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In this note we give an elementary proof of a theorem first proved by J. A. Erdos
[3]. This theorem, which is the main result of [3], states that every noninvertible
n ⇥ n matrix is a finite product of matrices M with the property that M

2 =
M . (These are known as idempotent matrices. Noninvertible matrices are also
called singular matrices.) An alternative formulation of this result reads: every
noninvertible linear mapping of a finite dimensional vector space is a finite
product of idempotent linear mappings ↵, linear mappings that satisfy ↵

2 = ↵.
This result was motivated by a result of J. M. Howie asserting that each self-
mapping ↵ of a nonempty finite set X with image size at most |X| � 1 (which
occurs precisely when ↵ is noninvertible) is a product of idempotent mappings.
We shall see that Erdos’s theorem is a consequence of Howie’s result.

Together the papers [3] and [4] are cited in over one hundred articles, dealing
with subjects including universal algebra, ring theory, topology, and combina-
torics. Since its publication, various proofs of the result in [3] have appeared.
For example, a semigroup theoretic proof appears in [1, pp. 121-131] and linear
operator theory is used to prove the theorem in [2]. Here we give a new proof
using a basic combinatorial argument. Unlike the previous proofs our argument
involves only elementary results from linear algebra and one basic result con-
cerning permutations. On the way to proving the main result of this note we
provide a short proof of Howie’s result.

Throughout this paper X signifies an arbitrary nonempty finite set. If ↵ :
A ! X, where A is a subset of X, then A is the domain of ↵; we denote this
set by dom(↵). Naturally, the set ↵(A) is called the image of ↵ and is denoted
by im(↵). Recall that a mapping ↵ is injective (or one-to-one) if ↵(x) 6= ↵(y)
for all x and y in dom(↵) with x 6= y. Let T

X

denote the set of all mappings
from X to X with domain X. We note that this set is closed under composition
of mappings and that this composition is associative. We now define one of the
most important notions we require in the proofs in this note. For a mapping
↵ : dom(↵) ! X we say that ↵ is a restriction of an element � of T

X

if � and
↵ agree on the domain of ↵. In other words, �(x) = ↵(x) for all x in dom(↵).
For x and y in X we denote the transposition that fixes every point of X other
than x or y and that maps x to y, and vice versa, by (x y).
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1 HOWIE’S THEOREM.

We begin by reproving Theorem I in [4]:

Theorem 1.1 (Howie). Every noninvertible mapping in T
X

is a finite product

of idempotent mappings in T
X

.

We prove this result by showing that every noninvertible mapping is the
product of an idempotent and an injective mapping (not in T

X

) with image size
strictly less than |X|. We will find it useful to write mappings in a particular
form. For example, if X = {1, 2, 3, 4}, then the mapping

✓
1 2 3 4
2 4 2 1

◆
,

can be written as ✓
{1, 3} {2} {4}
2 4 1

◆
.

For an arbitrary finite set X, let ↵ in T
X

be an arbitrary noninvertible mapping.
If the image of ↵ is {x1, x2, . . . , xn

}, then for each i we denote by A

i

the largest
subset of X satisfying ↵(A

i

) = x

i

. As in the preceding example, we can write

↵ =

✓
A1 A2 · · · A

n

x1 x2 · · · x

n

◆
.

Choose for each i an arbitrary but fixed element a
i

of A
i

, and define a mapping
✏ with domain {x1, x2, . . . , xn

} that takes x
i

to a

i

for each i. It is obvious that
✏↵ is an idempotent. Let ✏�1 denote the mapping that takes a

i

to x

i

for each i.
Since ↵ is noninvertible we have n < |X|, and therefore we can express ↵ as the
product ✏

�1(✏↵) of the injective mapping ✏

�1, with | im(✏�1)| < |X|, and the
idempotent ✏↵. It remains to prove that any injective mapping with image size
strictly less than |X| is a restriction of a product of idempotents. We establish
this in the next two lemmas.

Lemma 1.2. Let ↵ : dom(↵) ! X be an injective mapping with | im(↵)| < |X|
and with the property that ↵(x) belongs to dom(↵) for all x in dom(↵). Then

there exists a finite product of idempotents ⇡ from T
X

such that ↵ is a restriction

of ⇡.

Proof. Let u in X \ dom(↵), and let x and y in dom(↵) (x 6= y) be arbitrary.
Define mappings �

x,u

, �
y,x

, and �

u,y

in T
X

that map x to u, y to x, and u to y,
respectively, and that fix all other elements of X. It is easy to verify that these
mappings are idempotents. The product �

u,y

�

y,x

�

x,u

maps x to y and y to x,
and fixes all other elements of dom(↵). Therefore �

u,y

�

y,x

�

x,u

, although defined
on the whole of X, may be thought of as the transposition (x y) of dom(↵). It
is well known that every permutation of a finite set can be written as a product
of transpositions of that set. Since ↵ is a permutation of its domain the result
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follows. ⌅

We now apply Lemma 1.2 to prove that every injective mapping ↵ : dom(↵) !
X with image size strictly less than |X| is the restriction of some product of
idempotents from T

X

.

Lemma 1.3. If ↵ : dom(↵) ! X is an injective mapping with | im(↵)| < |X|,
then there exists a finite product ⇢ of idempotent mappings from T

X

such that

↵ is a restriction of ⇢.

Proof. Partition dom(↵) into the sets A = {x 2 dom(↵) : ↵(x) 2 dom(↵) } and
B = { x 2 dom(↵) : ↵(x) 62 dom(↵) }. Let � be any permutation of dom(↵)
such that �(a) = ↵(a) for each a in A and is arbitrary elsewhere in dom(↵).
By Lemma 1.2 we can find a product of idempotents ⇡ such that ⇡(x) = �(x)
for each x in dom(↵) (if A = ; then we assume that ⇡ is the mapping that
fixes all the elements of dom(↵)). For each element b of B define a mapping ✏

b

that maps ⇡(b) to ↵(b) and fixes the remaining elements of X. Each of these
mappings is an idempotent. Let ✏ denote the product of all the mappings ✏

b

.
It follows that ↵(x) = ✏⇡(x) for every x in dom(↵). Since both ⇡ and ✏ are
products of idempotents, the conclusion follows. ⌅

Returning to the argument prior to Lemma 1.2, we observe that ✏

�1 is an
injective mapping with | im(✏�1)| < |X|, so by Lemma 1.3 there exists a product
of idempotents ⇢ such that ✏

�1 and ⇢ agree on the domain of ✏�1. It follows
that ↵ = ✏

�1(✏↵) = ⇢(✏↵), which completes the proof of Theorem 1.1.

2 ERDOS’S THEOREM.

We now use Theorem 1.1 to reprove Erdos’s result. In what follows we assume
that V is a vector space of finite dimension over a field F and denote the zero
vector of V by 0. We refer to a linear mapping ↵ : V ! V as nontrivial if
im(↵) 6= h0 i. For a subset U of V we denote by hU i the subspace of V spanned
by U .

We show that we can write a nontrivial noninvertible linear mapping ↵ from
V to V as the product of two linear mappings � and �, where � maps some basis
B (of V) into B and � maps �(B) bijectively to ↵(B). To show that such a �

exists we must prove that for any basis B of V and any linearly independent set
I in V there exists a linear mapping that takes some subset of B bijectively onto
I. In general this is easy to accomplish, but we also require that � be a product
of idempotents. In this case, it is only possible to prove that such a linear
mapping exists when the cardinality of the second independent set is strictly
smaller than the dimension of V. We take the initial step toward establishing
the existence of � with the following lemma.

Lemma 2.1. For every nontrivial linear mapping ↵ : V ! V there exists a

basis B of V such that ↵(B) is a linearly independent set.
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Proof. Let I be a basis for the image of ↵, and let J be any set such that
↵(J) = I and |J | = |I|. Observe that, since I is a linearly independent set and
↵(J) = I, J is also linearly independent. Let Z be a basis for the kernel of ↵
(i.e., of the subspace ker(↵) = {v 2 V : ↵(v) = 0}). Note that Z may be empty.
Since h Z i \ h J i = h 0 i, the union Z [ J is linearly independent. Moreover,

dim(V) = dim(ker(↵)) + dim(im(↵)) = |Z|+ |J |,

so Z [J is a basis for V. Choose j in J . Then the set B = J [ (j+Z) is a basis
for V and ↵(B) = I, as required. ⌅

Next, we prove that the linear mapping � in the foregoing discussion exists
when our linearly independent sets di↵er by only a single element.

Lemma 2.2. Let I be any linearly independent set in V for which there exists a

j in V such that the set I[{j} is linearly independent. Then for each i in I there

exists an idempotent linear mapping � : V ! V such that �((I \ {i}) [ {j}) = I.

Proof. Let B be any basis for V containing I[{j}. Define a mapping � that maps
j to i and fixes all elements of B\{j}. We extend this mapping in the usual way
to a linear mapping � from V to V. It is clear that � has the required property. ⌅

If our independent sets di↵er by more than one element, then we require the
following lemma, which we prove by repeatedly applying Lemma 2.2.

Lemma 2.3. Let B be an arbitrary basis for V, and let I be an arbitrary linearly

independent set in V that is not a basis for V. Then there is a finite product � of

idempotent linear mappings from V to V that maps some subset of B bijectively

to I.

Proof. Suppose that n = |I|(< |B|) and that i1 belongs to I. Now B is not
contained in hIi, so there exists b1 in B such that I [ {b1} is linearly indepen-
dent. By Lemma 2.2 there exists an idempotent linear mapping �1 : V ! V
that maps I1 = (I \ {i1}) [ {b1} to I. Next let i2 be a vector in I \ {i1}. Then,
as before, there exists b2 in B such that I1 [ {b2} is linearly independent, and
there exists an idempotent linear mapping �2 that maps I2 = (I1 \ {i2}) [ {b2}
to I1. Continuing in this way we produce a sequence of linearly independent
sets (of equal cardinality) I0 = I, I1, . . . , In such that I

n

✓ B and such that for
each k there is an idempotent linear mapping �

k

of V that maps I
k

to I

k�1. The
mapping � = �1�2 · · · �n maps the subset I

n

of B bijectively to I, as required.⌅

We now turn to the main result of this note:

Theorem 2.4 (Erdos). Every noninvertible linear mapping of a finite dimen-

sional vector space V is a finite product of idempotent linear mappings.

Proof. Let ↵ be a noninvertible linear mapping from V to V. If ↵ is trivial, then
↵ is an idempotent and the result holds in this case. Otherwise ↵ is nontrivial,
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and by Lemma 2.1 we can find a basis B for V such that ↵(B) is linearly inde-
pendent. Let ↵ denote the mapping that is equal to ↵ on the elements of B but
is undefined elsewhere in V. By Lemma 2.3 there exists a product � of idem-
potent linear mappings of V such that some subset of B is mapped bijectively
to ↵(B). But then �

�1
↵ is a mapping in T

B

. Moreover, ��1
↵ is noninvertible

since ↵ is noninvertible. Hence �

�1
↵ is a product of idempotent mappings in

T
B

by Theorem 1.1. Each of these idempotent mappings can be extended to
an idempotent linear mapping from V to V. Let � denote the product of these
linear mappings. It follows that ↵(B) = �(��1

↵)(B) = ��(B), demonstrating
that ↵ = ��. Because both � and � are products of idempotents, so is ↵. ⌅

Corollary 2.5 (Erdos). Every singular n ⇥ n matrix is a finite product of

idempotent matrices.

The industrious reader might want to check that the (stronger) result that
every singular n ⇥ n matrix with rank k(< n) is a product of idempotents of
rank k follows from the arguments given in this note.
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