
Hokkaido Mathematical Journal Vol. 40 (2011) p. 357–360

An elementary semi-ampleness result for log canonical divisors
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Abstract. If the log canonical divisor on a projective variety with only Kawamata

log terminal singularities is numerically equivalent to some semi-ample Q-divisor, then

it is semi-ample.
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In this note, every algebraic variety is defined over the field C of complex

numbers. We follow the terminology and notation in [10].

Theorem 0.1 (Main Theorem) Let (X, ∆) be a projective variety with

only Kawamata log terminal singularities. Assume that the log canonical

divisor KX + ∆ is numerically equivalent to some semi-ample Q-Cartier

Q-divisor. Then KX + ∆ is semi-ample.

Remark 0.2 Divisors that are numerically equivalent to semi-ample Q-

divisors are nef. So Main Theorem is a corollary of the famous log abundance

conjecture for Kawamata log terminal pairs.

Remark 0.3 After the earlier draft of the manuscript was written out,

Campana-Koziarz-Paun ([3]) showed that Main Theorem holds under the

weaker condition that KX + ∆ is numerically equivalent to some nef and

abundant Q-Cartier Q-divisor.

For proof we cite the following two results. The first is the Q-linear triv-

iality (Proposition 0.4) due to Kawamata and Nakayama and the second is

the relative semi-ampleness (Proposition 0.7) due to Kawamata, Nakayama

and Fujino.

Proposition 0.4 ([8, Theorem 8.2], [12, Corollary V.4.9]) Let (X, ∆) be

a projective variety with only Kawamata log terminal singularities. Assume

that the log canonical divisor KX + ∆ is numerically trivial. Then KX + ∆

is Q-linearly trivial.
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Remark 0.5 Ambro ([1, Theorem 0.1]) gives an alternative proof to

Proposition 0.4, by providing some log canonical bundle formula and ap-

plying it to the Albanese morphism.

Remark 0.6 In the statement of Main Theorem, Proposition 0.4 gives the

special case where KX +∆ is numerically equivalent to the trivial divisor 0,

which is, of course, semi-ample.

Proposition 0.7 ([7, Theorem 6.1], [11, Theorem 5], [5, Theorem 1.1]) Let

(X, ∆) be a projective variety with only Kawamata log terminal singularities

and f : X → Y a surjective morphism of normal projective varieties with

only connected fibers. If KX+∆ is f-nef and (KX+∆)|F is semi-ample for a

general fiber F of f , then the log canonical divisor KX +∆ is f-semi-ample.

Proof of Main Theorem. Let D be a semi-ample Q-Cartier Q-divisor that

is numerically equivalent to KX + ∆. We consider the surjective morphism

f : X → Y of normal projective varieties with only connected fibers, de-

fined by the linear space H0(X,OX(lD)) for a sufficiently large and divisible

integer l. Then lD = f∗A for some ample divisor A on Y .

The log canonical divisor KX+∆ is f -nef. Furthermore the pair (F, ∆|F )

is Kawamata log terminal and, from a Kawamata-Nakayama result (Propo-

sition 0.4), the log canonical divisor KF +(∆|F ) = (KX +∆)|F is Q-linearly

trivial for a general fiber F of f .

Thus a relative semi-ampleness result due to Kawamata-Nakayama-

Fujino (Proposition 0.7) gives the surjective morphism g : X → Z of nor-

mal projective varieties with only connected fibers, defined by the sheaf

f∗OX(m(KX + ∆)) for a sufficiently large and divisible integer m, with the

structure morphism h : Z → Y such that hg = f . Then m(KX + ∆) = g∗B

for some h-ample divisor B on Z.

For a curve C on X, if f(C) is a point then also g(C) is a point, because

0 = m(f∗A,C) = m(l(KX + ∆), C) = l(m(KX + ∆), C) = l(g∗B,C). Thus

the morphism h is birational and finite. This means that h is the identity

morphism by virtue of Zariski’s Main Theorem.

Hence the divisors mA and lB are numerically equivalent to each other

on Y , because f∗(mA − lB) is numerically trivial on X. Thus lB is ample,

from the fact that mA is ample. Consequently KX + ∆ is semi-ample. ¤

Finally, by relaxing the condition concerning singularities, we propose

the following subconjecture towards the famous log abundance conjecture.
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Conjecture 0.8 Let (X, ∆) be a projective variety with only log canonical

singularities. Assume that the log canonical divisor KX + ∆ is numerically

equivalent to some semi-ample Q-Cartier Q-divisor. Then KX +∆ is semi-

ample.

Remark 0.9 Kawamata’s result ([9]) proves Conjecture 0.8 in the case

where ∆ is a reduced simple normal crossing divisor on a smooth variety X

and where KX + ∆ is numerically trivial.

Remark 0.10 Recently Gongyo ([6]) proved Conjecture 0.8 in dimension

≤ 4. Moreover he extended Kawamata’s result for the numerically trivial

log canonical divisors KX + ∆ to the case of projective semi-log canonical

pairs (X, ∆). His proof depends on Proposition 0.4, the minimal model

program ([2]) with scaling and the theory of semi-log canonical pairs ([4])

due to Fujino.
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