AN ELEMENTARY PROOF OF THE TRIOD THEOREM

C. R. PITTMAN

Professor R. L. Moore proved in [1] that there exists only a countable number of mutually exclusive simple triods in the plane. The following simpler proof should be of interest.

DEFINITION 1. The plane continuum T is a simple triod if it is the sum of three arcs OX, OY, and OZ such that no two of them have any point in common except 0.

THEOREM 1. There exists only a countable number of mutually exclusive simple triods in the plane.

PROOF. Let $\mathfrak{R} = \{R_i\}_{i=1}^{\infty}$ be a countable collection of open discs in the plane which forms a base for the usual topology. Let T be a simple triod in the plane and let R(T, 1) be an element of \mathfrak{R} which contains 0 such that $R(T, 1) \cap \{X, Y, Z\} = \emptyset$. Let X_T, Y_T , and Z_T be the first points of the sets $(OX) \cap \operatorname{Bd}(R(T, 1)), (OY) \cap \operatorname{Bd}(R(T, 1))$ and $(OZ) \cap \operatorname{Bd}(R(T, 1)),$ respectively. The continuum $(OX_T) \cup (OY_T)$ $\cup (OZ_T)$ is a simple triod which is a subset of T. It follows from the Jordan Curve Theorem that $R(T, 1) - [(OX_T) \cup (OY_T) \cup (OZ_T)]$ $= I(T, 2) \cup I(T, 3) \cup I(T, 4),$ where $\{I(T, n)\}_{n=2}^{4}$ are pairwise disjoint open sets. Let $\{R(T, n)\}_{n=2}^{4}$ be elements of \mathfrak{R} contained in $\{I(T, n)\}_{n=2}^{4}$, respectively. The triod T is thus associated with a quadruple of elements of \mathfrak{R} .

Let T' be a simple triod such that $T' \cap T = \emptyset$ and let $\{R(T', n)\}_{n=1}^4$ be the quadruple of elements of \mathfrak{R} associated with T'. Since $T' \cap T = \emptyset$, it follows that if R(T, 1) = R(T', 1) then two of the sets $\{I(T', n)\}_{n=2}^4$ must be a subset of one of the sets $\{I(T, n)\}_{n=2}^4$. Because of the method used to select the quadruple associated with a given triod, it follows that the two quadruples $\{R(T, n)\}_{n=1}^4$ are not identical. It follows that any collection of mutually exclusive simple triods can be placed in 1-1 correspondence with a subset of the collection of all quadruples of elements of \mathfrak{R} and hence is a countable collection.

Reference

1. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math Soc., Providence, R.I., 1932; rev. ed., 1962. MR 27 #709.

West Georgia College, Carrollton, Georgia 30117

Received by the editors May 9, 1969.