AN ELEMENTARY PROOF OF TITCHMARSH'S CONVOLUTION THEOREM

RAOUF DOSS
(Communicated by Richard R. Goldberg)

Abstract

We give an elementary proof of the following theorem of Titchmarsh. Suppose f, g are integrable on the interval $(0,2 T)$ and that the convolution $f * g(t)=\int_{0}^{t} f(t-x) g(x) d x=0$ on $(0,2 T)$. Then there are nonnegative numbers α, β with $\alpha+\beta \geq 2 T$ for which $f(x)=0$ for almost all x in ($0, \alpha$) and $g(x)=0$ for almost all x in $(0, \beta)$.

Suppose f, g are integrable on the interval $(0,2 T)$. If $f=0$ a.e. on $(0, \alpha), g=0$ a.e. on ($0, \beta$) with $\alpha+\beta=2 T$, then the convolution

$$
f * g(t)=\int_{0}^{t} f(t-x) g(x) d x=0 \quad \text { for } 0 \leq t \leq 2 T
$$

The converse of this statement is the famous Titchmarsh's Convolution Theorem. Let f, g belong to $L^{1}(0,2 T)$ and vanish on $(-\infty, 0)$. Suppose that $\int_{0}^{t} f(t-x) g(x) d x$ $=0$ on $(0,2 T)$. Then there are nonnegative numbers α, β with $\alpha+\beta \geq 2 T$ for which $f(x)=0$ for almost all α in $(0, \alpha)$ and $g(x)=0$ for almost all α in $(0, \beta)$.

There are many proofs of this theorem. The first three: Titchmarsh [6], Crum [1] and Dufresnoy [2] were based on the theory of analytic or harmonic functions. An elaborate real variable proof was later given by Mikusinski and Ryll-Nardzewski in [4, (a), (b), (c)]. An entirely different proof, now classical, by the same authors, appears in [5]. Unfortunately it is valid only for $T=\infty$. Recently, Helson [3] gave an elegant proof using the theory of Hardy's $H^{p}(R)$ spaces and invariant subspaces. The present proof, valid for any T, is elementary, using no machinery beyond Fubini's theorem and Parseval's formula for trigonometric series.

Put $F(x)=\int_{0}^{x} f(s) d s$. Then, by Fubini's theorem

$$
0=\int_{0}^{t} \int_{0}^{u} f(u-x) g(x) d x d u=\int_{0}^{t} \int_{x}^{t} f(u-x) g(x) d u d x=\int_{0}^{t} F(t-x) g(x) d x
$$

This is $F * g(t)=0, t \in(0,2 T)$. Similarly, putting $G(x)=\int_{0}^{x} g(s) d s$ we get $F * G(t)=0, t \in(0,2 T)$.

Now if Titchmarsh's theorem is true for the functions F, G, it is also true for f, g. Hence, we may assume, in the proof of Titchmarsh's Theorem, that f, g are several times differentiable and satisfy e.g. relations like $f^{\prime} * g=0$ and $g(0)=0$.

Lemma 1. Suppose that h is continuous on $(0,2 T)$ and that

$$
\begin{equation*}
\left|\int_{0}^{2 t} e^{2 n(t-x)} h(x) d x\right| \leq C_{t} n^{-1 / 2} \tag{1}
\end{equation*}
$$

Received by the editors August 7, 1987.
1980 Mathematics Subject Classification (1985 Revision). Primary 42A85; Secondary 45E10.
for $0 \leq t \leq T$ and all $n \in\{1,2,3, \ldots\}$ where C_{t} is independent of n. Then $h=0$ on $(0, T)$.

Proof. We have boundedly

$$
\lim _{n \rightarrow \infty}\left[1-e^{-e^{2 n(t-x)}}\right]= \begin{cases}1 & \text { for } 0 \leq x<t \\ 0 & \text { for } t<x \leq 2 t\end{cases}
$$

Hence, by dominated convergence

$$
\begin{equation*}
\int_{0}^{t} h(x) d x=\lim _{n} \int_{0}^{2 t}\left[1-e^{-e^{2 n(t-x)}}\right] h(x) d x . \tag{2}
\end{equation*}
$$

On the other hand, for fixed t and n, the sums

$$
-\sum_{k=1}^{N} \frac{(-1)^{k}}{k!} e^{2 n k(t-x)}
$$

converge uniformly on $(0,2 T)$ to $\left[1-e^{-e^{2 n(t-x)}}\right]$ as $N \rightarrow \infty$. Hence, by (1)

$$
\begin{aligned}
\mid \int_{0}^{2 t} & { \left.\left[1-e^{-e^{2 n(t-x)}}\right] h(x) d x\left|=\lim _{N}\right| \int_{0}^{2 t} \sum_{k=1}^{N} \frac{(-1)^{k}}{k!} e^{2 n k(t-x)} h(x) d x \right\rvert\, } \\
& \leq \underset{N}{\limsup } \sum_{1}^{N} \frac{1}{k!} C_{t}(n k)^{-1 / 2} \leq C_{t} n^{-1 / 2} e
\end{aligned}
$$

By (2)

$$
\int_{0}^{t} h(x) d x=0, \quad t \in(0, T)
$$

Hence $h=0$ on $(0, T)$.
Lemma 2. If $f * g(t)=0$ for $t \in(0,2 T)$ then

$$
f(x) g(x)=0 \quad \text { for all } x \in(0, T) .
$$

Proof. For $t \leq T$ we calculate in two ways the integral

$$
I_{t}=\iint_{\Delta \cup \Delta^{\prime}} e^{n(2 t-y)} e^{-i k y} f(y-x) g(x) d x d y
$$

where Δ is the triangle $0 \leq x \leq y, 0 \leq y \leq 2 t$ and Δ^{\prime} is the triangle $2 t \leq y \leq 4 t$, $y-2 t \leq x \leq 2 t$. Thus $\Delta \cup \Delta^{\prime}$ is the parallelogram $x \leq y \leq 2 t+x, 0 \leq x \leq 2 t$. We have

$$
I_{t}=\int_{0}^{2 t}\left\{\int_{x}^{2 t+x} e^{n(2 t-y)} e^{-i k y} f(y-x) d y\right\} g(x) d x
$$

Putting $y=x+u$ the inner integral becomes

$$
\int_{0}^{2 t} e^{n(t-u)} e^{-i k u} f(u) d u e^{n(t-x)} e^{-i k x}
$$

Hence

$$
\begin{equation*}
I_{t}=\int_{0}^{2 t} e^{n(t-u)} e^{-i k u} f(u) d u \cdot \int_{0}^{2 t} e^{n(t-x)} e^{-i k x} g(x) d x \tag{3}
\end{equation*}
$$

On the other hand, the integral over Δ is zero by $\int_{0}^{y} f(y-x) g(x) d x=0$. Hence

$$
\begin{equation*}
I_{t}=\iint_{\Delta^{\prime}}=\int_{2 t}^{4 t} e^{n(2 t-y)} e^{-i k y} h_{t}(y) d y \tag{4}
\end{equation*}
$$

where

$$
h_{t}(y)=\int_{y-2 t}^{2 t} f(y-x) g(x) d x
$$

We have

$$
h_{t}(2 t)=\int_{0}^{2 t} f(2 t-x) g(x) d x=0, \quad h_{t}(4 t)=0
$$

An integration by parts in (4) then gives

$$
I_{t}=(n+i k)^{-1} \int_{2 t}^{4 t} e^{n(2 t-y)} e^{-i k y} h_{t}^{\prime}(y) d y
$$

We have

$$
\begin{gathered}
h_{t}^{\prime}(y)=-f(2 t) g(y-2 t)+\int_{y-2 t}^{2 t} f^{\prime}(y-x) g(x) d x \\
h_{t}^{\prime}(2 t)=0, \quad h_{t}^{\prime}(4 t)=-f(2 t) g(2 t)
\end{gathered}
$$

Hence, by (4^{\prime})

$$
\begin{align*}
I_{t}= & (n+i k)^{-2} e^{-2 t n} e^{-i 4 t k} f(2 t) g(2 t) \\
& +(n+i k)^{-2} \int_{2 t}^{4 t} e^{n(2 t-y)} e^{-i k y} h_{t}^{\prime \prime}(y) d y
\end{align*}
$$

In the last integral the coefficient of $h_{t}^{\prime \prime}(y)$ has a modulus bounded by 1 on the interval of integration and we may suppose that $|f(x) g(x)| \leq M$ for x in $(0,2 T)$, $\left|h_{t}^{\prime \prime}(y)\right| \leq M$ for $t \in(0, T), y \in(2 t, 4 t)$ where M is a constant.

Hence, by (4"), $\left|I_{t}\right| \leq|n+i k|^{-2}(M+2 t M) \leq|n+i k|^{-2} C$, where C is a constant. By (3)

$$
\begin{equation*}
\left|\int_{0}^{2 t} e^{n(t-x)} e^{-i k x} f(x) d x\right| \cdot\left|\int_{0}^{2 t} e^{n(t-x)} e^{-i k x} g(x) d x\right| \leq|n+i k|^{-2} C \tag{5}
\end{equation*}
$$

We now use the polarized version of Parseval's formula, viz.

$$
\left|\frac{1}{2 \pi} \int_{0}^{2 t} f \bar{g}\right|=\left|\sum_{p} \hat{f}(p) \overline{\hat{g}(p)}\right| \leq \sum_{p}|\hat{f}(p) \hat{g}(p)| .
$$

Putting $k=k_{p}=2 \pi(2 t)^{-1} p$, we get from (5)

$$
\begin{gathered}
\left|\frac{1}{2 \pi} \int_{0}^{2 t} e^{2 n(t-x)} f(x) g(x) d x\right| \leq \sum_{p=-\infty}^{\infty}\left|n+i k_{p}\right|^{-2} C \\
\leq n^{-1 / 2} \sum_{p}\left|n+i k_{p}\right|^{-3 / 2} C \leq n^{-1 / 2} C_{t}
\end{gathered}
$$

where C_{t} is independent of n. By Lemma $1, f g=0$ on $(0, T)$.
Proof of Titchmarsh's Theorem. Observe first that if $\gamma>0$ then the translate $f_{\gamma}(x)=f(x-\gamma)$ satisfies the equation $f_{\gamma} * g(t)=0$ for $t \in(0,2 T)$.

In the other direction let $(0, \alpha)$ and $(0, \beta)$ respectively be the largest intervals on which f and g vanish.

We have

$$
\int_{0}^{t} f_{-\alpha}(t-x) g(x) d x=\int_{0}^{t} f(t+\alpha-x) g(x) d x=\int_{0}^{t+\alpha} f(t+\alpha-x) g(x) d x=0
$$

for $t+\alpha \in(0,2 T)$, hence for $t \in(0,2 T-\alpha)$. We infer that

$$
f_{-\alpha} * g_{-\beta}(t)=0 \quad \text { for } t \in(0,2 T-\alpha-\beta)
$$

By the observation above we have

$$
f_{-\alpha+\gamma} * g_{-\beta}(t)=0 \quad \text { for } t \in(0,2 T-\alpha-\beta) \text { and all } \gamma>0
$$

and by Lemma 2

$$
\begin{equation*}
f_{-\alpha+\gamma}(x) g_{-\beta}(x)=0 \quad \text { for } x \in\left(0, T-\frac{\alpha+\beta}{2}\right) \text { and all } \gamma>0 \tag{6}
\end{equation*}
$$

Assume that $2 T-\alpha-\beta>0$; then $g_{-\beta}\left(x_{0}\right) \neq 0$ for some $x_{0} \in(0, T-(\alpha+\beta) / 2)$. If $0<\gamma<x_{0}$ then, by (6), applied to x_{0}, we get $f_{-\alpha+\gamma}\left(x_{0}\right)=0$, i.e. $f_{-\alpha}\left(x_{0}-\gamma\right)=0$. This last is $f_{-\alpha}(u)=0$ for $u \in\left(0, x_{0}\right)$ which is impossible. Thus $2 T-(\alpha+\beta) \leq 0$ and the theorem is proved.

Added in proof. J. G. Mikusinski, in his book The Bochner integral, Academic Press, New York, 1978, shows that the proof in [5] can be made valid for any $T>0$.

Bibliography

1. M. M. Crum, On the resultant of two functions, Quart. J. Math. Oxford Ser. 12, no. 46, 1941, pp. 108-111.
2. J. Dufresnoy, Sur le produit de composition de deux fonctions, C. R. Acad. Sci. Paris 335 (1947), 857-859.
3. H. Helson, Harmonic analysis, Addison-Wesley, Reading, Mass., 1983.
4. (a) J. G. Mikusinski, On generalized exponential functions, Studia Math. 13 (1951), 48-50.
(b) J. G. Mikusinski and C. Ryll-Nardzewski, A theorem on bounded moments, Studia Math. 13 (1952), 51-55.
(c) J. G. Mikusinski, A new proof of Titchmarsh's convolution theorem, Studia Math. 13 (1952), 56-58.
5. , Operational calculus, Pergamon Press, 1959.
6. E. C. Titchmarsh, The zeros of certain integral functions, Proc. London Math. Soc. (2) 25 (1926), 283-302.

Department of Mathematics, State University of New York, Stony Brook, NEW YORK 11794

