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An Elementary Introduction to the JWKB Approximation
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Asymptotic expansion of the second-order linear ordinary differential equationΨ′′ + k2f(z)Ψ = 0, in which the real
constantk is large andf = O(1), can be carried out in the manner of Liouville and Green providedf does not vanish.
If f does vanish, however, atx0 say, then Liouville-Green expansions can be carried out either side of the turning point
x = x0, but it is then necessary to ascertain how to connect them. This was first accomplished by Jeffreys, by a comparison
of the differential equation with Airy’s equation. Soon afterwards, the situation was found to arise in quantum mechanics,
and was discussed by Brillouin, Wentzel and Kramers, after whom the method was initially named. It arises throughout
classical physics too, and is encountered frequently when studying waves propagating in stars. This brief introduction
is aimed at clarifying the principles behind the method, andis illustrated by considering the resonant acoustic-gravity
oscillations (normal modes) of a spherical star.
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1 Introduction

It is common, and often apparently most straightforward, to
approach problems in macroscopic stellar physics by solv-
ing the governing equations numerically. However, simple
analytical techniques are often more revealing. For the lat-
ter it is usually necessary to idealize the situation in hand,
sometimes grossly so, to render the equations tractable. The
outcome can reveal the phenomenon under study in a very
different light from that provided by specific numerical ex-
amples. In particular, because in some respects analytical
results are more general, appreciation of their structure can
guide one more easily towards greater understanding. Even
viewed merely as a diagnostic tool, that understanding, and
sometimes just the analytical solutions themselves, have
proved to be useful in the past simply for finding errors in
numerical computations, both before and after publication.
Numerical and analytical investigations are complementary,
and each would be much poorer without the other.

This is the first of a short series of invited articles in-
tended to illucidate some of the analytical techniques that
are used in macroscopic stellar physics. It discusses one of
the most useful techniques for studying the wave-like solu-
tions of ordinary linear differential equations of second or-
der: namely, the so-called Liouville-Green expansion com-
bined with the method of Jeffreys for connecting solutions
across turning points, more commonly known as the WKB
approximation. The method is presented and, I hope, made
plausible, giving a slight flavour of the background argu-
ments without resorting to mathematical proof, with the aim
of guiding those not already conversant with the method to-
wards its proper use.

2 The Liouville-Green expansion

In modern times, the term WKB approximation has com-
monly been assigned to what is more properly regarded as
the leading term in the Carlini–Liouville–Green (LG) ex-
pansion of solutions of the second-order ordinary linear dif-
ferential equation

d2Ψ

dz2
+ k2f(z)Ψ = 0 , (1)

in which k is real (positive) and large, andf = O(1) is
slowly varying, in the sense thatk ≫ |H−1

f | ≡ |−d ln f/dz| .
Such equations arise throughout classical physics in describ-
ing waves, and asymptotic approximations to their solutions
appear to have been considered first by Carlini (1817), ac-
tually in a study of a problem in celestial mechanics, and
subsequently by Green (1837) and by Liouville (1837).

One of the simplest physical examples is that of small-
amplitude adiabatic acoustic waves in an otherwise homo-
baric fluid, whose linearized governing equations are

ρ0
∂2ξ

∂t2
= −∇p′ , (2)

p′ = δp = c2δρ = c2 (ρ′ + ξ.∇ρ0) = −ρ0c
2div ξ , (3)

wherep = p0 + p′ is pressure,ρ = ρ0 + ρ′ is density
andξ is displacement, the zero denoting equilibrium value,
the prime, Eulerian perturbation, andδ denoting Lagrangian
perturbation. The square of the sound speed in the unper-
turbed fluid is given byc2 = γ1p0/ρ0, whereγ1 is the
first adiabatic exponent. The unperturbed pressurep0 is con-
stant, and in this simple caseρ0 andc2 are considered to
vary with only a single Cartesian coordinatez, and not with
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time, t. The divergence of equation (2) may be combined
with equations (2) and (3) to yield the equation

∇2δp+H−1
ρ n.∇δp− 1

c2
∂2δp

∂t2
= 0 , (4)

whereH−1
ρ n = −∇lnρ0 defines the density scaleheight

Hρ, andn is a unit vector in thez direction. In the special
case in which the disturbanceδp varies only in thez direc-
tion, equation (4) reduces to the Klein-Gordon equation

∂2χ

∂t2
+ ω2

cχ = c2
∂2χ

∂z2
, (5)

whereχ = ρ
− 1

2

0 δp and

ω2
c (z) =

c2

4H2
ρ

(

1 − 2
dHρ

dz

)

. (6)

Becauseρ0 andc2 are constant in time and are indepen-
dent of the co-ordinates perpendicular ton, equation (4)
admits oscillatory solutions with frequencyω of the form

δp(x, t) = ℜ
[

ρ
1

2

0 Ψ(z)ei(k⊥.x−ωt)
]

, whereℜ denotes real

part andΨ satisfies

d2Ψ

dz2
+

(

ω2 − ω2
c

c2
− k2

⊥

)

Ψ = 0 , (7)

in which k⊥ = |k⊥|, wherek⊥ is a constant wavenumber
component perpendicular ton. Equation (7) is essentially
of the form of equation (1), provided thatω is high enough.

If ρ0 andc were actually constant,ωc would vanish and
equation (7) would admit solutionsΨ = Ψ0e

±ik‖z, where
Ψ0 is a constant amplitude andk‖ =

√

ω2/c2 − k2
⊥. This

represents a wave travelling with speedvφ := ω/ |k| = c
in the directionk =

(

k⊥,±k‖
)

, provided thatk‖ is real,
because the phasẽφ = k.x − ωt is invariant in a frame
of reference moving in the direction ofk with speedvφ,
namely withx = x0 + vφtk̂, wherek̂ = |k|−1

k. The
quantityvφ is called the phase speed.

This solution motivates the LG expansion. Suppose first
thatf > 0 in equation (1). Ifc2 andω2

c in equation (7) vary
slowly withz one can write

(

ω2 − ω2
c

)

/c2−k2
⊥ = k2κ2(z),

wherek is constant andκ = f1/2 is a function whose mag-
nitude is of order unity and whose scaleheightHκ is much
greater in magnitude thank−1. In other words, the equilib-
rium, background, state varies only little over the charac-
teristic lengthscalek−1 of variation of the wave. It is only
under such circumstances that the concept of a wave is read-
ily interpreted.

Thus, one poses a wave-like solution to equation (7) by
setting

Ψ = Ψ0(z)e
iφ̃(z,t) = Ψ0(z)e

i(kψ(z)−ωt) , (8)

regardingk as a large parameter. It is usual then to expand
ψ in inverse powers ofk; here I shall afford myself the flex-
ibility of expanding bothψ andΨ0:

ψ = ψ0 + k−1ψ1 + k−2ψ2 + . . . ,

Ψ0 = Ψ0,0 + k−1Ψ0,1 + k−2Ψ0,2 + . . . . (9)

Substituting expressions (6) and (8) into equation (7), with
k2κ2 in place of

(

ω2 − ω2
c

)

/c2 − k2
⊥, and equating to zero

terms of like order, yields the sequence of equations:

ψ′
0 = ±κ , (10)

2iψ′
0Ψ

′
0,0 + (iψ′′

0 − 2ψ′
0ψ

′
1)Ψ0,0 = 0 , (11)

2iψ′
0Ψ

′
0,1 + (iψ′′

0 − 2ψ′
0ψ

′
1)Ψ0,1 + Ψ′′

0,0 + 2iψ′
1Ψ

′
0,0

+ (iψ′′
1 − ψ′2

1 − 2ψ′
0ψ

′
2)Ψ0,0 = 0 , (12)

etc.,

where here and henceforth the prime denotes differentiation
with respect to the argument. These equations can be solved
successively.

The first is equation (10), whose solution is

ψ0 = ±
∫

κdz . (13)

One now encounters in equation (11) a nonuniqueness, be-
cause we have two new functions,Ψ0,0 andψ1, with only
one equation to determine them. This is a result of the flex-
ibility I introduced by expanding the two functionsΨ0 and
ψ in a representation of only a single functionΨ, so there
is redundancy. One is therefore at liberty to choose either
one of those functions, or any relation between them, as one
wishes. How one does that can be regarded as a matter of
convenience, and first I make the common choice of setting
ψ1 = 0 and solving the resulting equation for the leading-
order amplitude,Ψ0,0, yielding

Ψ0,0 ∝ ψ
′−1/2
0 ∝ κ−1/2 , (14)

the signs of proportionality indicating that one can multi-
ply the functions by any constant. One can continue, but
evidently the equations are beginning to become somewhat
cumbersome; rather than trying to write down a general pro-
cedure, it is preferable to tailor one’s way through the com-
plexity, using prudence to discern the way.

Of course one could cut the cackle by settingψn = 0,
n > 0, yielding2ψ′Ψ′

0,n+ψ′′Ψ0,n−iΨ′′
0,n−1 = 0, ψ = ψ0,

whence

Ψ0,n = 1
2 iκ

−1/2

∫

κ−1/2 Ψ′′
0,n−1dz ; (15)

this has the formal advantage of generating the entire se-
quence of functions in one compact formula. However, the
sequence does not always converge. Evidently, if one ex-
pands onlyΨ0 and if ψ does not describe the phase ad-
equately, the (real part of the) exponentialeikψ will van-
ish in the wrong place, and althoughΨ might be forced to
have a zero in the right place in an attempt to rectify that, it
cannot remove a zero inℜ(eikψ) that is in the wrong place
without itself being singular at that point. Therefore, thera-
dius of convergence of the expansion is likely to be smaller
than it need be. Alternatively, one could expand onlyψ,
as was common in the early days. The procedure is alge-
braically more complicated, but it tends to deliver a more
robust approximation. Alternate terms are real and imagi-
nary, the latter accounting for the variation of the amplitude.
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In this respect, it is interesting to observe that if insteadof
settingψ1 = 0 in equation (11) one setsΨ0,0 = 1, then
ψ′

1 = iψ′′
0 /2ψ

′
0; whenceψ1 = i

2 lnκ, and

Ψ ∼ e±ik
∫

κdz− 1

2
lnκ = κ−

1

2 e±ik
∫

κdz , (16)

which reproduces the solutions implied by equations (13)
and (14). Proceeding further, one obtains the second-order
correction to the phase, which is given by equation (17)
below; then the third-order term provides the second-order
correction to the amplitude, which is identical to equation
(18).

The algebraic technicalities are eased by expanding both
ψ andΨ0. One encounters nonuniqueness at each stage in
the sequence of equations (10)–(12), and it is often expe-
dient to alternate between expansions inΨ0 andψ, which
is not surprising given that the terms in the phase expan-
sion alternate between being real and imaginary whenΨ0 is
held fixed. Thus, one can setΨ0,1 = 0 in equation (12) and
obtain

ψ2 = ± 1
2

∫

κ−1/2

(

d2

dz2
κ−1/2

)

dz , (17)

and then setψ3 = 0 in the subsequent equation in the se-
quence to yield

Ψ0,2 = − 1
4κ

−2 d2

dz2
κ−1/2 , (18)

and so on. Equations (17) and (18) are somewhat simpler
to derive by this procedure than are their counterparts in
the pure phase expansion. The expressions forψ2 andΨ0,2

are essentially first and second derivatives ofκ−1/2 respec-
tively; higher-order ‘corrections’ to the solution contain yet
higher derivatives, which generically augur eventual diver-
gence: the expansion is asymptotic and must be terminated
at some order.

If one needs to develop connexion formulae of higher-
order than those presented in§5 it is prudent to arrange for
Ψ0,n andψn+1 to be related in such a way as to ensure
that the WronskianΨ+Ψ′

− −Ψ′
+Ψ− of the approximations

Ψ+ andΨ− to linearly independent solutions of equation
(7) is constant (Fröman and Fröman, 1996), as it is for the
exact solutions, and as it is also for each of the asymptotic
representations (16) and (19).

Terminating the LG expansion at equation (14) provides
the simplest, leading-order, representation. It results from
solving just the first pair of equations in the sequence be-
ginning with equations (10)–(12). It is that formula which
nowadays is often called the WKB approximation.

In cases wheref < 0 in equation (1),κ2 < 0 in equation
(7), solutions can be obtained by exactly the same proce-
dure as the wave-like solutions, provided|f(z)| remains of
order unity so that the ordering of the sequence of equations
(10)–(12) etc. is preserved. The outcome in the so-called
WKB approximation is again given by equation (16), which
is better rewritten:

Ψ ∼ |κ|−1/2e±k
∫

|κ|dz . (19)

The solutions therefore vary exponentially. Such ‘waves’
are termed evanescent; evidently they do not propagate in
thez direction.

Near a point whereκ2 vanishes, the ordering of the se-
quence of equations (10)–(12) etc. is not preserved, and the
approximation cannot be used.

3 Normal form

Equation (1) is in what is called normal form, having no
term in whichΨ is singly differentiated. It might appear
at first sight that to add such a singly differentiated term
would be of no serious consequence, because the formal LG
expansion could still be applied to the more general equa-
tion. However, to do so is not prudent, for unless one is very
careful indeed, and perhaps even if one is very careful, one
risks ending up with a representation of the solution whose
domain of applicability is more restricted than it need nec-
essarily be. To illustrate the point let us consider again an
equation with constant coefficients:

d2Ψ

dz2
+ 2η

dΨ

dz
+ k2Ψ = 0 , (20)

with η = O(1). Its solutions areexp(−ηz ± i
√

k2 − η2z).
Applying the LG expansion in the usual way, up toO(k),
yields the WKB equations:

ψ′
0 = ±k , (21)

Ψ′
0,0

Ψ0,0
= −η ; (22)

whence

Ψ ∼ e−ηz±ikz . (23)

This approximate solution is valid only for a ranged of z
satisfyingd≪ 2k/η2.

If, on the other hand, one writesΨ = e−ηzu(z), then

d2u

dz2
+ (k2 − η2)u = 0 , (24)

which is in normal form. Now the WKB-approximate so-
lution is actually exact. Of course, one could continue the
direct LG expansion of equation (20) to higher order, which
simply provides the expansion of

√

k2 − η2z in inverse
powers ofk2, but it takes the (formal) solution of two of the
differential equations in the analogue of the sequence (10)–
(12) etc. for each term, which is a lot of work. Therefore it
is undoubtedly at least expedient first to cast equations with
singly differentiated dependent variables into normal form
before proceeding with the expansion.

Of course, it could be said that the demonstration with
an equation with constant coefficients proves nothing about
expansions of equations with non-constant coefficients.
That is not wholly the case, however, because provided the
coefficients vary smoothly, so do the solutions, and one can
say that the casting into normal form is advantageous at
least for equations whose coefficients are close to being con-
stant. Furthermore, we have a great deal of experience with
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equations of this kind, and we know that under a wide vari-
ety of circumstances these asymptotic techniques based on
small departures from constancy work much better when
the departures are not so small than perhaps one might feel
they ought. This is not mathematical proof, but pragmatism,
based upon which I strongly recommend the taking of the
trouble to formulate the problem sensibly at the outset. To
do so is unlikely to cause a deterioration in the eventual out-
come, and I baldly assert that it is actually very likely to
provide substantial improvement.

Second-order linear ordinary differential equations can
always be cast into normal form, just as they can always
be case into self-adjoint form. If one has, for example, the
equation

d2y

dz2
+ 2η

dy

dz
+ k2κ2y = 0 , (25)

wherek is constant, andη andκ are functions ofz, and
if one wishes to preserve the independent variablez, then
one writesy = uΨ, substitutes into the differential equa-
tion, and simply choosesu in such a way as to make the co-
efficient ofdΨ/dz vanish. The result isu = exp(−

∫

ηdz)
and
d2Ψ

dz2
+

(

k2κ2 − η2 − dη

dz

)

Ψ = 0 . (26)

It is also sometimes desirable to transform the indepen-
dent variable into something more natural, such as acous-
tic radius (namely, sound travel time from the centre of the
star), for example, if one were studying stellar acoustic waves.
That alone would destroy the normal form, if the equation
had been in that form in the first place. However, one can
again start from equation (25), but first express it in terms of
a new independent variablex, and once again writey = uΨ,
this time withu = (dz/dx)1/2 exp(−

∫

η dz
dxdx), to obtain

d2Ψ

dx2
+

[

k2κ2

(

dz

dx

)2

− v(x)

]

Ψ = 0 , (27)

where

v = w2 +
dw

dx
, w(x) = η

dz

dx
− 1

2

d

dx
ln

(

dz

dx

)

. (28)

In the case of waves propagating in thez direction, it can be
useful to replacez by the mass variableq =

∫

ρ dz. Waves
in either a homobaric fluid or in a plane-parallel atmosphere
stratified under constant gravityg satisfy
∂2δp

∂t2
= c̃2

∂2δp

∂q2
, (29)

wherec̃ = ρc, which establishes a transformation between
the Klein-Gordon equation (5) and the wave equation (29).
By applying the WKB approximation to the usual wave-
equation analysis it is straightforward to demonstrate that an
arbitrary infinitesimal disturbanceδp propagates at a ratẽc
along theq coordinate in either direction without significant
change of shape and with amplitude varying asc̃1/2, pro-
vided that the scale of variation of that disturbance is much
less than the scaleheight ofc̃. If the disturbance varies sinu-
soidally with time, the wave equation (29) reduces directly
to the form (1).

4 Critical acoustic cutoff frequencies

Before proceeding to a discussion of the JWKB approxima-
tion, which I intend to illustrate with the problem of deter-
mining asymptotic properties of acoustic-gravity waves, I
pause for a moment to discuss the so-called critical cutoff
frequencies. They represent the frequency beneath which
a wave cannot propagate, although, when described in
these physical terms, it must be appreciated that they are
not uniquely defined. That is simply because the concept of
propagation itself is not well defined. As I alluded at the out-
set, even the idea of a wave is itself an asymptotic concept,
and is not easily interpreted unless the scale of variation of
the background state is substantially greater than the mag-
nitude of the inverse wave number – the very conditions un-
der which the approximations described here are designed
to be used. It has been a consequence of the resulting im-
precision that some apparently unsuspecting workers have
been too careless in writing down what should have been
precise equations to describe a physical situation, naturally
under idealized, yet well defined, conditions, and have so
degraded their inferences unnecessarily.

The critical frequency that is perhaps the most familiar
in physics is the plasma frequency,ωp. Indeed, its very ex-
istence is the reason why plasma is so named (I refer here
to an ionized gas, not to the liquid component of blood, al-
though the basis for the latter’s appellation is essentially the
same.) The advantage of this example over that of acoustic-
gravity waves is that it can be considered for an infinite uni-
form plasma (in the absence of an imposed magnetic field),
in which Langmuir waves of frequencyω satisfy the equa-
tion

d2Ψ

dz2
+
ω2 − ω2

p

c2
Ψ = 0 , (30)

with c2 andω2
p = nee

2/meǫ0 each being constant. In that
case the critical cutoff frequencyωp is quite well defined
in the physical terms I used above, as is the concept of
propagation: high-frequency waves, withω > ωp, propa-
gate in thez direction (which, of course, is arbitrary) with

wavenumberk =
√

ω2 − ω2
p/c, whereas temporally peri-

odic disturbances withω < ωp are evanescent, having an

e-folding lengthc/
√

ω2
p − ω2.

I might mention, in passing, that Langmuir waves have
been likened to the Jeans waves in an essentially infinite
uniform self-gravitating fluid, a situation with which many
astronomers are more familiar. These waves are said to sat-
isfy

d2Ψ

dz2
+
ω2 − ω2

J

c2
Ψ = 0 , (31)

(they actually do, but only approximately, for to avoid the
so-called Jeans swindle the background state must vary,
slowly, in either space or time, as Jeans himself recognized),
whereω2

J = 4πGρ0. However, with respect to scales much
smaller than the Jeans lengthc/ωJ, the gravitational term is
negligible, and equation (31) loses its cutoff. It is only when
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ρ0 or c2 varies withz that a cutoff is reintroduced, but then
the spatial variation tends to cloud the idea of propagation.
The resulting imprecision is emphasized by comparing the
Klein-Gordon equation (5), which contains an explicit cut-
off frequencyωc, with the precisely equivalent wave equa-
tion (29), which does not. The issue at stake, if one wishes to
retain the physical picture, is to define, in a spatially vary-
ing medium, where the wave can propagate and where it
cannot. I hope it is evident now that that is unlikely to lead
to a universally well defined end. But it can be well defined
under restricted circumstances, restricted in a sense thatI
shall explain below. And provided that one confines oneself
consistently to the circumstances in which one has chosen
to pose the problem, a workable definition can emerge, and
with it the chance of a correct solution to the problem in
hand. Indeed, it is to the task of determining how the so-
lutions of equation (1) in this uncertain hinterland connect
the well determined representations (16) and (19) that the
JWKB procedure is addressed.

Before proceeding, permit me to digress on the issue
of the choice of dependent variable. It is not uncommon to
work with the componentξ‖ := n.ξ =: ξz of the displace-
ment, or, equivalently, velocity, in the directionn of vari-
ation of the background state, rather than the (Lagrangian)
pressure perturbation. In the very simple case of the pure
acoustic wave considered in§2, one first separates the par-
allel componentξ‖ from the component ofξ perpendicular
to n, and then eliminates the perpendicular component and
δp from equations (2) and (3). The procedure is straightfor-
ward, and yields
(

∇2
⊥ − 1

c2
∂2

∂t2

)2

ξ‖ +H−1
c2 ∇2

⊥n.∇ξ‖ +

(

∇2
⊥ − 1

c2
∂2

∂t2

)

(

n.∇−H−1
γ1

)

n.∇ξ‖ = 0 , (32)

in which∇2
⊥ is the∇2 operator in the plane perpendicular

ton; alsoHγ1 = (−n.∇lnγ1)
−1 andHc2 =

(

−n.∇lnc2
)−1

are the scaleheights ofγ1 andc2, respectively. This equation
is rather more complicated than equation (4). In particular,
it is of higher order, although after effecting the separation

ξ‖ = ℜ
[

Φ(z)ei(k⊥.x−ωt)
]

the resulting ordinary differen-

tial equation satisfied byΦ(z) is of only second order, as
is equation (7). The corresponding equation pertaining to
a background state that has non-Cartesian symmetry, such
as spherical symmetry, is yet more complicated. It provides
justification for working with an intrinsic scalar, such asδp,
rather than the component of a vector. I remark also that in
this simple case in whichp0 is constant, the Eulerian and
Lagrangian pressure fluctuations are numerically the same;
I work formally with δp rather thanp′ because that gener-
alizes more easily to the situation in which the equilibrium
state is stratified under gravity.

Let us consider now the adiabatic acoustic-gravity
waves in a spherical star. The governing equations in the
Cowling approximation (an approximation obtained by ne-

glecting the Eulerian perturbation to the gravitational poten-
tial) are

dξ

dr
+

(

2

r
− L2g

ω2r2

)

ξ +

(

1 − L2c2

ω2r2

)

δp

ρc2
= 0 , (33)

dδp

dr
+

L2g

ω2r2
δp− gρF

r
ξ = 0 (34)

(e.g. Gough, 1993) with respect to spherical polar coordi-
nates(r, θ, φ), whereξ is the vertical component of dis-
placement from which has been factored a spherical har-
monic functionY ml (θ, φ), δp continues to be the associ-
ated Lagrangian pressure perturbation, but now withY ml
factored out,g is the local acceleration due to gravity, with
scaleheightHg, and

F =
ω2r

g
+ 2 +

r

Hg
− L2g

ω2r
, (35)

which I call the f-mode discriminant;L2 = l(l + 1), where
l is the degree of the spherical harmonic that describes the
angular variation of the eigenfunctions. The other variables
continue to retain the meanings I assigned to them earlier.
One can now eliminateξ from equations (33) and (34) to
yield a single second-order differential equation forδp,
which, after reduction to normal form, is approximated by

d2Ψ

dr2
+K2Ψ = 0 , (36)

whereΨ = (r3/gρF )1/2δp and

K2 =
ω2 − ω2

c

c2
− L2

r2

(

1 − N2

ω2

)

, (37)

in which

N2 = g

(

1

Hρ
− g

c2

)

(38)

is the square of the buoyancy frequency.
Equations (36)–(38) generalize equation (7). They are

not the exact equations to result from equations (33)–(35),
but are what I call the planar approximation to them, valid as
Kr → ∞. They do not include the local effect of spherical
geometry, the only sign of sphericity that survives being the
globally geometrical representationL/r of the horizontal
wavenumber. Including all the geometrical terms is straight-
forward (Gough, 1993); they merely add a little complexity
to the formulae without changing those aspects of the math-
ematical structure of the equation that concern us here, so
I have omitted them for clarity. The quantityωc, which is
defined by equation (6), is what is called the acoustic cutoff
frequency. It is not exactly a general cutoff frequency forΨ
in the sense that I described cutoff in connexion with equa-
tions (30) and (31), but is instead what that frequency would
be for spherically symmetric(L = 0) waves, uninfluenced
by buoyancy.

Equation (36) is similar to equation (1), withk = ω/c̄,
c̄ being a characteristic value ofc (such as the value at the
turning point, wheref = 0), and withf depending on a
parameterα = N̄/ω, whereN̄ is a characteristic value of
N . That view is appropriate for discussing acoustic waves.
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Strictly speaking, equation (36) is not precisely of the form
(1), becauseα depends onk, but evidentlyf becomes only
very weakly dependent onk ask → ∞ and the validity of
the asymptotic arguments is unaffected. For gravity waves
one takesk = L2N̄/ω andα = ω/c̄.

Forgive me for emphasizing at this stage what should
be perfectly obvious: there is no direct physical relation
whatever between the acoustic cutoff frequencyωc and the
buoyancy frequencyN . The acoustic cutoff, which appears
to have been discussed first by Lamb (1909), arises when
acoustic waves cannot propagate vertically because the in-
verse wavenumber is comparable with the density scale-
height; consequently there is inadequate inertia on the low-
density side of a compression to resist the inevitable acceler-
ation of matter, thereby annulling too much of the pressure
gradient to permit adequate subsequent compression of the
surroundings, essential for causing the perturbation to prop-
agate in a wave-like manner. The dynamics operates on the
vertical component of the motion, and is most effective for
motion that is purely vertical: that motion has no horizon-
tal variation. Buoyancy, on the other hand, exists only when
there is horizontal variation (cf. Reye, 1872) and therefore
Lmust be nonzero, as is evinced by equation (37). One way
of regarding it is to observe that the force of gravity act-
ing on a horizontally varying Eulerian density perturbation
is not in hydrostatic equilibrium, and the unbalanced pres-
sure gradients that are so engendered cause any typical fluid
element to be accelerated. That describes the predominant
dynamics of gravity waves. Confusion in the scientific liter-
ature between the two totally different processes character-
ized byωc andN appears to have arisen because, at least
in an isothermal atmosphere with constantγ1, the formu-
lae for the two quantities can be made to look somewhat
similar, and, ifγ1 = 5/3, their values are almost the same,
differing by only 4 per cent. That is no case for hiding the
stark distinction between them.

Permit me also to make another point which I hope by
now is also quite obvious. There is a clear procedure for
eliminatingξ from equations (33) and (34) — one differen-
tiates equation (34) to obtain an equation ford2δp/dr2 in
terms ofdξ/dr andξ, and alsodδp/dr andδp, then sub-
stitutes fordξ/dr using equation (33), and then forξ using
equation (34), leaving a second-order differential equation
for δp – and a well defined procedure for casting the re-
sulting equation into normal form, which I described in§2,
yielding a unique dependent variableΨ (to within an incon-
sequential multiplicative constant) and a unique equation
(36). Therefore the structure of equations (36)–(38) is well
defined, and so therefore is the acoustic cutoff frequencyωc,
and one is not at liberty to change it. I hasten to add, how-
ever, that this conclusion holds only within the restrictions I
have imposed upon myself: namely to use Lagrangian pres-
sure perturbation (or, more precisely, the appropriate mul-
tiple of it) as my dependent variable, and radiusr as my
independent variable.

The full critical cutoff frequenciesω± associated with
equation (36) forΨ are easily determined by factorizingK2

(Deubner and Gough, 1984):

c2K2 = ω−2(ω2 − ω2
+)(ω2 − ω2

−) , (39)

where

ω2
± =

1

2
(S2

L + ω2
c ) ±

[

1

2
(S2

L + ω2
c )

2 −N2S2
L

]1/2

, (40)

and where

SL =
Lc

r
, (41)

which is sometimes called the Lamb frequency. The situa-
tion is thus rather more complicated than it is for pure acous-
tic waves, in which buoyancy plays no part, and for pure
gravity waves (in an incompressible fluid, in which sound
plays no part), which I have not discussed explicitly here.
Nevertheless, it is apparent from equation (39) that solu-
tions resembling propagating waves of the form (8) can be
found withψ real for waves withω2 > ω2

+ and for waves
with ω2 < ω2

−, and indeed can be approximated by the
WKB solutions (16) providedK2 is large. Ifω2 lies be-
tweenω2

− andω2
+, thenK2 < 0, the waves can be regarded

as being evanescent, and can be approximated by the solu-
tions (19). What is most commonly encountered in practice
is a spatially varying yet temporally invariant background
state, in which the frequencyω of a wave is a conserved
quantity, a property which here I take for granted. There the
wave can encounter regions in which, for givenω,K2 > 0,
and thereforeΨ′′/Ψ < 0 – the hallmark of a typical wave
– and regions in whichK2 < 0 and Ψ′′/Ψ > 0. They
are separated by well defined points at whichK2 = 0,
andΨ′′ = 0. It is therefore convenient to define the for-
mer regions, quite precisely, as regions of propagation (of-
ten abbreviated as propagating regions, even though the re-
gions themselves do not propagate), and the latter as re-
gions of evanescence (or evanescent regions). They are sep-
arated by the points at whichΨ′′ = 0, where the waves
turn from one form to the other; these points are called turn-
ing points. Generally, waves in the propagating region can-
not propagate significantly beyond a turning point. Yet the
waves are very smooth there(Ψ′′ = 0), so in reality unac-
counted dissipation processes cannot be invoked to destroy
them, in contrast to the dynamics in the vicinity of a criti-
cal layer (e.g. Booker and Bretherton, 1967), for example,
where waves are absorbed. Therefore isolated turning points
must be points of total reflection. If there are two closely
spaced turning points enclosing an evanescent region, then,
of course, barrier penetration can occur, and reflection is not
total.

Although the turning points of equation (36) are defined
precisely, they do depend on the choice of both dependent
and independent variables. A different dependent variable,
such as the displacement,ξ, and, more pertinently, its asso-
ciated counterpartΞ that satisfies the normal form of the
governing equation, is not in phase with the Lagrangian
pressure perturbation, and its points of inflexion (together
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with the corresponding acoustic cutoff frequency) must there-
fore be different. Indeed, so too do the local vertical wavenum-
bers differ. But they are all well defined. Carrying out the
procedure corresponding to the derivation of equation (36)
yields, again in the planar approximation,

d2Ξ

dr2
+K2

ΞΞ = 0 , (42)

where

K2
Ξ =

ω2 − ω2
Ξc

c2
− L2

r2

(

1 − N2
Ξ

ω2

)

, (43)

in which

ω2
Ξc =

c2

4H2
(Ξ)

(

1+2
dH(Ξ)

dr

)

, N2
Ξ = g

(

1

H(Ξ)
− g

c2

)

, (44)

the mathematical structure of which is superficially similar
to that of equations (36)–(38) and (6). The scaleH(Ξ) is
defined according to

H−1
(Ξ) = H−1

ρ +

(

1 − L2c2

ω2r2

)

H−1
c2 ; (45)

it depends onω, rendering this formulation of the problem
actually rather more complicated than that in terms ofδp.
However, the formula for the corresponding acoustic cutoff
frequencyωΞc, defined in the sense of being the cutoff fre-
quency for propagation of waves withL = 0, as is the cut-
off frequencyωc defined by equation (6), is not dissimilar
(aside from a sign) to equation (6), withH(Ξ) being instead
the scaleheight ofγ1p0. I have had to adorn the vertical
wavenumberK (and the acoustic cutoff frequencyωc and
the buoyancy frequencyN ) with the subscriptΞ to distin-
guish them from their counterparts (37) (and (6) and (38)),
to which, for consistency, I should attach the subscriptΨ.

A distortion of the independent variable also changes
the locations of the points of inflexion ofΨ andΞ, by an
amount which is defined by equations (27) and (28), al-
though, of course, they must always occur on the evanes-
cent sides of the locations of the nearest maxima to the
evanescent regions. Transforming the independent variable
in equations (36) and (42) to acoustic radiusτ =

∫

c−1dr,
for example, yields

d2c
1

2 Ψ

dτ2
+

(

c2K2
Ψ − ω2

τc

)

c
1

2 Ψ = 0 (46)

and

d2c
1

2 Ξ

dτ2
+ (c2K2

Ξ − ω2
τc)c

1

2 Ξ = 0 . (47)

In each case the square of the appropriate acoustic cutoff
frequency is augmented by

ω2
τc =

1

4T 2
c

(

1 − 2
dTc
dτ

)

, (48)

whereTc = (−d ln c/dτ)−1 is perhaps properly called the
sound-speed scaletime. Equation (47) is analogous to a sim-
ilar equation presented by Christensen-Dalsgaard, Cooper
and Gough (1983) describing spherically symmetrical (ra-
dial) adiabatic pulsations of a star with the perturbation to

the gravitational perturbation included (which for radial
waves can be cast as a second-order differential equation).
If that equation is reduced to the Cowling approximation, it
agrees with equation (47) withL = 0, as indeed it must.
These equations also reduce essentially to corresponding
forms presented by Schmitz and Fleck (1998) in the case
whenγ1 is assumed to be constant.

5 The JWKB approximation

Consider a wave, given approximately by equation (16),
propagating to a turning point, beyond which it is evanes-
cent. The wave is therefore reflected, and travels back into
the region of propagation. An interesting and important
question is: What is the phase change, if any, on reflection?
Viewed mathematically, one has the two solutions (16) well
inside the region of propagation,z < z0 say, wherez0 is the
location of the turning point, the positive and negative signs
in the exponent representing the incident and the reflected
wave respectively. In the evanescent region well beyond the
turning point, equation (19) holds; here one must choose
the negative sign, because there is no disturbance far be-
yond the point of reflection. The question can therefore be
restated thus: what combination of the two solutions (16) in
z < z0 match onto the decaying solution (19) inz > z0?
Readers not interested in the mathematical background to
the answer to this question could skip the following subsec-
tion, save to accept the approximations (55)– (58) to the two
standard solutions Ai and Bi of Airy’s equation (49).

5.1 Airy’s equation

The question posed at the end of the previous paragraph,
in a somewhat different guise, had occupied the minds of
mathematicians such as Stieltjes and Stokes in the mid 19th
century. In particular, the young Stokes had wondered why
it is that one cannot simply analytically continue representa-
tions (19) – actually, viewed explicitly as a representation of
the Airy integral (48) rather than a representation of the so-
lutions of the differential equation (47) – across the turning
point (to be more precise, around it, in the complex-z plane,
to avoid the singularity in the representation) into the rep-
resentations (16). Although the WKB solutions (the termi-
nology I use here is evidently modern, for neither W, K nor
B had yet been born) are invalid near the turning point, and
therefore cannot be properly connected on the real-z axis,
perhaps one might connect them elsewhere in the complex
plane along some contourC chosen to be far enough from
the turning point that|kf | ≫ 1 everywhere onC. That it
cannot be done to produce the correct solution to the dif-
ferential equation was subsequently named the Stokes phe-
nomenon. What Stokes wanted was to understand this mat-
ter, and, of course, to obtain a connexion formula to link
the two forms of solution. After several vain attempts, he
returned to the problem in 1857, and after three days of
concentrated effort the light (metaphorically) dawned at 3
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Fig. 1 The complex-t plane divided into three regions by the
straight linesS−, S0 andS+, each subtending an angle of mag-
nitude2π/3 with the others. The Airy integrals are defined along
the infinite contoursC−, C0 andC+, each of which asymptote to
S−, S0 or S+ at infinity.

o’clock in the morning. Excitedly he wrote to his fiancée on
19 March, telling her of his new realization, but prefacing it
with a poignant acknowledgement of his understanding that
once they were married he would no longer be permitted to
work to such hours1 (Larmor, 1907).

The matter is well illustrated by studying Airy’s equa-
tion:

d2y

dx2
− xy = 0 , (49)

which has a turning point atx = 0, and whose solutions
can be expressed in terms of Bessel functions of order1

3 .
The advantage of using such a simple equation, which, in-
cidentally, is central to the discussion of the more general
equation (1) which follows, is that there are exact integral
representations of its solutions which are analytic acrossthe
turning point. These are

y =
1

2πi

∫

C

e−xt+
1

3
t3dt , (50)

the integral being along an appropriate contourC in the
complex-t plane, which canonically is one of the curves
C−, C0 or C+ depicted in Fig. 1. There are various ways of
deriving this result, but they are not material to my presenta-
tion here. All that one need do is to substitute the represen-
tation (50) into equation (49) and show that it fits. There are
three natural solutions,y−, y0 andy+, represented by equa-
tion (50) on the contoursC−, C0 andC+, respectively. Of
course they cannot be independent, because equation (49) is
of only second order. Since the integrand is entire, it follows

1 except occasionally

that the integral alongC− ∪C0 ∪C+ vanishes, and therefore
y−(x) + y0(x) + y+(x) = 0 for all (finite) x.

To span the solution space it is customary to adopt the
two independent functions:

Ai(x) = y0(x) , (51)

evidently named after Airy (by Harold Jeffreys), and

Bi(x) = iy−(x) − iy+(x), (52)

a not unnatural consequent appellation. Both functions are
real for realx. It is Ai(x) which is of principal interest here,
for that is the solution that is relevant for our main purpose,
for it decays, exponentially, for large positive (real)x. It
can be obtained in terms of a single integralI of a complex
variable by deforming the contourC0 to (−S+) ∪ S−, on
which t = e−iπ/3s or t = e+iπ/3s with s real, whence

y0(x) =
1

2πi

[

eiπ/3I(eiπ/3x) − e−iπ/3I(e−iπ/3x)
]

, (53)

which is evidently real whenx is real;

I(z) : =

∫ ∞

0

e−zs−
1

3
s3ds . (54)

The function Bi may be expressed similarly.
Series expansions of the Airy integral (48) were devel-

oped by Stokes (1864, 1871); Jeffreys and Jeffreys (1956)
describe how to obtain asymptotic approximations for large
|x| by Debye’s method of steepest descents. Whenx > 0,
the saddle points in the complex-t plane are att = ±√

x,
only the one on the positive real axis being accessible to
C0. In its vicinity the line of steepest descents is parallel to
the imaginary axis, and by deformingC0 to pass through
t =

√
x along that line one obtains immediately forAi(x):

Ai(x) ∼ 1
2π

−1x−
1

4 exp
(

− 2
3x

3

2

)

[

1 + O
(

x−1
)]

(55)

asx → +∞. If x < 0, the saddles are att = ±i
√
−x, the

lines of steepest descents being inclined at±π/4 from the
real axis, respectively. Neither is accessible toC0, but we
may evaluatey± instead and expressy0 as minus their sum:
y± ∼ ∓ (2i

√
π)

−1
(−x)−1/4 exp

[

±i
(

2
3 (−x)3/2 + π

4

)]

,
whence

Ai(x)∼π− 1

2 (−x)−
1
4 sin

(

2
3 (−x) 3

2 + 1
4π

)

[1+O(x−1)](56)

asx→ −∞.
The solution Bi(x) grows exponentially asx → ∞, as

of course does any other combination ofy−, y0 andy+ that
contains a nontrivial component of eithery− or y+. The
particular combination (52) is chosen for defining Bi(z) be-
cause it contains no exponentially small component in its
asymptotic expansion asx→ +∞.

The asymptotic analysis ofBi(x) for x > 0 requires
analysis in the vicinity of the saddle att = −√

x, through
which the line of steepest descents is along the (negative)
real axis. BothC+ andC− can be distorted to pass through
it, which leads to a doubling of the amplitude factor:

Bi(x) ∼ π− 1

2x−
1

4 exp

(

2
3x

3
2

)

[1 + O(x−1)] (57)
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asx → +∞. For x < 0 one appropriately combines the
expressions fory− andy+ obtained previously to yield

Bi(x)∼π− 1

2 (−x)− 1

4 cos
(

2
3 (−x) 3

2 + 1
4π

)

[1+O(x−1)](58)

asx → −∞. Notice that the Wronskian of the asymptotic
representations (55) and (57), and (56) and (58) takes the
same constant value,π−1, either side of the turning point,
as it should.

One can develop expansions to higher order, but I do
not do so here. I simply point out that for sufficiently large
x the relatively small correction to expression (57) at any or-
der exceeds even the leading-order expression (55). Stokes’
realization was that it is because of that that one cannot an-
alytically continue the leading-order expressions aroundthe
turning point and expect them still to represent the same so-
lution of the differential equation (49).

Note that expression (56) provides the appropriate phase
of the oscillatory branch of the solution in this relatively
simple case, which was Stokes’s goal. But it does not yet
answer the question for the more general equation (1). How-
ever, one should perhaps pause for a moment to appreciate
the power of the argument in the Airy case. Although the
asymptotic expressions (55)–(58) are necessarily only ap-
proximations, they are approximations to the exact repre-
sentation (50), and the connexion between them is therefore
robust. It isn’t even necessary to know what the functions
look like for moderate or small values ofx, where the con-
ditions motivating the asymptotic expansions at large|x|
are not satisfied, although as a matter of natural curiosity
one might wish to know. Accurate numerical solutions sat-
isfy that desire. With such a connexion securely understood,
Rayleigh (1912) applied the analysis of the Airy integral
to a study of the reflection of waves propagating through a
medium (actually a stretched membrane, for which equation
(7) holds withωc = 0) in which c−2 varies linearly withz.

5.2 Jeffreys’ connexion

The connexion between the asymptotic representations of
the solutions to the more general equation (1) either side
of a turning point was first established by Jeffreys in his
Cambridge Adams prize essay in 1923 (see also Jeffreys,
1925). Subsequently, interest in the issue arose in quantum
mechanics with respect to solutions of the time-independent
Schrödinger equation with a Coulomb potential, in study-
ing, in particular, the asymptotic energy levels of the hy-
drogen atom. Brillouin (1926) related Schrödinger’s equa-
tion to Hamilton-Jacobi theory of classical mechanics, and
Wentzel (1926) discussed the leading-order LG expansion
of Schrödinger’s equation; in response, Kramers (1926), who
as an impoverished young man lived as a guest of the Jef-
freys in their house in order to make ends meet during a stay
in Cambridge, added the connexion formula that Harold Jef-
freys had established. Mathematically their analysis was not
new, but, being applied to a branch of physics that was more
fashionable than the classical wave propagation that had in-
terested Rayleigh and Jeffreys, it attracted the attentionof

more physicists (e.g. Young and Uhlenbeck, 1930; Kem-
ble, 1935), and also mathematicians such as Langer (1934,
1937, 1949), and appellations combining the initials of the
surnames of the three quantum physicists, in various or-
ders, were given to the method, eventually converging on
the order WKB. Yet later, when Jeffreys’ pioneering work
was more widely recognized, the initial J was added, ei-
ther in front or, more commonly, behind. I adopt the former,
partly because Jeffreys has precedence, and partly because
his analysis was designed to solve a wider class of problems
than merely those associated with the time-independent
Schrödinger equation. It is interesting to contemplate, how-
ever, that had those who originally named this omnipresent
and forgiving approximation been more aware of its true
history, they might have dropped the initials W, K and B,
and instead called it the SJ approximation2.

There are now several ways of justifying the approxi-
mation (e.g. Heading, 1962). Jeffreys (1925) noted that if
f(z) has a simple zero atz = z0, namelyf(z0) = 0 and
f ′(z0) 6= 0, thenf(z) ≃ f ′(z0)(z − z0) nearz = z0; and
if f ′(z0) > 0, the substitutionx = −k 2

3 [f ′(z0)]
1

3 (z − z0)
transforms equation (1) approximately into Airy’s equation
(49), which enables approximate solutions of the full equa-
tion to be likened to the exact solutions of the comparable
approximate equation, and hence to a connexion between
representations of the solutions either side of the turning
point (via the integral representation (50)). He pointed out
that the outcome is a limiting form of the true solution ifk
is arbitrarily large. Thus the phase of that oscillatory solu-
tion in z < z0 that connects to the solution that decays as
z → +∞ is determined from equation (56).

Nowadays it is customary to use an approximation that
is also valid far from the turning point. This is achieved by
applying what has become known as the Liouville-Green
transformation to equation (1), namely

x = −k 2

3 sgn(f)

∣

∣

∣

∣

3
2

∫ z

z0

f
1

2 dz

∣

∣

∣

∣

2

3

, (59)

Ψ = σΦ := (−xf−1)
1

4 Φ , (60)

which leaves the equation in normal form. It may be written
as

d2Φ

dx2
− xΦ = k−2h(x)Φ , (61)

where

h{x[σ(z)]} = −σ3 d2σ

dz2
. (62)

First it should be noted again that near the turning point
f ≃ f ′

0(z−z0) , where f ′
0 = f ′(z0), and that thereforex ∼

−sgn(f ′
0)k

2

3 |f ′
0|

1

3 (z − z0), which is Jeffreys’ transforma-
tion: the term on the right-hand side of equation (61) arises
from small higher-order terms in the Taylor expansion off
aboutz0, and can be neglected. Far from the turning point
f is no longer small, but, by definition, is of order unity.

2 after Stokes and Jeffreys
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One can therefore estimate the ratio of the right-hand side
of equation (61) to the second term on the left-hand side to
beO(k−2σ4/xH2

f ) = O(k−2H−2
f f−1) = O(k−2H−2

f ) =
o(1) ask → ∞. Therefore, provided thatk is sufficiently
large, the right-hand side can be ignored throughout, re-
ducing equation (61) to Airy’s equation. What I have de-
scribed here is not a proof, but it suggests that the solution,
Φ = Ai(x), to what is now called the comparison (Airy)
equation provides a valid approximation to the required so-
lution of equation (1). And indeed Olver (e.g. 1974, 1978)
has shown that for sufficiently well behaved functionsf the
Airy-function approximation converges uniformly for allx
to the solution of equation (61) ask → ∞.

It should be recalled that the JWKB procedure described
above applies to simple turning points, for whichf ′(z0) 6=
0. If f ′(z0) = 0 but f ′′(z0) 6= 0, then one can carry out a
similar analysis using Weber’s equation in the formd2y/dx2

+x2y = 0 as the comparison, and one may generalize fur-
ther to yet higher-order turning points. Olver has proved
uniform convergence in such cases too.

The uniformly valid JWKB approximation to the solu-
tion to equation (1) having a single simple turning point at
z = z0 such thatf > 0 for z > z0 can therefore be written
in terms ofAi(−x), wherex is defined by equation (59).
Far from the turning point the appropriate asymptotic ap-
proximation (55) or (56) to the Airy function is applicable.
It yields, after settingf = κ2, as in§1, and relatingΦ to Ψ
by equation (60),

Ψ ∼ 1
2A|κ|

− 1

2 exp(−
∫ z0

z

|κ|dz) for z ≪ z0, (63)

and

Ψ ∼ Aκ−
1

2 sin

(
∫ z

z0

κdz +
π

4

)

for z ≫ z0, (64)

whereA is a constant amplitude. These are equivalent to
the Liouville-Green expressions (19) and (16); but they are
more precise, because they define which combination of
the solutions (16) corresponds to the evanescent solution in
z < z0. It goes without saying that there is a similar pair of
JWKB-approximate solutions that corresponds to exponen-
tial growth in the so-called evanescent zone. Such solutions
would need to be combined with (63) and (64) if one were
solving, for example, a barrier-penetration problem, either
classical or quantum.

6 Equations with two well separated turning
points: eigenvalue problems

Few sharp boundaries are encountered in astrophysics. Nor-
mally, in wave problems, when waves are confined within
some regionP it is because they encounter other, bounding,
regionsE into which they cannot propagate, but the ‘inter-
face’ is of finite thickness and is smooth. (I have in mind a 3-
dimensional space with propagating and evanescent regions
P andE separated by 2-dimensional surfaces.) That is not

to say that no wave at all can propagate in the bounding re-
gionsE . Usually the bounding regions can support waves of
the same type as those under consideration, but with rather
different frequency or wave number. The ‘boundary’B be-
tween those regions can usually be regarded as the location
of a turning point (or, more generally, as the locus of a turn-
ing point), in the sense that I have used it in this article, and
is as well defined as are the critical cutoff frequencies.

I confine my discussion to situations in which the back-
ground state is independent of time, so that frequencyω is
well defined, and is conserved, as is wave energy in a dis-
sipationless system. (An LG expansion in time, and even
a JWKB approximation, can be made to study waves in an
appropriately slowly changing environment, but I do not ad-
dress that here.) Consider there to be a set of locally Carte-
sian coordinates(ξ, η, ζ) established in the vicinity of the
boundary, withζ perpendicular to the boundary. (The co-
ordinateξ here is not to be confused with the vertical com-
ponent of the displacement of equation (33).) Generically,
the background (equilibrium) state varies more rapidly with
ζ than it does withξ and η (there are exceptions). On a
length scale smaller than the scale of variation onB of the
background state, the differential equation describing the
waves reduces approximately to an ordinary (linear) dif-
ferential equation with respect toζ (often of second order,
analogous to equation (1), the only case I consider explic-
itly here), with a turning point ‘on’B. Why does that turning
point arise? In other words, why is wave propagation possi-
ble inP but not inE?

One reason might be that no wave of frequencyω can
propagate inE , whatever its orientation. Then a wave inci-
dent onB has its direction reversed – equation (1) permits
no other possibility – undergoing what is called (true) re-
flection. Alternatively,E simply doesn’t permit continued
propagation of a wave with a particular angle of incidence:
if the background state is independent of some particular
coordinateξ (or η, it cannot beζ), then the componentkξ of
the local wavenumber is conserved across the boundary, and
if f in equation (1) is then rendered negative inE for that
value ofkξ (at the frequencyω of the wave), propagation is
impossible; indeed, because the variation of the background
state is gentler inB than perpendicular to it, that describes
approximately the situation with respect to the entire com-
ponentk⊥ of the wavenumber inB (i.e. perpendicular to the
normal). The process is often called total internal reflection,
and, iff is continuous, the case first considered by Rayleigh
(1912), can be thought of as the result of continuous refrac-
tion in the vicinity ofB. Note that because the exponents
of the two LG solutions (16) have the same magnitude at
any point, the angle of reflection is equal to the angle of in-
cidence. Note also that, becausef varies when eitherω or
k⊥ vary (at givenζ), the location ofB varies with not only
frequency but also with the angle of incidence of the wave;
and, for some values ofω andk⊥, B may not exist.

A regionP that is enclosed byE is called a cavity. Any
wave confined within it, in the absence of dissipation, will,
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under most situations, eventually pass arbitrarily close to
any point it had passed formerly, and interfere with itself.
For certain frequencies, that interference is constructive ev-
erywhere inP , and resonance occurs. The resulting motion
is called a mode of oscillation: the contents of the entire
regionP oscillate in unison with frequencyω (it being qui-
escent elsewhere). For sufficiently highk the LG expansion
can be used along the phase trajectories of the waves, using
JWKB theory in the vicinity of the boundary ofP , to de-
termine the values ofω that permit resonance. These values
are called the eigenfrequencies of the cavity. Such an analy-
sis can be geometrically complicated enough to detract from
the main point of this discussion, so I postpone discussion
of the general problem to another article. Here I simply con-
sider a problem in just one dimension, in which a wave af-
ter reflection is bound to pass through all the points it had
passed through previously. Then the governing differential
equation is of the type (1), withk andf depending in some
way onω.

To be more specific, let us consider a situation in which
f(z) = κ2 > 0 for z1 < z < z2, andf < 0 elsewhere.
Asymptotic solutionsΨ2(z) in the vicinity of z2, and far
from z1, may be written asσ(x)Φ2(x), wherex is defined
by equation (59) withz0 replaced byz2, σ is defined by
equation (60), andΦ(x) = Ai(x). In the vicinity ofz1 one
may do likewise to defineΨ1(z) = σ(x)Φ1(x), but with
x defined with the opposite sign, and now withz0 replaced
by z1, to ensure that the interval in which Ai is oscillatory
satisfiesz > z1. For simplicity I shall assume thatz1 and
z2 are sufficiently far apart that there is a common region of
validity in (z1, z2) of the high-(−x) expansion (55) ofΦ1

andΦ2. This must be possible for sufficiently largek. Then
Ψ1 andΨ2 can be matched. According to equation (64),

Ψ1 ∼ A1κ
− 1

2 sin

(

k

∫ z

z1

κdz + π
4

)

for z ≫ z1

(and z ≪ z2) (65)

and

Ψ2 ∼ A2κ
− 1

2 sin

(

k

∫ z2

z

κdz + π
4

)

for z ≪ z2

(and z ≫ z1) . (66)

The representations are identical throughout the common
interval of validity ifA2 = ±A1 and

sin

cos

(

1
2k

∫ z2

z1

κdz + π
4

)

= 0 , (67)

which is possible only if

k

∫ z2

z1

κdz =
(

n− 1
2

)

π , (68)

wheren is an integer, and, in order to achieve a possible
matching with the two evanescent solutions either side of
the oscillatory region, at least one half-wavelength is re-
quired: thereforen = 1, 2, 3, . . . . This is the desired eigen-
value equation.

I promised to illustrate the approximation with acoustic-
gravity modes of a star, for which, in the case of a spherical

star,kκ isK given by equation (37). I do so with some hes-
itation, however, because stars are not quite as simple as the
situation I have just discussed. The reason is that ifω is high,
which is one way of makingK large, then the upper turn-
ing point r2, which occurs roughly whereω2

c (r) = ω2, is
close to the surface, towards whichω2

c , and perhaps alsoN2

(depending on whether or not the outer layers are convec-
tive, although theω2 dividingN2 makes its effect relatively
small), rise rapidly, as though they are approaching a singu-
larity located at what I call the seismic surface of the star.
This is a structural property of all stars. In practice, where
the outer layers become optically thin, the stratification be-
comes approximately isothermal, and therefore essentially
exponential, and the singularity that would be encountered
in a polytrope, for example, is avoided. Nevertheless, for
many modes, withω rather less than the value ofωc in
the photosphere, the transition to exponential behaviour oc-
curs sufficiently well beyond the upper turning point for its
presence to be hardly discernible in the dynamically active
propagating regions below. Therefore the solution to equa-
tion (1) actually feels the influence of the phantom singu-
larity, and the eigenvalue equation (68) needs adjustment.
How that is achieved is beyond the scope of this elemen-
tary introduction, and is postponed to a subsequent article.
Here I simply assume thatω is not so high as to make that
adjustment necessary. There is also a similar problem near
the centre, whereL2/r2 suffers a true (co-ordinate) sin-
gularity. This is a geometrical property of any wave prob-
lem in a sphere, and was first encountered in the context
of JWKB theory in quantum mechanics (with a Coulomb
potential). That singularity is well avoided if the degreel
of the spherical harmonic (the angular-momentum quantum
number in quantum mechanics) is sufficiently large, so that
the lower turning pointr1, which is determined approxi-
mately for high-frequency (acoustic) modes byr1/c(r1) =
L/ω, is not very close to the centre. Similar problems face
gravity modes, which have very low frequency, although
the problem near the surface of the star is present only in
stars with radiative envelopes, for otherwise the modes are
shielded from the surface by the evanescent convection zone
in whichN2 <

∼ 0.

With these caveats in mind, I now intrepidly make the
substitutionkκ = K in equation (68), using equation (37)
to obtain

∫ τ2

r1

[

ω2 − ω2
c

c2
− L2

r2

(

1 − N2

ω2

)]
1

2

dr∼
(

n− 1
2

)

π , (69)

hoping that a range ofω exists which is high enough for the
LG expansion to be reasonably accurate and low enough for
the JWKB approximation near the turning points not to be
unduly disturbed by singularities, phantom or real.

For acoustic modesω2 is large, and for many purposes
N2/ω2 may be neglected compared with unity, yielding

(

n− 1
2

)

π

ω
∼

∫ τ2

τ1

(

1 − ω2
c

ω2
− c2

r2w2

)
1

2

dτ , (70)
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whereτ1 = τ(r1), τ2 = τ(r2) andw = ω/L; for gravity
modesω2/c2 may often be neglected, yielding
(

n− 1
2

)

π

L
∼

∫ r2

r1

(

N2

ω2
− 1 − r2ω2

c

L2c2

)
1

2 dr

r
, (71)

in both cases the turning pointsr1 andr2 being interpreted
as the points at which the integrands vanish.

It is interesting to develop equation (70) further in the
case whenL is large, for then the lower turning point is
close enough to the surface for the effect of the spherical
geometry to be small. In that case one may regard the hor-
izontal phase velocityvφh = rw to be essentially indepen-
dent ofr. If, in addition, one approximates the surface lay-
ers of a star of seismic radiusR by a plane-parallel poly-
trope of indexµ, so thatc2 = γ1gz/(µ + 1) andω2

c =
µ(µ + 2)γ1g/4(µ + 1)z, wherez = R − r is depth be-
neath the seismic surface of the star (e.g. Gough, 1993), then
the acoustic depth̃τ beneath the seismic surface is given by
τ̃ = 2z/c, andω2

c = µ(µ+2)/τ̃2. Equation (70) reduces to
(

n− 1
2

)

π

ω
∼

∫ τ̃2

τ̃1

[

1 − µ(µ+ 2)

ω2τ̃2
− γ2

1g
2τ̃2

4(µ+ 1)2v2
φh

]
1

2

dτ̃

=

[

(µ+ 1)vφh

2γ1g
−

√

µ(µ+ 2) − 2

2ω

]

π , (72)

in which τ̃1 and τ̃2 are respectively the acoustic depths of
the upper and lower turning points. This equation may be
rewritten
(n+ α)π

ω
= F (vφh) , (73)

whereF (v) := (µ + 1)πv/2γ1g andα = 1
2 [

√

µ(µ+ 2) −
1] = constant, which is a special case of what is now known
as Duvall’s law (1982), namely equation (73) with the func-
tional form ofF unspecified and with the constantα not
necessarily related directly to a polytropic index, and which
formally describes high-frequency acoustic modes in a stel-
lar envelope with a (well behaved) reflecting surface, what-
ever its stratification. The polytropic form derived here can
be rewrittenω2 ∼ (n + α)ω̃2

0Rk ask → ∞, whereω̃2
0 =

2γ1g/(µ+1)R is the square of a characteristic acoustic fre-
quency of the outer layers of the star, and herek = L/R
is the horizontal wavenumber at the surface. This is the
parabolic form which approximates the solark − ω rela-
tion familiar to helioseismologists, and was used to provide
the first seismic calibration of the adiabatic constant deepin
the solar convection zone. The more general form of equa-
tion (73) when the polytropic sound-speed variation is not
assumed can be inverted to givec/r as a function of the
observables(n + α)π/ω andw (e.g. Gough, 1993), and
was used to provide the first inferences of the sound speed
through the Sun.

7 Closing words

The JWKB approximation provides a wonderfully robust
representation of the waves encountered throughout physics.

Turning points are very common, and, provided one is well
clear of them, the approximation reduces to simple formu-
lae in terms of an exponential function on one side, and
a trigonometrical function on the other, together with the
connexion formula providing the value of the phase of the
trigonometrical function according to whether the exponen-
tial function grows or decays away from the turning point.
Even near the turning point, it is straightforward to evaluate
the Airy-function representation from which these simpler
formulae are derived.

In solar physics, the leading term in the LG expansion,
now commonly called the WKB approximation, is almost
ubiquitous in studies of waves in the atmosphere, and when
turning points are encountered the more powerful JWKB
approximation is available. For internal acoustic-gravity
waves at least one turning point,r1, is always present, and
the connexion formula provided by the JWKB approxima-
tion is essential. I have discussed the latter explicitly, show-
ing how, if ω is low enough for the waves to be trapped
inside the Sun by reflection near the surface, the approxi-
mate equation (69) determines the eigenfrequencies of the
resonant modes. In the case of acoustic modes of the Sun
and Sun-like stars, that formula is only approximate. There
are two reasons: (i) ifω is low enough for the upper turn-
ing point not to be too close to the phantom singularity at
the seismic surface of the Sun, then one runs the risk of
not havingk large enough for the Airy equation (61) with
the right-hand side ignored to provide a reliable compari-
son to the full equation. That risk is usually small, because
in most (but not all) cases the Airy-function representation
is amazingly robust; (ii) if the frequency is high, not only
does the upper turning point approach the acoustic surface
of the Sun, but it also encounters the upper superadiabatic
boundary layer of the convection zone where, over a small
distance, the acoustic cutoff frequency becomes imaginary;
then there appear to be three turning points which are too
close together for the technique described in§6 for piecing
together different Airy functions to be applicable. In that
case special attention beyond the scope of this introduction
is required, but I might at least point out that it is pertinent
to the interpretation of observational investigations of the
transition to supercriticality, namely to the high-frequency
domain exceeding the acoustic cutoff frequency in the at-
mosphere. In the case of gravity waves in a star with a con-
vective envelope, the threat of a singularity occurs only near
the lower turning point, although in the absence of a convec-
tive envelope, the surface threatens too.

It is worth mentioning that the leading-order LG expan-
sion is formally applicable only in the limit of infinitesi-
mally slow variation of the functionf in equation (1). It
therefore does not capture reflection. The JWKB approxi-
mation behaves likewise, except near the turning point. Re-
flection in a spatially varying propagating region is likely
to occur everywhere to some degree, but it is significant
only when the scale of variationHf of the background state
is comparable with or much smaller than the characteris-
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tic inverse wavenumber(kf
1

2 )−1 of the wave. When it is
much smaller the variation may be regarded as a discon-
tinuity, across which one can match two JWKB solutions,
in the manner adopted by Poisson (1817) under conditions
when the simpler approximation obtained by takingf to be
piecewise constant is applicable. Ifkf

1

2Hf ≈ 1 over an
extended region, one might need to adopt a more compli-
cated comparison equation for the JWKB approximation:
to deal with a simple smooth barrier betweenz1 and z2,
for example, one can adopt Weber’s equation in the form
y′′ + k2(z − z1)(z − z2)y = 0 (e.g. Langer, 1959); more
complicated variations inf require correspondingly more
complicated comparison equations. One must consider in
such cases whether the result would justify the effort, be-
cause direct numerical solution of an ordinary differential
equation is much more straightforward, even when there are
singularities present.

Whether the result justifies the effort depends on the use
to which one wishes to put the result. If all one needs are
eigenfunctions and their corresponding eigenvalues, the di-
rect numerical computation is in many cases simpler and
more reliable. But analytical results are, for many a person,
easier to interpret. And then it is more likely that one could
be able to put them to good use. For example, in the early
days of helioseismology, the significance of the so-called
large and small frequency separations of low-degree acous-
tic modes was first recognized from an asymptotic analysis,
as subsequently, in a sense, was the Duvall law (1982), use
of which has been central to many helioseismological in-
vestigations. It has been argued by some helioseismologists
that asymptotic analysis was actually unnecessary because
the discoveries could equally have been made by numerical
investigation. Perhaps they could. But the fact of the mat-
ter is that they were not, and that progress in the subject
would undoubtedly have been slower without asymptotics.
That mode of discovery is likely to continue: the days of
asymptotic analysis in stellar physics are certainly not gone.
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