without resorting to mathematical proof, with the airfirst adiabatic exponent. The unperturbed presggiiecon-

of guiding those not already conversant with the method tstant, and in this simple cagg andc? are considered to
wards its proper use. vary with only a single Cartesian coordinateand not with
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790 Douglas Gough: An Elementary Introduction to the Jinks Appmation

time, t. The divergence of equation (2) may be combine8ubstituting expressions (6) and (8) into equation (7)hwit

with equations (2) and (3) to yield the equation k?k? in place of(w? — w?) /c* — k3, and equating to zero
1 926p terms of like order, yields the sequence of equations:
2 -1 _
\V4 6p—|—Hp ’I’L.V(SP—C—Q B =0, (4) 1/16::&5’ (10)
where H,'n = —VInp, defines the density scaleheigh®iq Wy , + (g — 2011 )Wo0 =0, (11)

H,, andn is a unit vector in the: direction. In the special
case in which the disturbanég varies only in thex direc-  2iy)WUf, ; + (i) — 2001 )Wo.1 + Wy o + 207V
tion, equation (4) reduces to the Klein-Gordon equation

, , + (i — = 20015) W00 =0, (12)
9°x 2 207X
W"’%X:Cﬁa (5) etc., . | N
1 where here and henceforth the prime denotes differentiatio
wherey = p, *dp and with respect to the argument. These equations can be solved
) 2 dH, successively.
we(2) = a2\ TR ) (6) The first is equation (10), whose solution is
14
Because, andc? are constant in time and are indepen®o = =+ / kdz . (13)

dent of the co-ordinates perpendicularrg equation (4)
admits oscillatory solutions with frequency of the form

op(x,t) =R {pé\l/(z)ei(k*m*“t)} , whereR denotes real

One now encounters in equation (11) a nonuniqueness, be-
cause we have two new functionby o and,, with only
one equation to determine them. This is a result of the flex-

part and¥ satisfies ibility | introduced by expanding the two functionlg, and
42w w? — w2 ) ¥ in a representation of only a single functign so there
az2 ( 2 /ﬁ) v=0, (7) is redundancy. One is therefore at liberty to choose either

_ ) _ one of those functions, or any relation between them, as one
in whichk, = [k_|, wherek is a constant wavenumberyyishes. How one does that can be regarded as a matter of
component perpendicular te. Equation (7) is essentially conyenience, and first | make the common choice of setting
of the form of equation (1), provided thatis high enough. ., — ( and solving the resulting equation for the leading-

If py andc were actually constant;. would vanish and order amplitudeW, o, yielding
equation (7) would admit solution® = W¥yet?17 where 1)2 1/

U is a constant amplitude arig = /w?/c? — k7. This Yoo oxthy 7 ock v (14)
represents a wave travelling with speed:= w/ |k| = ¢ the signs of proportionality indicating that one can multi-
in the directionk = (k.,+k ), provided thatk is real, ply the functions by any constant. One can continue, but
because the phase = k.z — wt is invariant in a frame evidently the equations are beginning to become somewhat
of reference moving in the direction & with speedv,, Ccumbersome; rather than trying to write down a general pro-
namely withz = = + %ﬂ;, wherek — |k:|’1 k. The cedl_Jre, it ?s preferable to tailor one’s way through the com-
guantityv, is called the phase speed. plexity, using prudence to discern the way.

This solution motivates the LG expansion. Suppose first Of course one could cut the cackle by setting= 0,
thatf > 0 in equation (1). I andw? in equation (7) vary 7 > 0,Yielding2y/ g, +4"Wo ,—i¥g ,_y = 0, ¥ = ¢y,
slowly with = one can writg(w? — w?) /2—k2 = k2x2(z), Whence
wherek is constant ane = f'/? is a function whose mag- g, , = Lig=1/2 / kY2 de (15)
nitude is of order unity and whose scaleheight is much '
greater in magnitude thar . In other words, the equilib- this has the formal advantage of generating the entire se-
rium, background, state varies only little over the charaguence of functions in one compact formula. However, the
teristic lengthscalé—! of variation of the wave. It is only sequence does not always converge. Evidently, if one ex-
under such circumstances that the concept of a wave is readnds only¥, and if 1) does not describe the phase ad-

ily interpreted. equately, the (real part of the) exponen#&i¥ will van-
Thus, one poses a wave-like solution to equation (7) H§h in the wrong place, and althoughmight be forced to
setting have a zero in the right place in an attempt to rectify that, it
Tt - . cannot remove a zero iR(e**¥) that is in the wrong place
U = Ty(2)e" >N = Wy (z)e’ ()= | (8) without itself being singular at that point. Therefore, the

regardingk as a large parameter. It is usual then to expaerus qf convergence of thg expansion is likely to be smaller
¥ in inverse powers of; here | shall afford myself the flex- than it need be. Alternatively, one could expand only

ibility of expanding both) and¥: as was common in the early days. The procedure is alge-
braically more complicated, but it tends to deliver a more
Vo= o+ kT R R robust approximation. Alternate terms are real and imagi-
Uy = U+ k "Woy +k2Wgo+.... (9) nary, the latter accounting for the variation of the ampléu
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In this respect, it is interesting to observe that if instedd The solutions therefore vary exponentially. Such ‘waves’
settingy; = 0 in equation (11) one set¥,, = 1, then are termed evanescent; evidently they do not propagate in
Py = il /24, whenceyp, = %111 k, and the z direction.

Near a point whera? vanishes, the ordering of the se-
quence of equations (10)—(12) etc. is not preserved, and the

which reproduces the solutions implied by equations (18PProximation cannot be used.
and (14). Proceeding further, one obtains the second-order

correction to the phase, which is given by equation (13 Normal form

below; then the third-order term provides the second-order

correction to the amplitude, which is identical to equatiogquation (1) is in what is called normal form, having no
(18). term in which ¥ is singly differentiated. It might appear
The algebraic technicalities are eased by expanding bethfirst sight that to add such a singly differentiated term
1 and¥,. One encounters nonuniqueness at each stagewould be of no serious consequence, because the formal LG
the sequence of equations (10)—(12), and it is often expexpansion could still be applied to the more general equa-
dient to alternate between expansionslin ande, which tion. However, to do so is not prudent, for unless one is very
is not surprising given that the terms in the phase expagareful indeed, and perhaps even if one is very careful, one
sion alternate between being real and imaginary wheis  risks ending up with a representation of the solution whose
held fixed. Thus, one can s&t ; = 0 in equation (12) and domain of applicability is more restricted than it need nec-

U ~ e:tikfndzf% Ink _ Kfée:tikfndz (16)

)

obtain essarily be. To illustrate the point let us consider again an
L S d2 1) equation with constant coefficients:
w? = :l:i/li (@KJ ) dZ N (17) dQ\IJ d\I/ )
_ o — 22—+ k¥ =0, (20)

and then set)s = 0 in the subsequent equation in the sedz dz
guence to yield with 7 = O(1). Its solutions arexp(—nz £ iy/k? — n?z).

12 Applying the LG expansion in the usual way, up@gk),
Voo = —im‘zpn‘m , (18) yields the WKB equations:

z

-
and so on. Equations (17) and (18) are somewhat simpf@fr =k, (21)

to derive by this procedure than are their counterparts iy ,

the pure phase expansion. The expressiongfand ¥ » Voo =1 (22)
are essentially first and second derivatives of/? respec- ’
tively; higher-order ‘corrections’ to the solution contajiet
higher derivatives, which generically augur eventual dive¥ ~ ¢~ 7*%%= | (23)

gence: the expansion is asymptotic and must be terminatpghg approximate solution is valid only for a rangeof =

at some order. _ ~ satisfyingd < 2k/n?.
If one needs to develop connexion formulae of higher- If, on the other hand, one writels = ¢~ "7u(z), then

order than those presentedsiit is prudent to arrange for

Vo, andyp41 t_o be related in such a way as to ensur 1; kP =0, (24)
that the Wronskia | ¢/ — U’ W_ of the approximations dz2 = )

¥, andU_ to linearly independent solutions of equatiovhich is in normal form. Now the WKB-approximate so-
(7) is constant (Froman and Froman, 1996), as it is for tHgtion is actually exact. Of course, one could continue the
exact solutions, and as it is also for each of the asymptofi#€Ct LG expansion of equation (20) to higher order, which
representations (16) and (19). simply provides the expansion of/k? — n%z in inverse

Terminating the LG expansion at equation (14) provide20Wers qka, but i.t takgs the (formal) solution of two of the
the simplest, leading-order, representation. It resutienf cifierential equations in the analogue of the sequence-(10)

solving just the first pair of equations in the sequence ng) etc. for each term, which_ is a.Iot of work. Ther_efore iF
ginning with equations (10)—(12). It is that formula whicHs undoubtedly at least expedient first to cast equatiorts wit
nowadays is often called the WKB approximation. singly differentiated dependent variables into normairfor

. . 9 . , before proceeding with the expansion.
In cases wher¢ < 0in equation (1) < 0in equation of " Id b id that the d trati ith
(7), solutions can be obtained by exactly the same proce- course, 1t could be said that the demonstration wi
dure as the wave-like solutions, provideid=)| remains of an equation with constant coefficients proves nothing about

order unity so that the ordering of the sequence of equatio pansions of equations with non-constant coefﬁments.
(10)—(12) etc. is preserved. The outcome in the so-caIIJ at is not wholly the case, however, because provided the

WKB approximation is again given by equation (16), Whicﬁ:oefﬁments vary ;mogthly, so do the soI_ut|ons, and one can
is better rewritten: say that the casting into normal form is advantageous at

least for equations whose coefficients are close to being con
U~ |n|*1/26ikf Inldz (19) stant. Furthermore, we have a great deal of experience with

whence

Www.an-j ournal .org (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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equations of this kind, and we know that under a wide vard  Critical acoustic cutoff frequencies
ety of circumstances these asymptotic techniques based on
small departures from constancy work much better wheefore proceeding to a discussion of the JWKB approxima-
the departures are not so small than perhaps one might fééeh, which | intend to illustrate with the problem of deter-
they ought. This is not mathematical proof, but pragmatisrmining asymptotic properties of acoustic-gravity waves, |
based upon which | strongly recommend the taking of thgause for a moment to discuss the so-called critical cutoff
trouble to formulate the problem sensibly at the outset. Teequencies. They represent the frequency beneath which
do sois unlikely to cause a deterioration in the eventual out wave cannot propagate, although, when described in
come, and | baldly assert that it is actually very likely tdhese physical terms, it must be appreciated that they are
provide substantial improvement. not uniquely defined. That is simply because the concept of
Second-order linear ordinary differential equations capropagation itself is not well defined. As | alluded at the-out
always be cast into normal form, just as they can alwayg$t, even the idea of a wave is itself an asymptotic concept,
be case into self-adjoint form. If one has, for example, th@nd is not easily interpreted unless the scale of variation o

equation the background state is substantially greater than the mag-
a2y dy ) s nitude of the inverse wave number — the very conditions un-
T2 Ty, HREy =0, (25)  der which the approximations described here are designed

wherek is constant, and) and » are functions ofz, and to be used. It has been a consequence of the resulting im-
if one wishes to preserve the independent variablehen ~Precision that some apparently unsuspecting workers have
one writesy = u¥, substitutes into the differential equa-P€en 0o careless in writing down what should have been
tion, and simply choosesin such a way as to make the co-Precise equations to describe a physical situation, nitura

efficient of dW /dz vanish. The result is = exp(— [ 7dz) under idealized, yet well defined, conditions, and have so

and degraded their inferences unnecessarily.
d2o s o o dpy The critical frequency that is perhaps the most familiar
422 + (k ko= = &) v=0. (26) in physics is the plasma frequenay,. Indeed, its very ex-

It is also sometimes desirable to transform the indepeﬁ-tenc_e IS th(;e reasont\;vhi/hplﬁsmg IS S0 name;d ]Slbrlefeé helre
dent variable into something more natural, such as acoj8-an lonized gas, not to the liquid component of blood, al-

tic radius (namely, sound travel time from the centre of th ough EP; badS|s fc;r the I?::?rs appelllat|on |str(]astse?ttaé i
star), for example, if one were studying stellar acoustizcesa samg.) € advantage of this eéxampie over that of acoustic-
jrawty waves is that it can be considered for an infinite uni-

That alone would destroy the normal form, if the equatio orm plasma (in the absence of an imposed magnetic field),

had been in that form in the first place. However, one ¢ hich L : ff tisfy th
again start from equation (25), but first express it in terfns JPOW ich Langmuir waves of frequency satisfy the equa-

a new independent variableand once again writg = u W, ) ) )
this time withu = (dz/dz)"/2 exp(— [ n%2dz), to obtain ~ 4°% it _2"‘)10\1, —0, (30)

dz2
2 2
i—\g + kK2 (%) —wv(z)| ¥ =0, (27) with ¢ andw? = n.e?/meey €ach being constant. In that
v v case the critical cutoff frequenay, is quite well defined
where in the physical terms | used above, as is the concept of

dz ’ gate in thez direction (which, of course, is arbitrary) with
In the case of waves propagating in thdirection, it can be wavenumbek = , /w2 — wg/c, whereas temporally peri-

useful to replace by the mass variable = [ p dz=. Waves e gisturbances withy < w, are evanescent, having an
in either a homobaric fluid or in a plane-parallel atmosphere

stratified under constant gravigysatisfy e-folding lengthe/, /wj — w?.
9p  _,0%p I might mention, in passing, that Langmuir waves have

g2 ¢ g (29)  been likened to the Jeans waves in an essentially infinite
eHniform self-gravitating fluid, a situation with which many
9z)tstronomers are more familiar. These waves are said to sat-

v —w? 4+ dw w(z) = ﬁjz 1d, (%) C (28) propagation: high-frequency waves, with > w,, propa-
xr

whereé = pc, which establishes a transformation betwe
the Klein-Gordon equation (5) and the wave equation (2
By applying the WKB approximation to the usual wave!

equation analysis it is straightforward to demonstrateaha <12_\1’ w? — w} U—0 (31)
arbitrary infinitesimal disturbanc® propagates at a rate  dz2 2 -

along they coordinate in either direction without significant(they actually do, but only approximately, for to avoid the
change of shape and with amplitude varyingc&s, pro- so-called Jeans swindle the background state must vary,
vided that the scale of variation of that disturbance is muaiowly, in either space or time, as Jeans himself recogiized
less than the scaleheightafif the disturbance varies sinu- wherew? = 47Gpo. However, with respect to scales much
soidally with time, the wave equation (29) reduces directlgmaller than the Jeans lengthu;, the gravitational term is

to the form (1). negligible, and equation (31) loses its cutoff. It is onlyemh
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po or ¢ varies withz that a cutoff is reintroduced, but thenglecting the Eulerian perturbation to the gravitationabme
the spatial variation tends to cloud the idea of propagatiotial) are

The resulting imprecision is emphasized by comparing th@g 2 L% L2\ op

Klein-Gordon equation (5), which contains an explicit cut=y” + <; - w2r2> 3 ( - m) o 0, (33)
off frequencyw,, with the precisely equivalent wave equa-

tion (29), which does not. The issue at stake, if one wishes t9p | L%y 5p— gng —0 (34)

retain the physical picture, is to define, in a spatially varydr =~ w?2r2 p T
ing medium, where the wave can propagate and where(& g. Gough, 1993) with respect to spherical polar coordi-
cannot. | hope it is evident now that that is unlikely to Ieaqal,ates(r7 0,4), where¢ is the vertical component of dis-

to a universally well defined end. But it can be well define@lacement from which has been factored a spherical har-
under restricted circumstances, restricted in a sensd thahonic functionY;”*(9, ¢), dp continues to be the associ-
shall explain below. And provided that one confines oneselted Lagrangian pressure perturbation, but now With

consistently to the circumstances in which one has chosgittored outy is the local acceleration due to gravity, with
to pose the problem, a workable definition can emerge, agga|eheighﬂq, and

with it the chance of a correct solution to the problem in 9

hand. Indeed, it is to the task of determining how the sz = £ y o4 L_zg , (35)
lutions of equation (1) in this uncertain hinterland cortnec 9 Hy  wir

the well determined representations (16) and (19) that tianich | call the f-mode discriminant,? = i(/ + 1), where
JWKB procedure is addressed. [ is the degree of the spherical harmonic that describes the

Before proceeding, permit me to digress on the iss@gular variation of the Eigenfunctions. The other vagabl
of the choice of dependent variable. It is not uncommon ®@Pntinue to retain the meanings | assigned to them earlier.
work with the componerg := n.¢ =: &, of the displace- One can now eliminatg from equations (33) and (34) to
ment, or, equivalently, velocity, in the directionof vari- Yield a single second-order differential equation for,
ation of the background state, rather than the (Lagrangiatfiich, after reduction to normal form, is approximated by
pressure perturbation. In the very simple case of the pug ¥ )
acoustic wave considered §2, one first separates the par- 3,2 + KW =0, (36)
allel componen{U from the componen'F of perpendicular whereW = (3 /gpF)'/25p and
to n, and then eliminates the perpendicular component and

op from equ_ations (2) and (3). The procedure is straightfoi2 _ w? —2‘*}3 _ L_; (1 _ N_j) ’ (37)
ward, and yields ¢ r w
9 in which
v ” H,'VinV 1
1= age) St HL Vin Vg + N2_9<F_%> (38)
C
1 92 . . g
(vi — c_Qﬁ) (n.V - H’nl) n.Vg =0, (32) s the square of the buoyancy frequency.

Equations (36)—(38) generalize equation (7). They are

in which V2 is the V2 operator in the plane perpendiculafot the exact equations to result from equations (33)—(35),
ton;also ., = (_n_vm%)—l andH.» = (—n.Vlan)_l but are what | call the planar approximation to them, valid as

are the scaleheights ¢f andc?, respectively. This equation K — oo Thhey O:O n_ot in<f:|udhe the_ Iocr?l effect. of Sgh.eric"#
is rather more complicated than equation (4). In particulageometry’t e only sign of sphericity that survives beirg t

it is of higher order, although after effecting the separati globally geometrical_ representatidn/r .Of the hor_izonte}l
wavenumber. Including all the geometrical terms is straigh

== [‘b(z)ez(k”m m)} the resulting ordinary differen- ¢,yarg (Gough, 1993); they merely add a little complexity
tial equation satisfied by (z) is of only second order, as to the formulae without changing those aspects of the math-
is equation (7). The corresponding equation pertaining matical structure of the equation that concern us here, so
a background state that has non-Cartesian symmetry, sydfave omitted them for clarity. The quantity., which is
as spherical symmetry, is yet more complicated. It providefefined by equation (6), is what is called the acoustic cutoff
justification for working with an intrinsic scalar, such@s  frequency. It is not exactly a general cutoff frequency®or
rather than the component of a vector. | remark also that i the sense that | described cutoff in connexion with equa-
this simple case in whicpy is constant, the Eulerian andtions (30) and (31), but is instead what that frequency would
Lagrangian pressure fluctuations are numerically the santgs for spherically symmetritL. = 0) waves, uninfluenced
| work formally with §p rather tharp’ because that gener- by buoyancy.
alizes more easily to the situation in which the equilibrium  Equation (36) is similar to equation (1), with= w/é,
state is stratified under gravity. ¢ being a characteristic value of(such as the value at the
Let us consider now the adiabatic acoustic-gravityturning point, wheref = 0), and with f depending on a
waves in a spherical star. The governing equations in tiparametery = N /w, whereN is a characteristic value of
Cowling approximation (an approximation obtained by neN. That view is appropriate for discussing acoustic waves.
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794 Douglas Gough: An Elementary Introduction to the Jinks Appmation

Strictly speaking, equation (36) is not precisely of thexfor ~ The full critical cutoff frequencies .+ associated with
(1), becauser depends ok, but evidentlyf becomes only equation (36) fof are easily determined by factorizidg?
very weakly dependent dnask — oo and the validity of (Deubner and Gough, 1984):
the asymptotic arguments is unaiffected. For gravity waves -2 _ w(w? — w2 )(W? - w?), (39)
one takes: = L?N /w anda = w/. +
where

Forgive me for emphasizing at this stage what should2 1, ) 1, ., - 5o 1/2
be perfectly obvious: there is no direct physical relations = 5 (5L +wo) £ | 5 (5L +we)™ = N75¢ , (40)
whatever between the acoustic cutoff frequeagyand the
buoyancy frequency. The acoustic cutoff, which appear
to have been discussed first by Lamb (1909), arises whep — Le ’ (41)
acoustic waves cannot propagate vertically because the in- 7
verse wavenumber is comparable with the density scaihich is sometimes called the Lamb frequency. The situa-
height; consequently there is inadequate inertia on the lo#ion is thus rather more complicated than itis for pure acous
density side of a compression to resist the inevitable acceltic waves, in which buoyancy plays no part, and for pure
ation of matter, thereby annulling too much of the pressu@#avity waves (in an incompressible fluid, in which sound
gradient to permit adequate subsequent compression of fiays no part), which I have not discussed explicitly here.
surroundings, essential for causing the perturbationappr Nevertheless, it is apparent from equation (39) that solu-
agate in a wave-like manner. The dynamics operates on fiigns resembling propagating waves of the form (8) can be
vertical component of the motion, and is most effective fdiound with ¢ real for waves witho®> > w? and for waves
motion that is purely vertical: that motion has no horizonwith w? < w?, and indeed can be approximated by the
tal variation. Buoyancy, on the other hand, exists only whe/KB solutions (16) provideds™ is large. Ifw? lies be-
there is horizontal variation (cf. Reye, 1872) and therefofweenw? andw?, thenk™ < 0, the waves can be regarded
L must be nonzero, as is evinced by equation (37). One wag being evanescent, and can be approximated by the solu-
of regarding it is to observe that the force of gravity acttions (19). What is most commonly encountered in practice
ing on a horizontally varying Eulerian density perturbatiois @ spatially varying yet temporally invariant background
is not in hydrostatic equilibrium, and the unbalanced prestate, in which the frequenay of a wave is a conserved
sure gradients that are so engendered cause any typical fldigntity, a property which here | take for granted. There the
element to be accelerated. That describes the predomina@yve can encounter regions in which, for givenix™ > 0,
dynamics of gravity waves. Confusion in the scientific literand thereforel” /¥ < 0 — the hallmark of a typical wave
ature between the two totally different processes characte and regions in whichk® < 0 and¥”/¥ > 0. They
ized byw, and N appears to have arisen because, at leadte separated by well defined points at whigR = 0,
in an isothermal atmosphere with constant the formu- and¥” = 0. It is therefore convenient to define the for-
lae for the two quantities can be made to look somewhBi€er regions, quite precisely, as regions of propagation (of
similar, and, ify; = 5/3, their values are almost the sameten abbreviated as propagating regions, even though the re-

differing by only 4 per cent. That is no case for hiding th@ions themselves do not propagate), and the latter as re-
stark distinction between them. gions of evanescence (or evanescent regions). They are sep-

arated by the points at whicli” = 0, where the waves

Permit me also to make another point which | hope biurn from one form to the other; these points are called turn-
now is also quite obvious. There is a clear procedure forg points. Generally, waves in the propagating region can-
eliminating¢ from equations (33) and (34) — one differenot propagate significantly beyond a turning point. Yet the
tiates equation (34) to obtain an equation d86p/dr? in  waves are very smooth thef@” = 0), so in reality unac-
terms ofd¢/dr and¢, and alsadép/dr anddp, then sub- counted dissipation processes cannot be invoked to destroy
stitutes ford¢ /dr using equation (33), and then féusing them, in contrast to the dynamics in the vicinity of a criti-
equation (34), leaving a second-order differential equmati cal layer (e.g. Booker and Bretherton, 1967), for example,
for 6p — and a well defined procedure for casting the revhere waves are absorbed. Therefore isolated turningspoint
sulting equation into normal form, which | describedi®y must be points of total reflection. If there are two closely
yielding a unique dependent varialiig(to within an incon- spaced turning points enclosing an evanescent region, then
sequential multiplicative constant) and a unique equati@f course, barrier penetration can occur, and reflectiontis n
(36). Therefore the structure of equations (36)—(38) id welbtal.
defined, and so therefore is the acoustic cutoff frequency Although the turning points of equation (36) are defined
and one is not at liberty to change it. | hasten to add, hoyrecisely, they do depend on the choice of both dependent
ever, that this conclusion holds only within the restrinBd and independent variables. A different dependent varjable
have imposed upon myself: namely to use Lagrangian prestch as the displacemeagf,and, more pertinently, its asso-
sure perturbation (or, more precisely, the appropriate mudiated counterparE that satisfies the normal form of the
tiple of it) as my dependent variable, and radiuas my governing equation, is not in phase with the Lagrangian
independent variable. pressure perturbation, and its points of inflexion (togethe

Sand where
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with the corresponding acoustic cutoff frequency) mustghethe gravitational perturbation included (which for radial
fore be different. Indeed, so too do the local vertical wananwaves can be cast as a second-order differential equation).
bers differ. But they are all well defined. Carrying out théf that equation is reduced to the Cowling approximation, it
procedure corresponding to the derivation of equation (3@grees with equation (47) with = 0, as indeed it must.

yields, again in the planar approximation, These equations also reduce essentially to corresponding
2= forms presented by Schmitz and Fleck (1998) in the case
3z T K22 =0, (42) when~y; is assumed to be constant.
where
22 L2 N2 5 The JWKB approximation
k=D (1- ), (@3) PP
C T w

Consider a wave, given approximately by equation (16),
propagating to a turning point, beyond which it is evanes-
w2 = _C (1+2 <—)) N2 ( — £> (44) cent. The wave is therefore reflected, and travels back into
. 4H(25) dr )" Hg )’ the region of propagation. An interesting and important
the mathematical structure of which is superficially similaduestion is: What is the phase change, if any, on reflection?
to that of equations (36)—(38) and (6). The schlg) is Viewed mathematically, one has the two solutions (16) well

in which
2

defined according to inside the region of propagation < z, say, where, is the
5 o location of the turning point, the positive and negativesig
H=H1+ (1 — L_C) Hb (45) in the exponent representing the incident and the reflected
=) g w?r? ¢ wave respectively. In the evanescent region well beyond the

it depends o, rendering this formulation of the problemturning point, equation (19) holds; here one must choose
actually rather more complicated than that in termg$maf the negative sign, because there is no disturbance far be-
However, the formula for the corresponding acoustic cutoffond the point of reflection. The question can therefore be
frequencyws., defined in the sense of being the cutoff frefestated thus: what combination of the two solutions (16) in
quency for propagation of waves wifh= 0, as is the cut- z < z, match onto the decaying solution (19)in> z,?
off frequencyw. defined by equation (6), is not dissimilarReaders not interested in the mathematical background to
(aside from a sign) to equation (6), witfi =) being instead the answer to this question could skip the following subsec-
the scaleheight ofy;pg. | have had to adorn the verticaltion, save to accept the approximations (55)— (58) to the two
wavenumberX (and the acoustic cutoff frequency, and standard solutions Ai and Bi of Airy’s equation (49).
the buoyancy frequency) with the subscripE to distin-
guish them from their counterparts (37) (and (6) and (38)%
to which, for consistency, | should attach the subscbipt

A distortion of the independent variable also changekhe question posed at the end of the previous paragraph,
the locations of the points of inflexion af andZ, by an in a somewhat different guise, had occupied the minds of
amount which is defined by equations (27) and (28), atnathematicians such as Stieltjes and Stokes in the mid 19th
though, of course, they must always occur on the evanentury. In particular, the young Stokes had wondered why
cent sides of the locations of the nearest maxima to tlitds that one cannot simply analytically continue reprdéaen
evanescent regions. Transforming the independent variatibns (19) — actually, viewed explicitly as a representatib
in equations (36) and (42) to acoustic radius- [ ¢~ 'dr, the Airy integral (48) rather than a representation of the so

1 Airy’sequation

for example, yields lutions of the differential equation (47) — across the togni

R2edw ) point (to be more precise, around it, in the complgxane,
7+ (PK§ —w2) ezl =0 (46) to avoid the singularity in the representation) into the-rep

andT resentations (16). Although the WKB solutions (the termi-

nology | use here is evidently modern, for neither W, K nor

d2c3E b (PR - wzc)c%E _0. (47) B had yet been born) are invalid near the turning poir_1t, and
dr2 therefore cannot be properly connected on the zemtis,
In each case the square of the appropriate acoustic cute@haps one might connect them elsewhere in the complex
frequency is augmented by plane along some contodrchosen to be far enough from
1 aT the turning point thatk f| > 1 everywhere orC. That it
w2, = 172 (1 -2 ch) , (48) cannot be done to produce the correct solution to the dif-

ferential equation was subsequently named the Stokes phe-
whereT, = (—dInc/dr)~! is perhaps properly called the nomenon. What Stokes wanted was to understand this mat-
sound-speed scaletime. Equation (47) is analogous to a ster, and, of course, to obtain a connexion formula to link
ilar equation presented by Christensen-Dalsgaard, Cooplee two forms of solution. After several vain attempts, he
and Gough (1983) describing spherically symmetrical (raeturned to the problem in 1857, and after three days of
dial) adiabatic pulsations of a star with the perturbatmn tconcentrated effort the light (metaphorically) dawned at 3
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that the integral along_ UCy U C vanishes, and therefore
y_(x) 4+ yo(z) + y4 () = 0 for all (finite) .

To span the solution space it is customary to adopt the
two independent functions:

Ai(z) = yo(x) (51)
evidently named after Airy (by Harold Jeffreys), and
C . . .
. Bi(z) = iy (z) — iy (z), (52)
< a not unnatural consequent appellation. Both functions are
real for reale. Itis Ai(z) which is of principal interest here,
ol for that is the solution that is relevant for our main purpose

for it decays, exponentially, for large positive (real) It

can be obtained in terms of a single integfalf a complex
variable by deforming the contod to (—S4+) U S—, on

whicht = e=/35 ort = eti™/35 with s real, whence

Yo(z) =

im/3 iw/3,.\ _ ,—i7/3 —im/3
5 [e I(e"™>z) —e I(e x)} , (63)

which is evidently real whem is real;

Fig.1 The complext plane divided into three regions by the 13
straight linesS_, Sy and S, each subtending an angle of mag-I(Z) = / € 57 ds .
nitude27 /3 with the others. The Airy integrals are defined alongl_h f tF) Bi b d similarl

the infinite contour€_, Co andC;., each of which asymptote to e ur_lc Ion Bl mgy ¢ expres_se _S'm' arly.

S_, So or S, at infinity. Series expansions of the Airy integral (48) were devel-

oped by Stokes (1864, 1871); Jeffreys and Jeffreys (1956)
describe how to obtain asymptotic approximations for large
o’clock in the morning. Excitedly he wrote to his fiancée onz| by Debye’s method of steepest descents. When 0,
19 March, telling her of his new realization, but prefacing ithe saddle points in the complexplane are at = +,/z,
with a poignant acknowledgement of his understanding thghly the one on the positive real axis being accessible to
once they were married he would no longer be permitted g In its vicinity the line of steepest descents is parallel to
work to such hours(Larmor, 1907). the imaginary axis, and by deformir to pass through
The matter is well illustrated by studying Airy’s equa- = /z along that line one obtains immediately f&i(x):

(54)

tion: L 5

&y Ai(z) ~ gr a7 7 exp (—%zi) [1+0 (7)) (55)
— 2 _ay=0 49

azz Y ’ (49) asr — +oo. If < 0, the saddles are at= +iy/—z, the

which has a turning point at = 0, and whose solutions lines of steepest descents being inclined-at/4 from the

can be expressed in terms of Bessel functions of ofder real axis, respectively. Neither is accessibleCto but we

The advantage of using such a simple equation, which, ifay evaluate.. |r113tead and expregg as minus their sum:

cidentally, is central to the discussion of the more genergk ~ F (2iy/7) " (—z)~ Y4 exp [+i (3(—2)*? + )],

equation (1) which follows, is that there are exact integrathence

representations of its solutions which are analytic adtuss |, . _1 1o, FR _1

turning point. These are Al(z)~m73(~2) 4Sln(§(_x)2 + Zﬂ) [1+0(z"7)](56)
1 7zt+lt3 asr — —o0.

¥y=5— . e shdt, (50) The solution Bfx) grows exponentially as — oo, as

2mi
, , . , of course does any other combinationyof, yo andy that
the integral being along an appropriate contéum the  .,ntains a nontrivial component of eithgr or y.. The

complex¢ plane, which canonically is one of the CurVeEarticular combination (52) is chosen for definingBibe-

C-, Co orC, depicted in Fig. 1. There are various ways o se it contains no exponentially small component in its
deriving this result, but they are not material to my preaentasymptotic expansion as— +oc.

tion here. All that one need do is to substitute the represen- ; ; . .
. . ; o The asymptotic analysis dBi(x) for z > 0 requires
tation (50) into equation (49) and show that it fits. There arz?nalysis inythelzavicinity ofythe sacgld?e 8t — 7, th?ough

three natural solutions;._, yo andy.,,, represented by €43\ hich the line of steepest descents is along the (negative)

tion (50) on the contogrg_, Co andCy, respectively. Of al axis. BothC andC_ can be distorted to pass through
course they cannot be independent, because equation (4§$'\§/hich leads to a doubling of the amplitude factor:
of only second order. Since the integrand is entire, it feflo

1 except occasionally

Bi(x) ~ T exp (%x%) [14+0(z™Y) (57)
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asx — +oo. Forz < 0 one appropriately combines themore physicists (e.g. Young and Uhlenbeck, 1930; Kem-
expressions fog_ andy, obtained previously to yield ble, 1935), and also mathematicians such as Langer (1934,

. _1 _1 2 3 1 1937, 1949), and appellations combining the initials of the
Bi(z)~m™2 (=)™ cos (5(_w)2+17r) [1+0="DI08)  gimames of the three quantum physicists, in various or-
asxz — —oo. Notice that the Wronskian of the asymptotiaders, were given to the method, eventually converging on
representations (55) and (57), and (56) and (58) takes tin@ order WKB. Yet later, when Jeffreys’ pioneering work
same constant value,~!, either side of the turning point, was more widely recognized, the initial J was added, ei-
as it should. ther in front or, more commonly, behind. | adopt the former,

One can develop expansions to higher order, but | dmartly because Jeffreys has precedence, and partly because
not do so here. | simply point out that for sufficiently largenis analysis was designed to solve a wider class of problems
x the relatively small correction to expression (57) at any othan merely those associated with the time-independent
der exceeds even the leading-order expression (55). StokBshrodinger equation. It is interesting to contemplatey-h
realization was that it is because of that that one cannot aver, that had those who originally named this omnipresent
alytically continue the leading-order expressions arahed and forgiving approximation been more aware of its true
turning point and expect them still to represent the same duaistory, they might have dropped the initials W, K and B,
lution of the differential equation (49). and instead called it the SJ approximafion
Note that expression (56) provides the appropriate phase There are now several ways of justifying the approxi-

of the oscillatory branch of the solution in this relativelymation (e.g. Heading, 1962). Jeffreys (1925) noted that if
simple case, which was Stokes’s goal. But it does not y¢{z) has a simple zero at = 2, namelyf(zy) = 0 and
answer the question for the more general equation (1). HoyWX z9) # 0, thenf(z) ~ f'(z0)(z — z0) nearz = zp; and
ever, one should perhaps pause for a moment to appreciat?/(;;o) > 0, the substitution: = —k3 [f’(zo)]é(z — 20)
the power of the argument in the Airy case. Although thgansforms equation (1) approximately into Airy’s equatio
asymptotic expressions (55)—(58) are necessarily only a@9), which enables approximate solutions of the full equa-
proximations, they are approximations to the exact reprgon to be likened to the exact solutions of the comparable
sentation (50), and the connexion between them is therefefigproximate equation, and hence to a connexion between
robust. It isn't even necessary to know what the functiongpresentations of the solutions either side of the turning
look like for moderate or small values of where the con- point (via the integral representation (50)). He pointet! ou
ditions motivating the asymptotic expansions at lajge that the outcome is a limiting form of the true solutiorkif
are not satisfied, although as a matter of natural curiosig arbitrarily large. Thus the phase of that oscillatoryusol
one might wish to know. Accurate numerical solutions sation in = < z, that connects to the solution that decays as
isfy that desire. With such a connexion securely understood . 4+ is determined from equation (56).
Rayleigh (1912) applied the analysis of the Airy integral  Nowadays it is customary to use an approximation that
to a study of the reflection of waves propagating throughig a|so valid far from the turning point. This is achieved by

medium (actually a stretched membrane, for which equatigfyplying what has become known as the Liouville-Green
(7) holds Wlthwc = O) in which 0_2 varies Iinearly withz. transformation to equation (1)’ name|y

%/ f%dz
The connexion between the asymptotic representations of Zj
the solutions to the more general equation (1) either side=o® := (—zf')3d (60)
of a turning point was first established by Jeffreys in his, . L .
Cambridge Adams prize essay in 1923 (see also Jeffrewsr,mh leaves the equation in normal form. It may be written
1925). Subsequently, interest in the issue arose in quantu
mechanics with respect to solutions of the time_—ind_epehde@ —2® =k 2h(z)® (61)
Schradinger equation with a Coulomb potential, in studydz
ing, in particular, the asymptotic energy levels of the hywhere
drogen atom. Brillouin (1926) related Schrodinger’s equa d2o
: : - - ics. antfzlo(2)]} = —o* 2. (62)
tion to Hamilton-Jacobi theory of classical mechanics, a 422

Wentzel (1926) discussed the leading-order LG expansigf; it should be noted again that near the turning point
of Schrodinger’s equation; in response, Kramers (19269, w, ., fi(z—z0) , where f = f'(z0), and that therefore ~

1

2

3

5.2 Jeffreys connexion x = —k3sgn(f) 7 (59)

as an impo_verisheo_l young man lived as a guest qf the Je—fégn(f())k% /413 (= — ), which is Jeffreys’ transforma-
freysin their house in order to make ends meet during  Stgy: the'term on the right-hand side of equation (61) arises
in Cambridge, added the connexion formula that Harold Jer

f had blished. Math cally thei vsi ‘om small higher-order terms in the Taylor expansiory of
reys had established. Mathematically their analysis voas Maboutzo, and can be neglected. Far from the turning point

new, but, being applied to a branch of physics that was mo is no longer small, but, by definition, is of order unity.
fashionable than the classical wave propagation that kad In R '

terested Rayleigh and Jeffreys, it attracted the atterifon 2 after Stokes and Jeffreys
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One can therefore estimate the ratio of the right-hand sitie say that no wave at all can propagate in the bounding re-
of equation (61) to the second term on the left-hand side tfonsE. Usually the bounding regions can support waves of
beO(k~%0*/xH?)=O(k™2H;*f~') = O(k™2H;?) = the same type as those under consideration, but with rather
o(l) ask — oo. Therefore, provided thdt is sufficiently different frequency or wave number. The ‘boundafybe-
large, the right-hand side can be ignored throughout, raween those regions can usually be regarded as the location
ducing equation (61) to Airy’s equation. What | have deef a turning point (or, more generally, as the locus of a turn-
scribed here is not a proof, but it suggests that the solutiang point), in the sense that | have used it in this article, an

® = Ai(x), to what is now called the comparison (Airy)is as well defined as are the critical cutoff frequencies.

equation provides a valid approximation to the required so- | confine my discussion to situations in which the back-
lution of equation (1). And indeed Olver (e.g. 1974, 1978@r0und state is independent of time, so that frequency
has shown that for sufficiently well behaved functighthe  \yo|| defined, and is conserved, as is wave energy in a dis-
Airy-function approximation converges uniformly for all - gjpationless system. (An LG expansion in time, and even
to the solution of equation (61) &s— oo. a JWKB approximation, can be made to study waves in an
It should be recalled that the JWKB procedure describeghpropriately slowly changing environment, but | do not ad-
above applies to simple turning points, for whi¢t{zo) # dress that here.) Consider there to be a set of locally Carte-
0. If f'(20) = 0 but f"(20) # 0, then one can carry out asjan coordinates, , ¢) established in the vicinity of the
similar analysis using Weber’s equationin the fatfy/dz*  boundary, with¢ perpendicular to the boundary. (The co-
+x%y = 0 as the comparison, and one may generalize fugrdinate¢ here is not to be confused with the vertical com-
ther to yet higher-order turning points. Olver has provegonent of the displacement of equation (33).) Generically,
uniform convergence in such cases too. the background (equilibrium) state varies more rapidlywit
The uniformly valid JWKB approximation to the solu-¢ than it does withé andr (there are exceptions). On a
tion to equation (1) having a single simple turning point dength scale smaller than the scale of variationoaf the
z = zp such thatf > 0 for z > zy can therefore be written background state, the differential equation describirey th
in terms of Ai(—z), wherex is defined by equation (59). waves reduces approximately to an ordinary (linear) dif-
Far from the turning point the appropriate asymptotic agerential equation with respect to(often of second order,
proximation (55) or (56) to the Airy function is applicable.analogous to equation (1), the only case | consider explic-
It yields, after settingf = 2, as in§1, and relatingb to ¥ ity here), with a turning point ‘onB3. Why does that turning
by equation (60), point arise? In other words, why is wave propagation possi-
ble in P but notinE?

One reason might be that no wave of frequeacyan
propagate irf, whatever its orientation. Then a wave inci-
dent onB3 has its direction reversed — equation (1) permits
U~ Ax-3sin (/Z wds - ﬁ) for 2 > 2, (64) no qther possibi!ity - undergoing what is ca]led (tr_ue) re-

o 4 flection. Alternatively,& simply doesn’t permit continued
opagation of a wave with a particular angle of incidence:
%the background state is independent of some particular

zZ0
U~ LA exp(—/ |K]d2) for 2z < 2o, (63)

and

where A is a constant amplitude. These are equivalent
the Liouville-Green expressions (19) and (16); but they af , .
(')ordlnateg (orn, it cannot b&)), then the component of

more precise, because they define which combination local ber | q he bound q
the solutions (16) corresponds to the evanescent solution,ttj € localwavenumber s Conserved across t_ € boundary, an
f in equation (1) is then rendered negativefirior that

z < zp. It goes without saying that there is a similar pair of i ‘ he f fih L
JWKB-approximate solutions that corresponds to exponef'4€ O_lglf @(tj € drek()quency} Oht € V\_/a\_/e), pfrc;pagatlli)n IS
tial growth in the so-called evanescent zone. Such solsitiof]' POSSIDI€; Indeed, ecause the variation of the backgroun

would need to be combined with (63) and (64) if one weratate is_ gentler irB than perpe_ndicular to it, that de_scribes
solving, for example, a barrier-penetration problem, ith approximately the situation with respect to the entire com-
classical or quantum ponentt, of the wavenumber i (i.e. perpendicularto the

normal). The process is often called total internal reftetti
and, if f is continuous, the case first considered by Rayleigh
6 Equationswith two well separated turning  (1912), can be thought of as the result of continuous refrac-
points: eigenvalue problems tion in the vicinity ofB. Note that because the exppnents
of the two LG solutions (16) have the same magnitude at

Few sharp boundaries are encountered in astrophysics. N&#¥ Point, the angle of reflection is equal to the angle of in-
mally, in wave problems, when waves are confined withifidence. Note also that, becausearies when eithew or
some regiorP it is because they encounter other, boundin%,L vary (at giver), the location of5 varies with not only
regions¢ into which they cannot propagate, but the ‘interiréquency but also with the angle of |nC|denc_e of the wave,;
face’ is of finite thickness and is smooth. (I have in mind a 2nd. for some values of andk ., B may not exist.
dimensional space with propagating and evanescent regionsA regionP that is enclosed by is called a cavity. Any

P and€& separated by 2-dimensional surfaces.) That is natave confined within it, in the absence of dissipation, will,
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under most situations, eventually pass arbitrarily clase star,kx is K given by equation (37). | do so with some hes-
any point it had passed formerly, and interfere with itselftation, however, because stars are not quite as simpleas th
For certain frequencies, that interference is constractix  situation | have just discussed. The reason is thatsthigh,
erywhere inP, and resonance occurs. The resulting motiowhich is one way of makind< large, then the upper turn-
is called a mode of oscillation: the contents of the entineg pointr,, which occurs roughly where?(r) = w?, is
regionP oscillate in unison with frequenay (it being qui- close to the surface, towards whicfi, and perhaps alsy?
escent elsewhere). For sufficiently higlthe LG expansion (depending on whether or not the outer layers are convec-
can be used along the phase trajectories of the waves, uding, although the,? dividing N2 makes its effect relatively
JWKB theory in the vicinity of the boundary @?, to de- small), rise rapidly, as though they are approaching a singu
termine the values a$ that permit resonance. These valuekrity located at what | call the seismic surface of the star.
are called the eigenfrequencies of the cavity. Such an anahlhis is a structural property of all stars. In practice, vener
sis can be geometrically complicated enough to detract fratfme outer layers become optically thin, the stratificatien b
the main point of this discussion, so | postpone discussi@momes approximately isothermal, and therefore essentiall
of the general problem to another article. Here | simply corexponential, and the singularity that would be encountered
sider a problem in just one dimension, in which a wave afa a polytrope, for example, is avoided. Nevertheless, for
ter reflection is bound to pass through all the points it hattany modes, witho rather less than the value af. in
passed through previously. Then the governing differéntithe photosphere, the transition to exponential behaviour o
equation is of the type (1), with and f depending in some curs sufficiently well beyond the upper turning point for its
way onw. presence to be hardly discernible in the dynamically active
To be more specific, let us consider a situation in whichropagating regions below. Therefore the solution to equa-
f(z) = k2 > 0forz; < z < z, andf < 0 elsewhere. tion (1) actually feels the influence of the phantom singu-
Asymptotic solutionsV,(z) in the vicinity of 2o, and far larity, and the eigenvalue equation (68) needs adjustment.
from z1, may be written ag (x)®5(x), wherezr is defined How that is achieved is beyond the scope of this elemen-
by equation (59) withz, replaced byz,, o is defined by tary introduction, and is postponed to a subsequent article
equation (60), ane(z) = Ai(z). In the vicinity of z; one Here | simply assume that is not so high as to make that
may do likewise to defind/;(z) = o(z)®1(x), but with adjustment necessary. There is also a similar problem near
= defined with the opposite sign, and now withreplaced the centre, wherd.?/r? suffers a true (co-ordinate) sin-
by 21, to ensure that the interval in which Ai is oscillatorygularity. This is a geometrical property of any wave prob-
satisfiesz > z;. For simplicity | shall assume that and lem in a sphere, and was first encountered in the context
2o are sufficiently far apart that there is a common region aff JWKB theory in quantum mechanics (with a Coulomb
validity in (21, 22) of the high{—x) expansion (55) ofv;  potential). That singularity is well avoided if the degree
and®,. This must be possible for sufficiently largeThen of the spherical harmonic (the angular-momentum quantum
¥, andW¥, can be matched. According to equation (64), number in quantum mechanics) is sufficiently large, so that
. z the lower turning point-;, which is determined approxi-
Wy ~ Ajk™ 2 sin (k/ rdz + %) forz > z mately for high-frequency (acoustic) modesmyc(r;) =
= L/w, is not very close to the centre. Similar problems face
(and z < z2)  (69) gravity modes, which have very low frequency, although
and the problem near the surface of the star is present only in
1 = . stars with radiative envelopes, for otherwise the modes are
Uy ~ Agk™ 2 sin (k/z kdz + Z) forz < 2z shielded from the surface by the evanescent convection zone

(andz > Zl)- (66) in which N2<0.

The representations are identical throughout the common W!th _these cavegts n m|_nd, | now |r!trep|dly “.‘a"e the
interval of validity if A4, — +A4, and substitutionkx = K in equation (68), using equation (37)

to obtain

sin <1 /Z2 77) _
=k kdz+Z ) =0 (67) 1
2 4 J T2, 2 2 2 2\7 2
€08 " / {“’ wve L (1—N )] dr~(n—4)m, (69)

which is possible only if 2 2 w? 2

z2 . . . . .
k/ kdz = (n— L), (68) hoping that_a range af exists which is high enough for the

21 LG expansion to be reasonably accurate and low enough for
wheren is an integer, and, in order to achieve a possiblé&e JWKB approximation near the turning points not to be
matching with the two evanescent solutions either side ohduly disturbed by singularities, phantom or real.
the oscillatory region, at least one half-wavelength is re- For acoustic modes? is large, and for many purposes
quired: therefore = 1,2,3,... . Thisis the desired eigen- N2 /., may be neglected compared with unity, yielding
value equation. )

| promised to illustrate the approximation with acoustic-(n - %) T /T2 ( w? c? )5

gravity modes of a star, for which, in the case of a spherical , dr (70)

1
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wherer; = 7(r1), 72 = 7(r2) andw = w/L; for gravity Turning points are very common, and, provided one is well

modesv?/c? may often be neglected, yielding clear of them, the approximation reduces to simple formu-
(n—1)r e /N2 2202\ 3 dr lae _in terms (_)f an exp_onential function on one sid_e, and
A 27 / (_ 11— C) —, (71) a trigonometrical function on the other, together with the
L o \w? L2c? r connexion formula providing the value of the phase of the
in both cases the turning pointg andr; being interpreted trigonometrical function according to whether the expoenen
as the points at which the integrands vanish. tial function grows or decays away from the turning point.

It is interesting to develop equation (70) further in thé&even near the turning point, it is straightforward to evédua
case wherl is large, for then the lower turning point isthe Airy-function representation from which these simpler
close enough to the surface for the effect of the spherica@rmulae are derived.

geometry to be small. In that case one may regard the hor- In solar physics, the leading term in the LG expansion,

izontal phas_e VEIO.C!t%h rw to bg essentially indepen now commonly called the WKB approximation, is almost
dent ofr. If, in addition, one approximates the surface lay- . . . .

o . ubiquitous in studies of waves in the atmosphere, and when
ers of a star of seismic radius by a plane-parallel poly-

) turning points are encountered the more powerful JWKB
trope of indexu, so thatc> = y,g2/(p + 1) andw? = gp P

"~ ‘ approximation is available. For internal acoustic-gnavit
i+ 2)mg/A(p + 1)z, wherez = R —r is depth be aves at least one turning point, is always present, and

1

w272 4(p + 1)2113)h

[ W
neath the seismic surface of the star (e.g. Gough, 1993), ﬂ}ﬁe connexion formula provided by the JWKB approxima-
ing how, if w is low enough for the waves to be trapped
(n—3)7 /
“ T resonant modes. In the case of acoustic modes of the Sun
2myg 2w . . . )
ing point not to be too close to the phantom singularity at

the acoustic depth beneath the seismic surface is given b¥i0n is essential. | have discussed the latter explicitiye-
7 =2z/c,andw? = u(u+2)/72. Equation (70) reduces to . ' ’
2 22 3 inside the Sun by reflection near the surface, the approxi-
plp + 2) V9T - : : : \
- d7  mate equation (69) determines the eigenfrequencies of the
(n+ Dogn /(e +2)—2 29 and Sun-like stars,_ that_ formula is only approximate. There
- ™, (72)  are two reasons: (i) i& is low enough for the upper turn-
in which 7, and7, are respectively the acoustic depths Ofe seismic surface of the Sun, then one runs the risk of
the upper and lower turning points. This equation may Byt havingk large enough for the Airy equation (61) with

rewritten the right-hand side ignored to provide a reliable compari-
(n+a)r = F(vgn) (73) son to the full equation. That risk is usually small, because
w in most (but not all) cases the Airy-function representatio

whereF(v) := (u + 1)mv/2yig anda = £[\/u(p +2) —  is amazingly robust; (ii) if the frequency is high, not only

1] = constant, which is a special case of what is now knowaioes the upper turning point approach the acoustic surface
as Duvall's law (1982), namely equation (73) with the funcef the Sun, but it also encounters the upper superadiabatic
tional form of F' unspecified and with the constamtnot boundary layer of the convection zone where, over a small
necessarily related directly to a polytropic index, andahhi distance, the acoustic cutoff frequency becomes imaginary
formally describes high-frequency acoustic modes in a stéhen there appear to be three turning points which are too
lar envelope with a (well behaved) reflecting surface, whatiose together for the technique described@rfor piecing

ever its stratification. The polytropic form derived hera catogether different Airy functions to be applicable. In that
be rewrittenw? ~ (n + )@ Rk ask — oo, wherew? = case special attention beyond the scope of this introductio
2v19/(n+1)Ris the square of a characteristic acoustic fres required, but | might at least point out that it is pertihen
quency of the outer layers of the star, and hleree L/R  to the interpretation of observational investigationsla# t

is the horizontal wavenumber at the surface. This is theansition to supercriticality, namely to the high-freqog
parabolic form which approximates the solar- w rela- domain exceeding the acoustic cutoff frequency in the at-
tion familiar to helioseismologists, and was used to previdmosphere. In the case of gravity waves in a star with a con-
the first seismic calibration of the adiabatic constant deep vective envelope, the threat of a singularity occurs onbrne
the solar convection zone. The more general form of equre lower turning point, although in the absence of a convec-
tion (73) when the polytropic sound-speed variation is ndive envelope, the surface threatens too.

azsumetglcan be inverted LO giver aza fu;ctiggsof thed It is worth mentioning that the leading-order LG expan-
observablegn + .O‘)W/w andw (e.g. Gough, ), an sign is formally applicable only in the limit of infinitesi-
was used to provide the first inferences of the sound spee! lly slow variation of the functiorf in equation (1). It

through the Sun. therefore does not capture reflection. The JWKB approxi-
mation behaves likewise, except near the turning point. Re-
7 Closing words flection in a spatially varying propagating region is likely
to occur everywhere to some degree, but it is significant
The JWKB approximation provides a wonderfully robusbnly when the scale of variatiafi ; of the background state
representation of the waves encountered throughout ghysis comparable with or much smaller than the characteris-
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tic inverse wavenumbe(ii fz)~! of the wave. When it is Green, G.: 1837, Trans. Camb. Phil. SB0457—462
much smaller the variation may be regarded as a discdreading, J.: 1962, An Introduction to phase-integral mesho
tinuity, across which one can match two JWKB solutions, Methuen, London
in the manner adopted by Poisson (1817) under conditiop@reys. H.: 1925, Proc. Lond. Math. Soc. 2nd 38y.428-436
when the simpler approximation obtained by takjhtp be Jefireys, H., SW'rI.eS' B. (Lady Jeﬁreys) : 1956, MethOdWh'
. . . . 1 ematical Physics, Cambridge University Press, Cambridge
piecewise constant is applicable. Mfz H; ~ 1 over an Kemble, E.C.: 1935, Phys. Ret8, 549-561
extended region, one might need to adopt a more compliramers, H.A.: 1926, Zs Phy89, 828-840
cated comparison equation for the JWKB approximatiomamb, H.: 1909, Proc. Lond. Math. Soc. 2nd Ser122-141
to deal with a simple smooth barrier betwegnand z2, Langer, R.E.: 1934, Bull. Am. Math. So40, 545-582
for example, one can adopt Weber’s equation in the fork@nger, R.E.: 1937, Phys. Ré1, 669-676
Y+ k2(z — 21)(z — z2)y = 0 (e.g. Langer, 1959); more Langer, R.E.: 1949, Trans. Amer. Math. S6¢, 461-490

. L . . . Langer, R.E.: 1959, Trans. Amer. Math. S8, 113-142
complicated variations irf require correspondingly more Larmor, J. (arr.): 1907, Memoir and Correspondence by tte la

complicated comparison equations. Qne _must consider in Sir George Gabriel Stokes, Bart, Cambridge University res
such cases whether the result would justify the effort, be- Cambridge, p.62

cause direct numerical solution of an ordinary differeintia jouville, J.: 1837, J. Math. pures ap. 16-35
equation is much more straightforward, even when there abdver, F.W.J.: 1974, Asymptotics and Special Functionsa-Ac
singularities present. demic Press, New York

Whether the result justifies the effort depends on the ugé\i/:;b ';-V&J.Jlégf?&'vféh;- ,Tb\r?;ds. Fch?y- SSC‘))CC- Ihg?‘f;?gaﬁgs—fjgz
tq which one wishes tq put the resu_lt. If all one nee(_js a ayleigﬁ: 1012 broc. Roy. Soc. Loﬁdom’\ 207-226
eigenfunctions and their corresponding eigenvalues, ithe

. L . cjeye, T.: 1872, Die Wirbelstirme, Tornados und Wetteesgul
rect numerical computation is in many cases simpler an Genesius, Halle

more reliable. But analytical results are, for many a persogchmitz, F., Fleck, B.: 1998, Astron. Astroph{87, 487-494
easier to interpret. And then it is more likely that one coulgtokes, G.G.: 1864, Trans. Camb. Phil. St;.105-128

be able to put them to good use. For example, in the eajokes, G.G.: 1871, Trans. Camb. Phil. Stt;.412-425
days of helioseismology, the significance of the so-calleffentzel, G.: 1926, Zs Phy88, 518-29

large and small frequency separations of low-degree acol§-n9: L-A., Uhlenbeck, G.E.: 1930, Phys. R86, 1154-1167
tic modes was first recognized from an asymptotic analysis,

as subsequently, in a sense, was the Duvall law (1982), use

of which has been central to many helioseismological in-

vestigations. It has been argued by some helioseismadogist

that asymptotic analysis was actually unnecessary because

the discoveries could equally have been made by numerical

investigation. Perhaps they could. But the fact of the mat-

ter is that they were not, and that progress in the subject

would undoubtedly have been slower without asymptotics.

That mode of discovery is likely to continue: the days of

asymptotic analysis in stellar physics are certainly notego
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