North East Linguistics Society

Volume 8 NELS 8 Article 4

1978

An Elementary Proof of the Peters-Ritchie Theorem

Emmon Bach
University of Massachusetts/Amherst

William Marsh
Hampshire College

Follow this and additional works at: https://scholarworks.umass.edu/nels

b Part of the Linguistics Commons

Recommended Citation

Bach, Emmon and Marsh, William (1978) "An Elementary Proof of the Peters-Ritchie Theorem," North East
Linguistics Society: Vol. 8, Article 4.

Available at: https://scholarworks.umass.edu/nels/vol8/iss1/4

This Article is brought to you for free and open access by the Graduate Linguistics Students Association (GLSA) at
ScholarWorks@UMass Ambherst. It has been accepted for inclusion in North East Linguistics Society by an
authorized editor of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/nels
https://scholarworks.umass.edu/nels/vol8
https://scholarworks.umass.edu/nels/vol8/iss1/4
https://scholarworks.umass.edu/nels?utm_source=scholarworks.umass.edu%2Fnels%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/371?utm_source=scholarworks.umass.edu%2Fnels%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/nels/vol8/iss1/4?utm_source=scholarworks.umass.edu%2Fnels%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

C
Bach and Marsh: An Elementary Prd&f of the Peters-Ritchie Theorem

. An Elementary Proof of the Péﬁefs;ﬁitéﬁ e fh§orem ,:,
Emoon Bach ..
University of: Massachusetts/ﬂmherst

William Marsh
Hampshire College

2]

0. Introduction. The mathematical results about various classes
of transformational grammars continue to play a role in linguistic
discussions. Peters and Ritchie (1973a) proved that transforma-
tional grammars of the "standard" sort with a context-senmsitive
base were equivalent to unrestricted rewriting systems (equival-
ently, Turing machines) in their weak generative capacity, that
is, that there was such a grammar for every recursively enumer-
able language. The proof can be presented informally and is easy
to grasp (see Bach, 1974, for an informal presentation of the
proof)., e ek .

A further and stronger result was proved in Peters and Ritchie
(1971): Limiting the base to a context-free, finite state or e~
ven to a fixed base makes no difference. A transformational gram-
mar still has the unrestricted power of the most powerful systems
studied in recursive function theory (e.g. again Turing machines).
This result is even more interesting for linguistic theory than
the previous one. In the first place, if you think that the ex-
cessive power of transformational grammars 1s something to worry
about, then this result pinpoints just where the trouble lies. It
is in the transformational component of a standard grammar, since
restricting the base does not decrease, the power of the system.
Second, the result is relevant to the idea that there is a univer-
sal set of base rules. This idea was advanced by a number of
linguists in the sixties and is still assumed in some of the
mathematical and empirical studies of learnability (Hamburger

and Wexler, Culicover and Wexler). The result shows that it fol-
lows from the formal properties of the theory that there is such
a base (in fact, infinitely many) and that the hypothesis thus
has no empirical content within a formalization of the standard
theory.

In contrast to the proof of the first theorem, the proof of the
fixed-base theorem (as we may call it) is exceedingly complex and
it is likely that many linguists simply have to take it on faith.
The proof proceeds by constructing a complex transformation which,
given an input containing all the elements of the basic vocabulary
(plus some other junk), will imitate computations of a given

Published by ScholarWorks@UMass Amherst, 1978

9
./

North East Linguistics Soékety, Vol. 8 [1978], Art. 4

Turing machine. The purpose of this paper is to present an alter-
native proof for the same result, but one which we feel is some-
what easier to grasp. The central idea of the proof is to set up
a base component which generates deep structures that represent
all possible computations by:a Turing machine with a given vocab-
ulary and then use transformatiohs which, are :constructed to match
the instructions of a given machine to cull out just those final
strings which would be computed by the machine.

The theorem in question states that for any alphabet A there ig a
regular base B such that for any recursively enumerable set R in
A* there is a transformational grammar which weakly generates R
from B. For concreteness we will fix A = L0,1,#] . We hope that
our proof 1s easily accessible to anyone who knows what a trans-
formation and a Turing machine are., Since we expect that most of
our readers are linguists, we will provide some background on Tur-
ing machines, though for reasons of clarity and economy of pre-
sentation we will present this more as a review than an introduc-
tion to the material.

In Section 1 we recall, or rather, avoid, some standard defini-
tions concerning Turing machines and give an example which will be
carried through the paper. In Section 2 we present a grammar for
our fixed regular base B. In Section 3 we define the transforma-
tional grammar which mimies our example Turing machine and in
Section 4 prove the Peters-Ritchie theorem. We close with a few
comments in Section 5.

1. Turing Machines. One of several provably equivalent defini-
tions of the notion of algorithm was given by A.M. Turing in
terms of very simple idealized computers, several years before
the actual bullding of the first electronic computers. These
"Turing machines" are myopic and methodical creatures which oper-
ate in a series of steps on a "tape" of "squares," each one of
which contains one symbol from an alphabet or terminal vocabu-
lary A; a single step is either a rewriting of a single symbol or
a move to an adjacent square. Our machines can look at only one
square at a time, and the step taken by the machine depends only
on the symbol on that square and the "state" the machine is in;
at the end of each step the machine moves into a (possibly) new
state. Figure (1) illustrates a typical moment in the life of a
Turing machine.

https://scholarworks.umass.edu/nels/vol8/iss1/4

24

"Turing machine"

o f"s tate" “gymbol"

"tﬂvpe"

NG

. - - ' ’
‘G—ALLM#'s |# I#lo_ll_]# foloj#TAauL #:s—) ,

"square"

Figufe (1)

Note that we include a # as a "blank" symbol, and picture the tape
as being infinite in each direction, but all blanks after a cer-
tain point.

It is convenient to insert the state into the string belng opera-
ted on just to the left of the symbol being considered and to
describe the whole situation by the "configuration" (which we
treat as a sentence):

#0qy1#00#

Ve will modify this unspeakable sentence slightly and parse it

S

I
/NN

ﬂl! /0< ! .‘ o /R'l‘\ N
'/,?\\ # . . , %T
U T T , /‘(Q\”

Note that q,, for example, would be encoded by Q’/ it » etc.
and that C includes the state the machine /4\\

is in and the symbol being looked at, while of 1

LT and RT encode the left and right sides of

the tape respectively.

i
LT 0

To recapitulate, a Turing machine's action at a given moment de-
pend only on the state it's in and the symbol on the one square
it can see; actions are limited to exactly one of

(1) rewriting the symbol it sees,

(2) moving one square to the left,

(3) moving one square to the right,
and (4) stopping forever.

North East Linguistics Society, Vol. 8 [1978], Art. 4

Thus we can describe a Turing machine as a set of quadruples, and
we hereby introduce Charlie, our’example Turing machine, and la-
bel each quadruple for future reference.

‘"Charlie" (a typical Turing machine)

Mg, # 0 q ‘.f'(3) 9 1 R q4

1
5Yqy 1 # q

The first symbol is the state the machine is in before the ac~
tion, the second the symbol it is looking at, the third encodes
the action taken, and the fourth, the state the machine goes in-
to. We will illustrate by giving three typical biographies or
"computations" performed by Charlie, which vary depending on the
world (i.e., tape) that he is thrust into.

2)q9 0 L q () q; 0 R ¢

Our three example worlds are #1#, #10#, and #010#. A Turing ma-
chine always starts life in state qg on the left-most non-# on a
tape.

R PP

The first biography goes
#1#-—;#qo1#-—>#1q0##——-9#1q10#--4a0q1##——-a#10#

The second arrow shows an application of quadruple (3) (another #
is added to the right end of the tape for convenience). The
third arrow shows an application of (1) and the fourth, of (4).
Since no quadruple begins with qy #, Charlie stops, and the last
string shows how he has left the world. ’

While the life just portrayed is quite conservative, our next bio-
graphy is of a typical 1liberal: -Charlie lives forever, moving
back and forth»ﬁgqm 1eft~to‘right, but_never accomplishes anything
#10#—> qg10# —> #1qy0#—> #qgL0f— ...
Our third biography turns out as a tragedy: #010#-—9#q0010#-’
i#qo#plo#-i>#q10019#f-§ #Oq1010#-" #00q110#-9_#00q2#0#-7 #00#07#
The sadness lies in the fact that although Charlie stops, we have

a convention that if a Turing machine leaves an "internal" blank
on the tape, the string is "filtered."

https://scholarworks.umass.edu/nels/vol8/iss1/4

.
Bach and Marsh: An Elementary Proof of the Peters-Ritchie Theorem
26

We thus say that Charlie (1) = 10, read Yicharlie of 1 is 0," but -
that Charlie (0) and Charlie (010) are undefined: - We hope that

the notions illustrated above are clear; we refer readers wanting
formal definitions to Davis. (1968), 7 | ’ i ‘

. i
Finally a set R of strings over A is called "recursively enumer—’
able" if there is a Turing machine M such that R is the set of -
(unfiltered) outputs of computations by M beginning on strings of
A* which aren't totally blank. L o :
2. 1In this section we give a grammar for our fixed base language
B, which the reader can check is the regular set .
01 (FAXOHL(#) *AX#) * ’
where the Kleene X* indicates the set of all strings — even the
empty one - formed from the strings or symbols in X. The -base
structures encode all possible sequences of Turing machine config-
urations, among which are jncluded all computations dome by any
Turing machine on any legal starting tape. The transformational
grammar for a given machine M among other actions selects out from
B only the computations M performs, making sure everything else in
B ends up getting filtered. Our grammar, which uses the non-ter-
minals S, LT, C. RT, Q, and BEG, contains the following sixteen
rules: . G T

§—»5 LT CRT
§ —3 BEG LT C RT

BEG—>0 # 1 y
LT-;)LT a ‘ for all
RT—» a RT a@Vp |
c—Q a Y CUE

3. The transformational grammar which mimics a given Turing ma-
chine will have transformations of four classes: Beginning, Re-
writing, Movement, and Ending, which appear in this oxder in the
cycle. Beginning and Ending transformations apply only to sen-
tences containing no embedded sentences, while the others apply
only to sentences containing exactly one embedded sentence.

Proposition 1. It follows that if any cycle.ends with an embed-
ded sentence, no transformations will apply at higher cycles.

Published by ScholarWorks@UMass Amherst, 1978

o
North East Linguistics Sogpety, Vol. 8 [1978], Art. 4

Before defining our transformations let us agree to use Q; to de-

note
A
Q. i times
[
Q
/I\
o#o

Our two Beginning Transformations will delete a BEG from deep

structures that encode computations that start in q, at the left-
0

most non~blank symbol:

CONDITION AGTION

Ty with a = 0 ‘s s
1 ;;\\\\ ; Delete the BEG. .

"BEG LT

c RT
OI’L\\I L Q<: \; I::::=§?

|
o+ 1

T, with a

i
ey

Since none of the other transformations to be introduced will ap~
ply to any sentence containing a BEG, it will follow that. .
Proposition 2. Deep structures whose deepest S dounoé enc&de
proper Turing machine beginnings are filtered and in the others,
the deepest S is left in the form

Note also that since there is exactly: one BEG per deep structure,
it follows that

Proposition 3. There is at most a single application of a Begin-
ning Transformation to a deep structure.

There will be one Rewriting Transformation for each rewriting

quadruple in the Turing machine; for concreteness we will give
that for qO#Oql.

https://scholarworks.umass.edu/nels/vol8/iss1/4

N

28

CONDITION . ?“\\\\\\
c\

. e/
A\m Q/\
2N 2N
/*l;\ v _ ACTION

Delete the embedded S.

X

0

For each movement quadruple our grammar will contain four Movement
Iransformations, one for the case when you have to add a # to the

end of the tape and three for cases when you don't. We illustrate
the conditions of these transformations for the quadruple qOOLqO;

the actions are always deleting the embedded S.

BEEEESTAE
I.T/(lt\RT !F /\ 7N

I /\ 2N\ ’/’ \\\ b RT
AT s

We wish to note the obvious

Proposition 4. '(1) Reﬁriting and Movement Transformations apply
only to sentences with exactly one embedded S; (i1) At most one
of them can apply to any such sentence; (1ii) If one does apply,

)
North East Lingléigstics Society, Vol. 8 [1978], Art. 4

it encodes exactly the correct action of the Turing machine being
mimicked and leaves a sentence which encodes the result of that
act:ion (and contains, ,therefore ‘no embedded s).

Finally, there will be one Ending Transformation for each pair

' q,a where a€ A and Q, occurs in a quadruple in our machine but
tiixe machine contains no quadruple beginning with q,a. For Char-
1:le, ql# is_a case in point and we put: 1n the transformation

LT/I\ /\.'
< -/\ P > A

A

Note that the tbp S'in a 'deef structure will have all its Q's re~
moved only if an ending transformat:ion applies at the end of its
‘cycle, so we have . -

Proposition 5. i A deep structure is unfiltered only if in its last
cycle an ending transformation applies.

We summarize the construction for the general case as follows:
Given M construct the set of.transformations G as follows (in
each case the action is to delete the underlined part).

I. For each aG_VT ~ e
BEG #QaRT

II. For each quadruple qiabqi 1n M:
‘ TQIaR LTQ,bRT

III. For each quadruple qianj “in M

for each be V (including #!)

[Xb] Q1 RT [x] Qj ba RT ‘f”""'
IV. For each quadruple qiaqu in M

for each bF.VT

https://scholarworks.umass.edu/nels/vol8/iss1/4

C - : e

Bach and Marsh: An Elementary Proa%f'of the Peters-Ritchie Theorem

[X] q; a [b¥] [Xal q, b [Y]
LT Rt LT 1 . RT

V. For each quadruple q'j._a suci\ that q; € the set of states for M,
a€Vp, but there is no quadruple beginning qia.in M:

LT Q4 a RT

4. Consider the deep structure

where we subscript S's for easy reference. Obgerve that T, and no

Published by ScholarWorks@UMass Amherst, 1978

9]
North East Linguistics Sociﬁty, Vol. 8 [1978], Art. 4

other transformation applies to S.% that the movement transforma-
tion that goes with q 1Rq applie% at Sy, 'deleting what was left
of Sl’ that the rewrige transformation we illustrated applies to
S3; and that a movement and then an ending transformation applies

to 84, leaving
: S
,/”/fi/ ‘\\\‘\4

LT T : RT
#

#

#10

The extra "external" # doesn't hurt anything and the sentence is
the output 10 = Charlie (1). Thus the tranformational grammar
exactly mimics the first example computation in Section 1.

To "see" that the G constructed for a machine M correctly models
M, consider an arbitrary computation-C by M on a string x:

I o 0 045 o, 7
Clearly there is a deep structure D which encodes C just as that
beginning Section 4 encoded our first example computation. Just
as clearly, the appropriate transformations will apply one-at a
time to leave just y with possible extra #'s at each end of the
cycle on the top-most S. On the other hand, by Propositions 2 and
5, only deep structures that begin and end correctly will be un-
filtered by G; by Proposition 4 only Rewrite and Movement -trans-—
formations that correctly encode M ever- apply; and by Proposition
1 if on any cycle no transformation applies the resulting gentence
is filtered. . .

5. We close with a few comments on properties of the. grammars that
result from our construction and on the relation between the gram-
mars and various constraints that have been suggested in the lit-
erature.

The grammar obeys the property of subjacency which has figured
both in Chomsky's discussions of conditions on rules (e.g., 1973)
and in the work of Wexler, Culicover, and Hamburger on learnabil-
ity. Indeed, using a grammar which does obey this property sim--
plifies the construction considerably. - The result shows that sub-~
jacency has no effect on the weak generative capacity of - the class
of transformational grammars.

Peters and Ritchie (1973b) have inveatigated a class of grammars
that they call "local-filtering" transformational grammars. Such

https://scholarworks.umass.edu/nels/vol8/iss1/4

10

32

grammars meet the restriction that all internal blocking symbols
(##) wust be removed from a structure at the end of the cycle on
that structure. They show that this condition has an effect on
the generative power of the system since the grammars will not

now represent .every recursively enumerable language (although they
will represent some non-recursive languages). Our grammars are
not local-filtering, obviously, but since they obey subjacency

are "local + 1" filtering. This shows that relaxing local filter-
ing to filtering with some fixed bound on the depth of the filter-
ing give you all the power of non-local-filtering grammars.

References

Bach, Emmon (1974). _Syntactic theory. . New York.

Chomsky, Noam (1973). Conditions on transformations. In Stephen
R. Anderson and Paul Kiparsky, eds., A festschrift for Mor-
ris Halle.

Culicover, Peter and Kenneth Wexler (1977). Some syntactic imp-
lications of a theory of language learnability. 1In P.W.
- Culicover,.T. Wasow, and A. Akmajian, eds., Formal syntax
New. York. . .::. ...+

Davis, Martin (1968). Comgut:abilitz and unsolvability. New York.

Hamburger, Henry and Kenneth N. Wexler. (1973). Identifiability
of a class of transformational grammars. In K.J.J. Hin-
tikka, J.M.E. Moravesik, and P. Suppes, eds., Approaches to
natural language. Dordrecht.

Peters, P.S., Jr. - and R.W. Ritchie (1971). On restricting the
base component of transformational grammars. Information
and control, 18: 483-501.

Peters, Stanley and R.W. Ritchie (1973a). On the generative pow-
er of transformational grammars. Information sciences, 6:
49~ 83.

Peters, P, Stanley, Jr., and R.W. Ritchie (1973b). Nonfiltering
and local-filtering transformational grammars. In K.J. Hin-
tikka, J.M.E. Moravesik, and P. Suppes, eds., AgEroaches to
natural language. Dordrecht.

	An Elementary Proof of the Peters-Ritchie Theorem
	Recommended Citation

	tmp.1604940128.pdf.Chseb

