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An elementary operational calculus
DRAGU ATANASIU and PIOTR MIKUSIÑSKI

1.  Introduction
One of the standard methods presented in an introductory course on

differential equations is the Laplace transform method.  While it has some
attractive features, it presents difficulties, like the unnatural restriction to
functions of exponential growth.  Moreover, a rigorous treatment quickly
leads to non-elementary mathematics.  In the 1950s Jan Mikusiñski [1]
proposed an operational calculus that offered certain advantages over the
Laplace transform.  It has not replaced the Laplace transform method in
elementary courses, possibly because it still required a high level of
mathematical sophistication.  Even the simplified operational calculus
proposed by Kosaku Yosida and Shuichi Okamoto in [2] (see also [3]) has
not succeeded in becoming a standard textbook method.

In this note we propose a simple alternative to the Laplace transform
method for an elementary course in differential equations.  The method can
be applied to a larger class of functions, since growth conditions play no
role.

2.  A simple approach
All functions considered in this section are continuous functions defined

on .  The main tool is the convolution of functions:[0, ∞]

f ∗ g(t) = ∫
t

0
f (s) g(t − s) ds.

We shall make use of basic algebraic properties of the convolution:
, , ,

, where ,  and  are arbitrary functions,
and  is an arbitrary number.  All these properties follow directly from the
definition by elementary properties of integration and should be easy
exercises for students.

f ∗ g = g ∗ f (f ∗ g) ∗ h = f ∗ (g ∗ h) a(f ∗ g) = (af ) ∗ g = f ∗ (ag)
f ∗ (g + h) = f ∗ g + f ∗ h f g h

a

In our approach the function  plays a special role.  First, we
observe that  implies .  Since

ω (t) = t
ω ∗ f = 0 f = 0

ω ∗ f (t) = ∫
t

0
f (s) (t − s) ds = t ∫

t

0
f (s) ds − ∫

t

0
sf (s) ds,

by the Fundamental Theorem of Calculus we conclude that  is
differentiable and we have

ω ∗ f

(ω ∗ f ) ′ (t) = ∫
t

0
f (s) ds.

If , then  for every , and hence .
This gives us the first important property:

ω ∗ f = 0 ∫
t
0 f (s) ds = 0 t ∈ [0, ∞) f = 0

ω ∗ f = ω ∗ g implies f = g. (1)
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To obtain the next formula we assume that  is continuously
differentiable and consider the convolution :

y
ω ∗ y′

ω ∗ y′ (t) = ∫
t

0
(t − s) y′ (s) ds

= t ∫
t

0
y′ (s) ds − ∫

t

0
sy′ (s) ds

= t (y(t) − y(0)) − ty(t) + ∫
t

0
y(s) ds

= ∫
t

0
y(s) ds − ty(0) .

This gives us the second important property:

ω ∗ y′ = ω′ ∗ y − y(0) ω. (2)
As a direct consequence of the above we obtain another useful property:

(ω′ − aω) ∗ Ea = ω (3)
where .Ea (t) = eat

Properties (1), (2) and (3) are sufficient for effectively solving any
equation of the form , where  is an arbitrary continuous
function on .  Moreover, the method gives us an elementary proof of
existence and uniqueness of solutions for this class of equations. To deal
with linear equations of higher order it is necessary to generalise the second
property. We replace  by  in (2) and convolve both sides with  to obtain

y′ − ay = f f
[0, ∞)

y y′ ω

ω ∗ ω ∗ y″ = ω ∗ ω′ ∗ y′ − y′ (0) ω ∗ ω.
Then we use the property  and apply (2) again to derive
the following formula

ω ∗ ω′ = ω′ ∗ ω

ω ∗ ω ∗ y″ = ω′ ∗ ω′ ∗ y − y(0) ω′ ∗ ω − y′ (0) ω ∗ ω (4)
which holds when  is twice continuously differentiable.y

Now we show how these ideas can be used in practice.  Consider the
equation

y″ − 5y′ + 6y = f , y(0) = a, y′ (0) = b (5)
where  is an arbitrary continuous function defined on  and  and  are
arbitrary real numbers.

f [0, ∞) a b

Since it is a second order equation, we convolve both sides of the
equation with  and then use properties (2) and (4).  After regrouping
we obtain

ω ∗ ω

(ω′ − 2ω) ∗ (ω′ − 3ω) ∗ y − aω′ ∗ ω + (5a − b)ω ∗ ω = ω ∗ ω ∗ f .
The presence of factors  and  suggests convolving with

 and then using (3). Thus we obtain
(ω′ − 2ω) (ω′ − 3ω)

E2 ∗ E3

ω ∗ ω ∗ y − aω′ ∗ ω ∗ E2 ∗ E3 + (5a − b)ω ∗ ω ∗ E2 ∗ E3 = ω ∗ ω ∗ E2 ∗ E3 ∗ f .

(6)
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Note that for  we haveα ≠ β

Eα ∗ Eβ =
1

α − β
(Eα − Eβ) , (7)

which can easily be derived from the definition of convolution:

Eα ∗ Eβ (t) = ∫
t

0
eα(t − x)eβxdx = eαt ∫

t

0
e(β − α)xdx

=
1

β − α
(eβt − eαt) =

1
α − β

(eαt − eβt) .

By applying (7) and (2) we get

−aω′ ∗ ω ∗ E2 ∗ E3 = a (2E2 − 3E3) ∗ ω ∗ ω. (8)
Using (7) and (8) we can rewrite (6) as

ω ∗ ω ∗ y = ω ∗ ω ∗ ((3a − b)E2 + (−2a + b)E3 + (E3 − E2) ∗ f ).
Finally, after using (1), we obtain the solution

y = (3a − b) E2 + (−2a + b) E3 + (E3 − E2) ∗ f . (9)
Note that the presented method can be used even if  is not Laplace

transformable, for example if .
f

f (t) = et2

The definition of convolution gives us

Eα ∗ Eα = ωEα. (10)
If  and  are conjugate complex numbers,  and

, then using (7) we obtain 
α β α = a + bi β = a − bi

(b ≠ 0)

Eα ∗ Eβ =
1
b

EaSb, (11)

where .Sb (t) = sinbt
Using formulae (10) and (11) we can solve other types of second order

linear equations.  It is clear that the method can be used to solve equations
of higher order.

Now we consider the equation (5) where  is a specific function, namely
, that is . To use (9) we need to find

f
f = ωE2 f (t) = te2t

(E3 − E2) ∗ (ωE2) = E3 ∗ (ωE2) − E2 ∗ (ωE2) .
For ,  using (7) and (10), we calculateα ≠ β

Eα ∗ (ωEβ) = Eα ∗ (Eβ ∗ Eβ)
= (Eα ∗ Eβ) ∗ Eβ

=
1

α − β
(Eα − Eβ) ∗ Eβ
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=
1

α − β
(Eα ∗ Eβ − Eβ ∗ Eβ)

=
1

(α − β)2 (Eα − Eβ) −
1

α − β
ωEβ.

Since

(Eα ∗ ωEα) (t) = ∫
t

0
eα(t − x)xeαxdx = eαt ∫

t

0
x dx = 1

2t
2eαt,

we get

Eα ∗ ωEα = 1
2ω2Eα.

Hence

(E3 − E2) ∗ (ωE2) = E3 − E2 − ωE2 − 1
2ω2E2 = E3 − (1 + ω + 1

2ω2)E2.
Consequently the solution of the equation

y″ − 5y′ + 6y = te2t, y(0) = a, y′ (0) = b

is

y(t) = (3a − b) e2t + (−2a + b) e3t + e3t − (1 + t + 1
2t

2) e2t.
Note that  and  could be arbitrary constants and hence

 can be written in the standard form of solution
of the homogeneous equation . It is the solution of this
homogeneous equation with  and . On the other hand,

 is the solution of the non-homogeneous equation
 with  and .

3a − b −2a + b
(3a − b) e2t + (−2a + b) e3t

y″ − 5y′ + 6y = 0
y(0) = a y′ (0) = b

e3t − (1 + t + 1
2t2) e2t

y″ − 5y′ + 6y = te2t y(0) = 0 y′ (0) = 0
Another typical example of equation (5) is an equation with a function

 where  sine or cosine is involved.   Consider, for example, the equation
 with  and .  To facilitate

calculations we denote  and  and use the identities

f
y″ − 5y′ + 6y = cost y(0) = a y′ (0) = b

S(t) = sin t C (t) = cost

C =
Ei + E−i

2
 and S =

Ei + E−i

2i
.

Finding the solution requires calculating :(E3 − E2) ∗ C

(E3 − E2) ∗ C = E3 ∗ (Ei + E−i

2 ) − E2 ∗ (Ei + E−i

2 )
= R (E3 ∗ Ei) − R (E2 ∗ Ei)

= R ( 1
3 − i

(E3 − Ei)) − R ( 1
2 − i

(E2 − Ei))
=

3
10

E3 −
2
5

E2 +
1
10

C −
1
10

S.

where  means the real part.R
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Consequently, the solution of the equation

y″ − 5y′ + 6y = cost,  y(0) = a,  y′ (0) = b

is

y(t) = (3a − b)e2t + (−2a + b)e3t +
3
10

e3t −
2
5

e2t +
1
10

cost −
1
10

sint.

3.  A more advanced approach
In the formula

ω′ ∗ y = ω ∗ y′ + y(0) ω,
obtained in the previous section, the term  can be identified with  the
derivative of . If  is considered as a function defined on the real line such
that  for , then the term  stores the information about
the jump of  at 0. This means that  is more than the derivative of .
We will call it the generalised derivative of .

ω ∗ y′
y y

y(t) = 0 t < 0 y(0) ω
y ω′ ∗ y y

y
Consider the equation

ω′ ∗ y − a (ω ∗ y) = bω, (12)
where  and  are real numbers.  We rewrite the equation asa b

(ω′ − aω) ∗ y = bω,
convolve both sides with  and use (3) to obtainEa

ω ∗ y = ω ∗ bEa.
Hence, by (1),

y = bEa.
As mentioned above, this solution should be interpreted as

y(t) =







beat  if t ≥ 0,
0  if t < 0.

When  and  the equation becomesa = 0 b = 1

ω′ ∗ y = ω
and the solution is

y(t) =







1  if t ≥ 0,
0  if t < 0.

This is the Heaviside function.

In a standard differential equations course, the equation (12) is written
as

y′ − ay = bδ. (13)
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In order to give an elementary and rigorous method for solving equations of
type (13) we have identified  with ,  with , and  with .y ω ∗ y y′ ω′ ∗ y δ ω

We observe that the equality  is not possible for any non-
zero function .  This implies that in our identification , there is
no function  such that . 

ω = ω ∗ f
f f → ω ∗ f

g g → ω
For differential equations of higher order, the method has to be modified

as in Section 2.  For example, for second order equations, we use the
identification .y → ω ∗ ω ∗ y
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