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1. Introduction and summary. The rapid development of non-parametric
rank tests was generated, in part, by the result of Hodges and Lehmann [6]
which stated that the asymptotic relative efficiency (ARE) of the Wilcoxon test
to the classical two-sample t-test was always =.86. They also conjectured that
the ARE of the normal scores test to the ¢-test was always greater than or equal to
one. In 1958, Chernoff and Savage [3] proved the validity of this conjecture using
variational methods. In this paper we give a simple proof of their result.

Recently Doksum [4] has shown that the Savage test [11] maximizes the
minimum asymptotic power for testing for scale change over the family of dis-
tributions with increasing failure rate averages (IFRA) [2]. The technique of our
proof enables us to obtain a lower bound for the asymptotic power of Savage’s
test for scale change of any positive random variable possessing a finite second
moment. When the positive random variables are restricted to be IFRA, Dok-
sum’s [4] results follow.

2. The proof of the result of Chernoff and Savage. It is known ([3], [7]) that
the asymptotic efficacy of the normal scores two-sample test for change in
location is given by
(2.1) (J J'(F(2)f () dz)*,
where J(u) = & '(u) (the inverse of the edf of the standard normal rv) and
J'(u) = [e(®"(u))]™", provided that the density f(x) exists and satisfies mild
regularity conditions ([7], p. 313). Also, the asymptotic efficacy of the two-sample
{-test is 1/0°, where o is the variance of the underlying edf F (z). Thus the asymp-
totic relative efficiency (ARE) of the normal scores test to the ¢-test for samples
from F(z) is

(2.2) ' A (F) = @I'(F),
where
(2.3) I(F) = [ J'(F(2))f (2) da.

We refer the reader to [3] and [6] for formal definitions of efficacy and ARE. The
Chernoff-Savage theorem is

THEOREM 2.1. If F is a cdf with density f and variances® < «,then Ay (F) =1
and Ay (F) = 11if and only of F ¢s normal.
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Our development rests on Jensen’s inequality ([8], p.159 or [10], p. 46) : Let ¢(z)
be measurable and convex on an open interval S. Let X be a rv with EX < « and
P(X £8) = 1. Then E[g(X)] = ¢g(EX).

Proor or TurorEm 2.1 Without loss of generality we may assume that
f xf (x) dz = 0.8Since g(x) = 1/ is convex on the open interval (0, ) and the
v J'(F(X)f(X) = F(X)/o(®(F(X))) is positive wp 1 with respect to the
measure with density f(z), Jensen’s inequality can be applied to the integral in
expression (2.3) yielding

(2.4) I(F) = [J(F@)f(x)de = [[ o(7(F(2))) da]”
Integrating the right side of (2.4) by parts yields
(2.5) ()] = 20(37(F(2))) |2 + [ 227/(F(2))f(x) da.

The first term on the right side of inequality (2.5) can be seen to vanish by an
elementary application of Chebyshev’s inequality and a bound on the tail prob-
ability of the standard normal cdf ([5], p. 166). Applying the Cauchy-Schwarz
nequahty, one obtains

(2.6) U] < [0° [ [0 (F(2)Pf(z) dal?,
or
2.7) FSIF) = [ @7 (F(2)f(2) da]™ = 1

with equality if and only if ' (F(z)) = z/0, i.e., if F(z) = ®(x/a).

Remark. The proof consists of two steps. A lower bound for the efficacy is
established in (2.4) and then this lower bound is shown to attain its minimum
at the normal cdf. A similar proof can be based on the concavity of the log func-
tion and the well- known information-theoretic fact that among all densities with
a spemﬁed variance o¢’, the entropy is maximized by the normal density with
variance oo” ([12], pp. 55-56). We omit the details because the proof of Shannon’s
inequality is based on variational methods, which we wished to avoid.

3. The scale problem for positive random variables. Doksum [4] proved that
if F and @ are defined by

F(t) = H(t/6) and G(t) = H(t/v),

where H is an unknown continuous IFRA distribution with H(0) = 0, then for
the two-sample problem where one tests the-equality of the means of F and a,
the Savage statistic maximizes the minimum power over IFRA distributions
asymptotically. In this section we show that a lower bound for the efficacy of
the Savage test for positive random variables with a finite second moment can
be derived using Jensen’s inequality.

Doksum [4] has essentially shown that if H(0) = 0 and if H has a density &
then the efficacy of the Savage test [11] is given by

(3.1) e = [Tth(t)(1 — H(t))h(¢) dt.
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Actually, Doksum showed that (3.1) is the key parameter in the expression for
the asymptotic power of the Savage test. It equals the efficacy under mild regu-
larity conditions, analogous to Lemma 3 of [7], which justify differentiating under
an integral sign in calculating Pitman efficiency. Since the referee has kindly in-
formed us that such conditions have been given in a recent paper by Govindara-
julu, we shall not discuss them in detail as our result holds whenever (3.1) is
valid. We now prove

TuaeoreMm 3.1. For any positive random variable with density h, mean u, and
second moment ., such that the efficacy of the Savage test is given by (3.1), the
efficacy of the Savage test is always =2u"/us .

Proor. Since th(t)/u is a probability density (3.1) can be expressed as

(3.2) e = ufo h(t)(1 — H(@)th(t)u ™" dt.

Applying Jensen’s inequality with X = (1 — H(T))(h(T)) " and g(x) = 1/z, one
sees that (3.2) implies

(33) ¢z pBlg(X)] Z /{7 [1 — H(t)t dil} = 2u"/us -

REMARK 1. Since Barlow, Marshall and Proschan [1] have essentially shown
that for IFRA cdf’s, ps < 2u° with equality only at the exponential distribution,
Doksum’s Theorem 2.1 is a consequence of our Theorem 3.1.

REeMARK 2. While this paper dealt with the two-sample problem, the results of
Puri [9] show that the lower bounds given extend to both corresponding ¢-sample
problems.
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