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An Ellipsoidal Calculus Based on Propagation
and Fusion

Lluís Ros, Assumpta Sabater, and Federico Thomas

Abstract—This paper presents an Ellipsoidal Calculus based
solely on two basic operations: propagation and fusion. Propaga-
tion refers to the problem of obtaining an ellipsoid that must satisfy
an affine relation with another ellipsoid, and fusion to that of com-
puting the ellipsoid that tightly bounds the intersection of two given
ellipsoids. These two operations supersede the Minkowski sum and
difference, affine transformation and intersection tight bounding
of ellipsoids on which other ellipsoidal calculi are based. Actually,
a Minkowski operation can be seen as a fusion followed by a prop-
agation and an affine transformation as a particular case of propa-
gation. Moreover, the presented formulation is numerically stable
in the sense that it is immune to degeneracies of the involved ellip-
soids and/or affine relations.

Examples arising when manipulating uncertain geometric infor-
mation in the context of the spatial interpretation of line drawings
are extensively used as a testbed for the presented calculus.

Index Terms—Ellipsoidal bounds, ellipsoidal calculus, set-mem-
bership uncertainty description.

I. INTRODUCTION

M OST techniques for parameter estimation assume that the
data are corrupted by random noise whose probability

density function is usually assumed to be gaussian. Real-world
uncertainties, however, also include nongaussian, nonwhite
noise and systematic errors. These uncertainties can easily be
considered in a set theoretic setting which consists in defining
bounds for the uncertain variables [23]. Fortunately, both set the-
oreticandprobabilistic techniquescanbecombined,asdescribed
in [7], to cope with situations where the uncertainty is described
partly by bounds and partly by probability density functions.

The main problem with the set theoretic description of un-
certainty is that, although the initial uncertainty sets have simple
shapes, the results of principal operations with them have a com-
plicated shape. This is why some canonical sets, that depend on
a fixed number of parameters, are introduced for the approxi-
mation of uncertainty sets. The problem that arises here is to
approximate the results of the operations by means of canonical
sets with maximal accuracy. Among many possibilities, ellip-
soids are usually taken as these canonical sets because they

a) can be concisely described;
b) provide a satisfactory approximation of convex sets in

most applications;
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c) can be represented using matrices interpretable as
weighted covariance matrices;

d) are invariant, as a class, under affine transformations.
The basic operations traditionally needed to deal with ellip-

soidal uncertainty sets have been

a) Minkowski sum of ellipsoids;
b) Minkowski difference of ellipsoids;
c) affine transformations of ellipsoids;
d) intersection of ellipsoids.

These four operations are required in many contexts other
than set theoretic uncertainty manipulation, such as optimiza-
tion and approximation, identification and experiment plan-
ning, probability and statistics, adaptive control, mathematical
morphology, etc. Then, because of their relevance, the term El-
lipsoidal Calculus has been coined to refer to these operations
as a set [9].

This paper first deals with the problem of obtaining an ellip-
soid which satisfies a given affine relation with another ellip-
soid, by means of an operation calledpropagationwhich can be
seen as a generalization of the elementary affine transformation
of ellipsoids. Then, it tackles the problem of obtaining the ellip-
soid with minimum volume among those resulting from a linear
convex combination of two possibly degenerate ellipsoids, an
operation calledfusion which provides a suboptimal solution
to the problem of finding the ellipsoid with minimum volume
containing the intersection of the two ellipsoids defining the
convex combination. Finally, it shows how the computation of
Minkowski sums and differences of ellipsoids can be performed
by fusions followed by propagations. Altogether, this leads to an
alternative Ellipsoidal Calculus, with a reduced number of op-
erations, that can supersede previous ones.

The presented formulation was motivated by the following
problem arising when manipulating uncertain geometric fea-
tures [18], [16]. Suppose that the ellipsoidal uncertainty regions
associated with the parameter vectorsand are known,
and that we also know that both vectors are related through
the vector equation . Then, any information on
provides information on , at least in part, and vice versa. The
problem is to combine both uncertainty sets to obtain a new set,
either for or , that takes into account that they are mutually
constrained. This problem cannot be solved using ordinary
ellipsoidal calculi based on the four aforementioned operations.
This can be easily shown by noting that, even in the case that
one of the parameter vectors has a bounded uncertainty region,
the induced uncertainty set for the other may be unbounded
in some directions, and that the result of the four operations
is always bounded for bounded inputs. This problem can be
effectively solved using propagations and fusions [6].
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Although the affine transformation of ellipsoids is a trivial
problem, the more general one of obtaining an ellipsoid that
satisfies an affine relation with another ellipsoid, in the pres-
ence of possible degeneracies, is by no means trivial. Whilst
this problem has received little attention in the literature, the one
of computing an ellipsoid containing the intersection of two el-
lipsoids has been investigated at least since the sixties [8]. In
the early eighties, the exact solution to this problem was only
known in the particular case in which one of the ellipsoids de-
generates into a half-space. The technique proposed in [4] for
computing an ellipsoid containing the intersection of two ellip-
soids consists in computing the tangent plane at a point on one
of the two ellipsoids. This plane defines a halfspace that can
be used to approximate the ellipsoid itself. Then, an ellipsoid
bounding the intersection between this halfspace and the other
ellipsoid roughly approximates the intersection of both ellip-
soids. A refinement on this consists in taking an initial ellipsoid
large enough to contain the intersection and computing tangent
planes on both ellipsoid boundaries to obtain halfspaces that are
iteratively intersected with the result [12]. The process is re-
peated, possibly with the same set of halfspaces, until no signifi-
cant reduction in the volume is observed. This way of improving
the result by recirculating the data of half-space batches, as long
as it reduces the volume of the result, has been broadly applied
in the context of set description of uncertainty, but it will not in
general produce a globally optimal ellipsoid. This motivated the
development of the globally optimal minimal-volume algorithm
described in [14]. Another alternative consists in distributing a
set of points on both ellipsoid boundaries, and removing those
from one ellipsoid that are not contained in the other. Then, the
problem consists in obtaining the smallest ellipsoid containing
all surviving points, using for example the algorithms described
in [25] or [21]. This is one of the techniques used in the commer-
cially available software described in [22]. All these approaches,
that can be said to be based on discretizations, obviously fail to
work properly when at least one of the ellipsoids is degenerate.

The problem of bounding the intersection of two concentric
ellipsoids is much simpler because the optimum is necessarily
in the family of linear convex combinations of both ellipsoids
[8]. This reduces the problem to the minimization of a function
in a single variable. Even if both ellipsoids are not concentric,
we can still look for the optimum in this family but then the
result is just a suboptimum that curiously satisfies most of the
desirable properties for the optimum. Although Schweppe [20]
already mentioned the interest of finding the best ellipsoid in
this family in the sense of various criteria including its volume,
he provided no way of computing the optimum. This was done
about ten years later by Fogel and Huang for the volume and
trace criteria, in the case of an ellipsoid an the region defined by
two parallel hyperplanes—which can be seen as a degenerate
ellipsoid. Belforte and Bona [2] showed that when one of the
hyperplanes does not cut the original ellipsoid, the volume of
the resulting ellipsoid using the Fogel-Huang algorithm can be
reduced by substituting a parallel hyperplane tangent to the orig-
inal ellipsoid for the nonintersecting hyperplane. This proved
that the Fogel–Huang algorithm was not optimal. In the con-
text of linear programming, an algorithm was developed to ob-
tain a minimum-volume ellipsoid containing the intersection of

an ellipsoid with a half-space or a region limited by two par-
allel hyperplanes [3]. It has been shown that the Fogel-Huang
algorithm, as modified by Belforte and Bona is mathematically
equivalent to the minimal-volume ellipsoid using this linear pro-
gramming technique and therefore optimal [14]. Maksarov and
Norton explored further this approach in [11], where they finally
give a function whose single root in the range of interest give
the minimum volume ellipsoid within the linear convex combi-
nation of two ellipsoids. This technique is used in [22], where
it is shown to provide tighter results than using discretizations,
as expected. Nevertheless, the obtained function is not defined
if both ellipsoids are degenerate, even in the case their inter-
section is bounded, and in its expression appears inverses of
matrices that depend on the function variable. We here give an
alternative derivation that concludes with a polynomial whose
computation avoids matrix inversions that can lead to numer-
ical ill-conditionings. Moreover, the degeneracy of both ellip-
soids is not an impediment to its direct application, provided that
their intersection is bounded, a circumstance that can be easily
checked beforehand. Nevertheless, both formulations must pro-
vide the same result, at least when both ellipsoids are not de-
generate. In particular, if one of the ellipsoids degenerates into
a region defined by two parallel hyperplanes, both methods must
be equivalent to the Fogel–Huang algorithm. We have provided
this equivalence by algebraic manipulations of our polynomial.
We also prove that our expression has a single root in the range
of interest by the more straightforward technique of proving the
convexity of the volume function.

The first attempt to find the minimal-volume ellipsoid con-
taining the Minkowski sum of two ellipsoids was done in [4],
but the used derivation was quite complicated. A neater one was
given in [11]. We here show how a Minkowski set operation can
always be expressed in terms of a fusion followed by a propa-
gation.

This paper is structured as follows. The next section includes
the notations, definitions and all the mathematical background
needed throughout this paper. Sections III and IV are devote the
propagation and fusion operation, respectively. Section V con-
tains the examples, including Minkowski set operations carried
out by degenerate fusions followed by propagations. Finally,
Section VI concludes with points that deserve further research.

II. BACKGROUND

A. Notation

Matrices.
-th entry of matrix .

Identity matrix.
Vectors.
Transpose of .
Matrix of cofactors of .
Inverse of .
Right inverse of .
Left inverse of .
Pseudoinverse of .
Orthogonal complement of .
Rank of .
Trace of .
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Determinant of .
Subspace spanned by the rows of.
Orthogonal subspace to that of .
Positive square root of.

B. Ellipsoids

A real -dimensional ellipsoid, centered on, can be con-
cisely described as

(1)

where is a positive-semidefinite symmetric matrix.
Imaginary ellipsoids, which may appear when manipulating real
ellipsoids, can analogously be described as

can be diagonalized into the form
, where are the eigen-

values of and the columns of , are the
corresponding orthonormal eigenvectors. The principal axes of
the ellipsoid are the directions given by and its semiaxes
lengths are given by .

The volume of is given by

(2)

where is the volume of the unit ball in .
By definition we will assign a negative volume to imaginary

ellipsoids such that

(3)

When is singular, i.e., its rank is lower than
eigenvalues are zero, the corresponding semiaxes lengths tend
to infinity and so does the volume defined by (2) and (3). In this
case, (1) is better said to correspond to anelliptical cylinder in
which the affine variety is defined as itsvariety
of centersbecause remains invariant if is substi-
tuted by any point of this variety. In the particular case in which

, (1) represents a region bounded by two parallel
hyperplanes, orstrip, whose variety of centers is a hyperplane
located just in the middle of the bounding hyperplanes.

From the diagonalized form of, it can be shown that can
always be expressed as , where the columns of
are being the eigenvectors corresponding to nonnull
eigenvalues. Then, if is an full column
rank matrix. For example, for a strip of width .

C. Definitions and Properties

Definition 1 (Right and Left Inverse): is a right inverse
matrix of if, and only if, . Likewise, is a left
inverse matrix of if, and only if, .

Right and left inverses have the following properties.

1) Given and do not always exist and, if they exist,
in general they are not unique.

2) If is not singular, then .
3) has right inverse if and only if it has full row rank. Then

its right inverse matrix has full column rank. Likewise,

has left inverse if and only if it has full column rank and
then its left inverse matrix has full row rank.

4) If has full row rank, is a right
inverse matrix of . And, if has full column rank,

is a left inverse matrix of .

Definition 2 (Orthogonal Complement):Let be an
full row rank matrix, then any full column

rank matrix satisfying is called an orthogonal
complement of .

is called the orthogonal complement of because
. Since the columns of form a basis of the

nullspace of , it can be readily obtained from the singular
value decomposition of .

Lemmma 1:Let be a full row rank matrix, then

there exists such that .

Proof: Since
is a nonsingular matrix and

exists. Let us see that . Since

is an orthogonal complement of . .
Therefore, there exists a matrix satisfying . In
addition, . Hence, .

Definition 3 (Pseudoinverse): is called the pseudoinverse
of if, and only if, , and both,

and , are symmetric.
Pseudoinverse matrices have the following properties.

1) If is square and nonsingular, then . Other-
wise, there will be infinitely many .

2) If has a right inverse, then is a right inverse. Like-
wise, if has a left inverse, then is a right inverse.

3) If the system has solution, then is a
solution.

Pseudoinverses of ellipsoid matrices can be easily computed
from their eigenvectors since .

III. PROPAGATION

This section considers the problem of obtaining the set that
must satisfy an affine relation with a given possibly degenerate
ellipsoid. We constructively show that this set is also an ellip-
soid thus generalizing, using pseudoinverses, the straightfor-
ward affine transformation of ellipsoids. This problem arises
whenever two parameter vectorsand are known to be re-
lated through a vector equation . Then, their cor-
responding uncertainty regions are obviously related. By lin-
earizing this equation at , we obtain

which is an affine equation of the type . It is
possible to introduce an uncertainty region associated withto
account for the residuals of the linearization. Nevertheless, for
the sake of simplicity, is assumed to be constant in this section.
The general case involves the computation of Minkowski sum
and thus a fusion of ellipsoids which is explained in the next
section.
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Fig. 1. Geometric interpretation of ellipsoid propagation.

Definition 4 (Ellipsoid Propagation):The propagation of
through the mapping

(4)

is defined as the set

where are and matrices, respectively, of rank
.
For mapping (4) to define a relation betweenand and
must have the same rank. On the contrary, ifhad rank

smaller, or larger, than , it would constrain the coordinates of
, or , respectively. The assumption thatand are full row

rank matrices is not restrictive as (4) can always be simplified
by row operations such that the involved matrices have full row
rank.

Let be a point satisfying . Then, the
equation defining the mapping (4) is equivalent to

Hence, the mapping (4) can be expressed as the following com-
position of mappings:

This composition can be seen as a projection followed by an
extension by simply identifying with the linear subspace of

defined by the rows of , and the linear subspace of
defined by the rows of , respectively (Fig. 1).

Theorem 1 (Propagation):The propagation of ellipsoid
through the mapping

defined by the equation , where
, is the ellipsoid ,

where is a point satisfying and
.

Proof: First, we propagate through
, or equivalently through ,

to obtain .
Since has full row rank, according to Lemma 1, there exists

such that , where .

Then, can be expressed as

Changing variables , we get

that is

(5)

This inequality defines an ellipsoid in the space for con-
stant values of whose center, , satisfies

. Using pseudoinverses, one solution to this
equation is . Then, the ellipsoid
given by (5) can be rewritten as

Since it should correspond to a real ellipsoid, its independent
term has to be positive, i.e.

Substituting and rearranging terms, we get

Then, the propagated ellipsoid matrix is

Finally, we have to propagate through
to obtain . Since if, and only if,

we conclude that .

IV. FUSION

The ellipsoidal approximation of the exact intersections of
two ellipsoids should be obtained from the minimization of a
measure that reflects its geometrical size. The measures usually
considered for this minimization are: the volume (which corre-
sponds to the maximization of the ellipsoid matrix determinant),
the sum of squares of the semiaxes (which corresponds to the
minimization of the trace of the ellipsoid matrix inverse), and
the length of the largest semiaxis (which corresponds to maxi-
mization of the smallest eigenvalue of the ellipsoid matrix). For
a comparison of the results obtained when bounding the inter-
section of an ellipsoid and a strip using the trace versus the de-
terminant criterion the reader is addressed to [5]. We will use
the volume criterion because it is the one that better reflects the
intuitive idea of tight bounding.

Theorem 2: Given two possibly degenerate ellipsoids,
and , whose intersection is a nonempty

bounded region, the region defined by

(6)
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is a real ellipsoid, , which coincides with
or for or , respectively; and it is given
by

for .
Proof: See Appendix A, where is shown to be always

invertible for .
The ellipsoid that tightly bounds the intersection of

and will be sought within the set of
ellipsoids defined by for . Although the
result will not necessarily be the optimum, but for those cases
in which both ellipsoids are concentric, this simplification is
supported by the following easy-to-prove topological properties
of :

a) the intersection between the boundaries of and
is also on the boundary of ;

b) the intersection of and is always
contained in ;

c) never contains points not included either in
or .

While a) and b) ensure a tight bounding of the intersection, c)
guarantees that the resulting uncertainty set is not going to con-
tain uncertainties not included in the original sets.

Fig. 2 shows the families of linear convex combinations for
different couples of ellipsoids and configurations. The graphics
besides each couple includes a plot of the volume of. Note
how in those cases in which both ellipsoids are not intersecting
[Fig. 2(a) and (h)], does not sweep a continuous region of
the plane, becoming imaginary for some values ofand, as a
consequence, with negative volume. The center of , is also
represented as varies.

Definition 5 (Ellipsoid Fusion): The fusion of
and , whose intersection is a nonempty bounded re-
gion, is for the value of that minimizes its
volume.

The fusion of two ellipsoids is only defined if their intersec-
tion is a bounded region. This is so to avoid the minimization
of infinite volumes. Moreover, it does not introduce any loss of
generality because, in degenerate cases, the fusion can always
be carried out in the subspace orthogonal to the intersection of
the varieties of centers of both ellipsoids followed by an expan-
sion.

Lemmma 2: is a convex function of
.
Proof: It follows from Theorem 6 of [1] that

Hence

In addition, since the inequality
relating the arithmetic and geometric means ofand holds
for and

Thus

Since is upper bounded by 1 (becauseis positive-demidef-
inite and hence so is ), and lower bounded by 0 (be-
cause is a real ellipsoid according to the assumptions
of Theorem 2), we conclude that

, which can be extended to any subinterval of [0, 1]
because we are working with a linear combination of
and .

This lemma guarantees the existence of a unique stationary
point of for . Now, the effective com-
putation of the optimum bounding ellipsoid involves the con-
ceptually simple, but algebraically tedious, process of differen-
tiating the resulting volume (i.e., ) with respect to and
setting the result to zero.

Theorem 3 (Fusion):The fusion of and
is: , if ; or

, if ; otherwise, it is
where is the only root in (0, 1) of the following

polynomial of degree

(7)

Proof: The minimization of the volume of is
equivalent to the maximization of the determinant of. Since

then

(8)

It can be checked that

Substituting in (8) and multiplying by , (7) is
obtained. Note that both and have been proved to be
different from zero in the open interval (0, 1).

For the sake of conciseness, the polynomial in (7) is given
in terms of . Then, it apparently requires the inversion of.
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Fig. 2. Fusion examples.

Nevertheless, since and the second term
of (7) is multiplied by the dividing terms cancel and
no numerical ill-conditionings are possible.

In Fig. 2, the graphs of and of (7) are plotted
in function of , for several ellipse families. Clearly, the root
of (7) in the interval (0, 1) coincides with the value ofthat
minimizes the volume of . The ellipse corresponding to this

root is highlighted in thick line in every family. The trajectory
of the center as varies is also indicated.

Corollary 1: When the centers of both ellipsoids coincide,
, and the problem can be reduced to obtain the

roots of the following polynomial of degree
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Fig. 3. (a) An incorrect truncated tetrahedron. To be correct,x ; x andx
should coincide, as illustrated in (b).

Proof: If and . Substituting
in (18), (22) is obtained.

Note that the fusion of two degenerate ellipsoids whose vari-
eties of centers intersect in a single point can be reduced to this
case because this point is necessarily the center of the fused el-
lipsoid.

Corollary 2: If
is given by

where .
Proof: See [19].

This corollary is useful to obtain the uncertainty region asso-
ciated with the cartesian product of and ,
i.e., a tight bounding of .
It will be used in the examples below.

Corollary 3: When one of the ellipsoids is a strip, (7) reduces
to a second order polynomial for which the sought root can be
explicitly computed.

Proof: See Appendix B for a proof of this corollary, where
the result is also shown to be equivalent to the formula used by
the ellipsoid algorithm.

V. EXAMPLES

A. A Truncated Tetrahedron

Consider the line drawing in thick lines of Fig. 3(a). Suppose
it has been obtained from a picture of a plane-faced object with
an image processing system that, using a vertex extraction algo-
rithm, has located within a disk of radius three pixels
around each of the following positions:

Note that for this drawing to be a correct projection of a trun-
cated tetrahedron, the three edge-lines , and

must all be concurrent to the same point, the apex of the (imag-
inary) original tetrahedron [Fig. 3(b)]. In fact, for an arbitrary
polyhedron, one has a collection of suchconcurrence condi-
tions, which, if satisfied on the projection, guarantee its correct-
ness [15], [24].

Fig. 4(a) and (c) show one possible way to verify the correct-
ness of this drawing, based on computing an uncertainty region
for the imaginary apex. This is done by first using the propa-
gation operation repeatedly [Fig. 4(a)] to separately derive the
uncertainty regions of

1) a point aligned with and ;
2) a point aligned with and ;
3) a point aligned with and ;

and then, using the fusion operation [Fig. 4(c)] to intersect the
three uncertainties together. If this intersection is nonempty, the
line drawing can be judged as practically correct and we can start
a 3-D reconstruction from it [17]. Otherwise, the six vertices are
too badly placed and we can consider the use of some correction
algorithm to take them over correct locations [16].

Since three points are aligned if and only if the determinant
of their homogeneous coordinates is zero, the uncertainty of a
point aligned with two other points and can be easily
computed by propagation through the relation

a relation which we will refer to as .
Here, the input and output variables are
and , respectively. The linearization of this rela-
tion at a point is , with

The input ellipsoid for is easily derived by computing an ellip-
soidal bound for the cartesian product of the uncertainty disks
for and , via the fusion operation (see Corollary 2 above).
As expected, in each of the three propagations the output el-
lipsoid for is a strip, as shown in Fig. 4(a). Finally, these
three strips can be fused together to obtain the apex uncertainty
[Fig. 4(c)]. This fusion is performed in two steps.

1) A first fusion involving the vertical and one of the oblique
strips in Fig. 4(a), to derive the nonshaded ellipse in
Fig. 4(c).

2) A second fusion of this ellipse with the other oblique strip
in Fig. 4(a), to obtain the shaded ellipse in Fig. 4(c).

A second way of computing the apex uncertainty is shown in
Fig. 4(b) and (d). Here, we use the fact that the apex point must
lie on the intersection of any pair of the three edge-lines

, and . Thus, we can select any two of these lines, say
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Fig. 4. (a) and (b) Vertex uncertainties propagated to the apex. Whereas in (a), every strip is derived from the uncertainties of two vertices and one alignment
condition; in (b), every ellipse is obtained from the uncertainties of four vertices and two alignment conditions. (c) Shaded in grey: fusion of the strips in (a); (d)
fusion of the ellipses in (b).

and and derive an ellipsoid for the apex by
propagation through the relations

Doing this for the three possible pairs we obtain the three el-
lipses in Fig. 4(b). As before, their intersection is easily bound
by fusion in two steps [Fig. 4(d)]: first fusing two of the ellipses
to obtain the shown nonshaded ellipse, and then fusing it with
the remaining ellipse to obtain the shaded region.

Comparing Fig. 4(c) and (d) we note that the second method
is advantageous: the final uncertainty is quite smaller because
in each propagation we take two (rather than one) relations into
account.

At this point, one could think that a third method would out-
perform the two previous ones: it seems that a single propaga-
tion through these three relations

would avoid the need of the fusion step and even give a tighter
bound for the apex. However, note that we would here have more

relations (3) than output variables (2) and that these relations
would mutually constrain the input variables , thus
violating the premises of Theorem 1.

B. A Hexahedron

The fact that a drawing must accomplish a set of concurrence
conditions can be used not only to decide its correctness, but also
to infer the positions of some vertices, once the uncertainties of
others are known. The following example illustrates this use.

Consider the projection of a hexahedron in thick lines of
Fig. 5(a). For this hexahedron to be correct, one can see that the
following sets of three lines must each intersect at a common
point

since these concurrences hold in any spatial reconstruction of
the object [Fig. 5(a)] and they are preserved after projection.

Using these conditions and reasoning on Fig. 5(a), we can
easily see that the position of is constrained to lie on a line
through and , once we know the locations of .



438 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 4, AUGUST 2002

Fig. 5. Uncertainty regions forx ;x ; andx , given the input uncertainties ofx ; . . . ;x (depicted as small shaded disks around these vertices). Taking into
account the concurrence conditions in (b), we get the strips and ellipses in (e) and (g), depending on how these concurrences are specified (see the text). Using the
conditions in (d), we get the strips and ellipses in (f) and (h).
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Thus, using propagation, we can deduce an ellipsoidal uncer-
tainty for assuming that are known to lie within
a disk of radius eight pixels around each of these locations

For this, we need a relation stating the concurrence of three
lines, which we next derive. A line through two points,and

, can be characterized by itsPlücker coordinates, i.e., the
three 2 2 minors of the 2 3 matrix

Moreover, one can see that three lines are concurrent if, and only
if, their Plücker coordinate vectors are linearly dependent. Thus,
the three lines and are concurrent whenever

a condition which we will compactly refer to as

The linearization of this relation is , with

The partial derivatives of have simple expres-
sions. For example, is equal to

Then, the uncertainty of can be derived by computing the
cartesian product of the uncertainties of and prop-
agating the resulting ellipsoid through the linearization of the
relations

(9)

taking

as input and output variables, respectively. Note that, since the
output is six-dimensional, we get the uncertainties of
and combined together. Thus we need to project this higher
dimensional ellipsoid onto the planes , and

, to obtain two-dimensional uncertainty regions for
each point. Fortunately, such a projection can be seen as a
special case of propagation: note that the projection of a point

onto coordinates, say , is the point

, where is an matrix all of whose entries are
zero, except for , that are set to one.
Hence the projection of an ellipsoid onto these coordinates, is
achieved by applying Theorem 1 with and

.
The results of such projections are shown in Fig. 5(e). As ex-

pected, we obtain a strip for the uncertainty of, and two par-
allel strips, one for and the other for . We obtain strips
rather than ellipsoids for and because the chosen set of
relations only constrains these points to lie on a line through the
intersection points of lines and , on the one hand, and

and , on the other. However, the formulation is rich
enough to derive fully bounded ellipses forand . Namely,
we need only express the same concurrences differently, propa-
gating the same input ellipsoid through the relations

(10)

using the same vectorsand of input and output variables.
The resulting uncertainties are depicted in Fig. 5(g).

Furthermore, if instead of a strip we need a fully bounded
ellipse for , we can always use the fact that the hexahedron
must accomplish the additional concurrence condition shown in
Fig. 5(c) and (d), so that we can add the relation

to the above relations (9) and (10) and perform the corre-
sponding propagations again. The results are shown in Fig. 5(f)
and (h), respectively, where the ellipse for is nondegenerate
anymore.

C. Minkowski Set Operations

Let us suppose that we want to compute the uncertainty region
associated with , where and

. can be expressed as

(11)

where . Then, the first step is to compute the uncer-

tainty region associated with. This can actually be seen as the
fusion of two elliptical cylinders in . Then, using Corollary
2, it is straightforward to prove that

where and .

It simply remains to propagate through (11),
to obtain the Minkowski sum of and .
Also, note that the Minkowski difference between
and is just the Minkowski sum of and

.
This has been implemented and several examples are shown

in Fig. 6. Every example displays two ellipsoids and compares
their exact Minkowski sum with the ellipsoid bound obtained
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Fig. 6. (a)–(c) Minkowski sums of nondegenerate ellipsoids. (d)–(f) Minkowski sums of degenerate ellipsoids.

by the process above. The exact Minkowski sum of two ellipses
and can be obtained by first translating
to the origin, then overlaying copies of

around its contour, with fixed orientation, and finally translating
the whole figure an amount . The envelope of the re-
sulting family of ellipses is the desired Minkowski sum. Using
this geometric construction we see in Fig. 6 that the Minkowski
set operation of our calculus obtains quite good approximations
(in shaded grey) as compared to the exact sum (the envelope of
the shown ellipse families). In the sequence of the first row we
see how the ellipsoidal and exact sums evolve, as the two el-
lipses flatten to approximate a segment. In the second row we
show Minkowski sums of degenerate ellipsoids. Fig. 6(d) shows
the sum of an ellipse with a vertical strip of semiaxis length
0.5, which results in a wider vertical strip of semiaxis length
1.59. Fig. 6(e) depicts the sum of two strips of semiaxis length
0.2, symmetrically placed about the-axis. The result is a strip
of semiaxis length 0.4 that coincides with the exact Minkowski
sum of the original sets. Finally, Fig. 6(f) shows the Minkowski
sum of two oblique strips which returns the whole plane as ex-
pected.

VI. CONCLUSION

The class of nondegenerate ellipsoids is closed under the al-
lowed operations by ordinary ellipsoidal calculi. We have shown
in this paper that the inclusion of degeneracies enlarge the class

and new operations—such as propagation—are now possible.
Propagation has been defined as the operation of computing an
ellipsoid that satisfies an affine relation of the form

with another ellipsoid. We have limited our formulation
to those cases in which and have the same rank, otherwise
constraints on the coordinates ofor are introduced. This is
why a fusion could be seen as a propagation where these ranks
are different. This observation would allow us to introduce an
Ellipsoidal Calculus solely based on a single operation: a propa-
gation without limitations on the ranks of the involved matrices.
This point deserves further attention. Secondly, although it is
considered a solved problem [9], [10], [13], further investiga-
tion could also be carried out on the issue of inner approxima-
tions, i.e., lower ellipsoidal bounds on the data. Since we know
the exact result of a propagation, we only need to concentrate
ourselves on getting such bounds for the fusion operation, as a
Minkowski sum or difference is just a combination of these two
operations.

Bounded-error data naturally lead to set estimates which
are an attractive alternative to point estimates, as derived
when using stochastic characterizations. The size of these set
estimates will obviously depend on the quality of the data
collected. Among all feasible experiments, one may therefore
be interested in selecting the one which can be expected to
minimize this size in some sense. This problem of experiment
design has received a considerable amount of attention in
a statistical context and it has also been considered in the
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bounded-error context. Nevertheless, up to our knowledge,
its application to active sensing in Robotics, while certainly
deserving some attention, remains unexplored.

Finally, it is also worth to mention that an implementation
in Maple of the presented Ellipsoidal Calculus as well as ex-
amples, including those in this paper, can be downloaded from
http://www.iri.upc.es/people/ros/ellipsoids.html.

APPENDIX A

The set in (6) can be rewritten as

(12)

Then, its center, , is a solution of

where ,
We now prove that can be inverted because

never vanish in the open interval (0, 1). Since both
ellipsoids intersect in a bounded region, .
Now, let us assume that but

. Then, there exists such that

Multiplying it by , we get

(13)

Since, for values of in the open interval (0, 1), the lhs of (13)
is greater or equal to zero and its rhs lower or equal to zero, it
is only satisfied if, and only if, simultaneously and

. That is, . Hence, since and are

symmetric matrices, , contrary

our assumption.
Now, (12) can be rewritten as where

and

or, equivalently, after further algebraic tedium

We know that this corresponds to a real ellipsoid because it
always contains the intersection. Then, sincecan be easily
proved to be positive-semidefinite,is always positive.

APPENDIX B

When using the ellipsoid method, a strip is usually described
as . If it is seen as a degenerate ellipsoid, it can
be expressed as , where

, and is any point satisfying .
Then, from Theorem 3, the linear convex combination of this

strip and an arbitrary nondegenerate ellipsoid, say ,
is , where

(14)

for . Note that we here use a different parameteriza-
tion but, by setting and , the one in
Theorem 3 is recovered.

Moreover, according to Theorem 4, the optimum bounding
ellipsoid within this family is obtained for a value ofsatisfying

(15)

where . A quite involved and tedious algebraic
manipulation allows us to express (15) as

(16)

where

and can be interpreted as the Mahalanobis distances in-
duced by from to the hyperplanes and

, respectively.
Since (16) is a second order polynomial in, its solutions are

where

Only the negative value for corresponds to a positive value
for . Thus, the obtained solution for, once substituted in (14),
leads to the equations used by the ellipsoid method for bounding
the intersection of an ellipsoid and a strip, as summarized in [3].
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