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Abstract Wedefine an elliptic deformationof theVirasoro algebra.Weconjecture that
the R4 × T

2 Nekrasov partition function reproduces the chiral blocks of this algebra.
We support this proposal by showing that at special points in the moduli space the
6d Nekrasov partition function reduces to the partition function of a 4d vortex theory
supported on R

2 × T
2, which is in turn captured by a free field correlator of vertex

operators and screening charges of the elliptic Virasoro algebra.
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1 Introduction

The past few years have seen significant advances in our understanding of supersym-
metric gauge theories. Such progress has been largely possible due to the developments
of supersymmetric localization techniques which have allowed many exact results to
be obtained. One of these is the discovery by Alday, Gaiotto and Tachikawa (AGT)
[1] that certain BPS observables of class S theories [2] of A1 type can be computed
in Liouville CFT, or Toda for higher rank [3]. In particular, the AGT correspondence
identifies the R

4 Nekrasov instanton partition function (ZR
4

inst) [4,5] with the chiral
blocks [6] of the Virasoro algebra (or WM algebra for AM−1 theories)

ZR
4

inst � 〈γ∞|
N∏

i=1

Vγi (xi )|γ0〉Vir.

The AGT relation is a powerful tool to get further insights into the gauge dynamics as
certain aspects can be efficiently addressed in the 2d CFT side, for example the study
of defect operators [7–14] (for a recent review we refer to [15–17]).

It seems to be quite important to understand whether AGT-like relations exist in
other dimensions as well, in particular in 6d where much of the 4d physics finds its
natural origin. One of the main motivations behind this work was indeed to explore the
possibility of studying 6d theories through AGT inspired methods, a topic which was
previously addressed also in [18,19]. Our results can be summarized in the proposal

ZR
4×T

2

inst � 〈γ∞|
N∏

i=1

Vγi (xi )|γ0〉e-Vir,

where the l.h.s. captures the supersymmetric partition function of a 6d (1, 0) theory on
a torus which can be engineered in M-theory by two M5-branes probing a transverse
AN−1 singularity [20], while the r.h.s. represents the chiral blocks of an elliptically
deformed Virasoro algebra, which we define in this paper.

This result can be read as the natural 1-parameter deformation (Table 1) of the 5d
AGT relation [21], which we briefly recall here to pave the way for our analysis in

Table 1 The AGT relation in
various dimensions

Zinst on Chiral blocks of

R
4 Virasoro

R
4 × S1 q-Virasoro

R
4 × T

2 e-Virasoro
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this work. The R
4 Nekrasov partition function and the Virasoro algebra have both

a natural trigonometric deformation. The deformation of the former corresponds to
the R

4 × S1 Nekrasov partition function [4,5], while the deformation of the latter
corresponds to the q-Virasoro algebra (q-WM algebra) of [22–24]. The identification
of the two deformations predicts the 5d AGT correspondence

ZR
4×S1

inst � 〈γ∞|
N∏

i=1

Vγi (xi )|γ0〉q-Vir.

Evidences supporting this idea were extensively discussed, for example, in [25–27],
and more recently in [28,29]. A complete 5d AGT relation beyond the chiral level
was also proposed in [30,31], where the S5 [32–39] and S4 × S1 [40–42] partition
functions of the 5d lift of classS theories [43] of A1 typewere shown to be described by
correlators in two distinct QFTs with q-Virasoro symmetry, and hence called q-CFTs
(see also [44–46] for an analysis of the higher rank case).

Another neat argument in favor of the 5dAGT correspondence, whichwe also adopt
in this paper for the 6d analysis, was given in [47] (see also the review [48]). It was
shown that theR4× S1 Nekrasov instanton partition function of theU (N ) theory with
N fundamental and anti-fundamental flavors reproduces, upon suitable specializations
a = a∗(r) of the Coulomb branch moduli, the (N + 2)-point chiral blocks of the q-
Virasoro algebra in the Dotsenko–Fateev free field integral representation [25,49]

ZR
4×S1

inst

∣∣∣
a=a∗(r)

�
∮
dz 〈γ∞|

N∏

i=1

Vγi (xi )
r∏

j=1

S(z j )|γ0〉q-Vir,

where the operator S(z) denotes the screening current and the integral is computed by
residues for specific choices of integration contours. The specialization of theCoulomb
branchmoduli corresponds to the root of the Higgs branchwhere vortex solutions exist
and the dynamics can be effectively described by a 1/2 BPS codimension 2 theory on
R
2
ε × S1. Partition functions of 3dN = 2 gauge theories compactified onR2

ε × S1 can
be computed by means of the 3d holomorphic block integrals (B3d) introduced in [50]
(see also [51] for previous work on 3d block factorization and [52] for a derivation of
block integrals through localization)

B3d =
∮

dz

2π iz
ϒ3d(z),

where the integral kernelϒ3d(z) is a meromorphic function determined by the specific
theory and the integration is over a basis of middle dimensional cycles in (C×)|G|,G
being the gauge group. It was pointed out in [47] that the free field integral repre-
sentation of q-Virasoro chiral blocks manifestly matches the 3d block integrals of the
U (r) theory with N fundamental and anti-fundamental flavors, 1 adjoint and Fayet–
Iliopoulos term. Combining all these observations, one gets the identifications
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ZR
4×S1

inst

∣∣∣
a=a∗(r)

�
∮
dz 〈γ∞|

N∏

i=1

Vγi (xi )
r∏

j=1

S(z j )|γ0〉q-Vir � B3d[U (r)].

In particular, the two parameters q, t of the q-Virasoro algebra are identified with the
ε1,2 parameters of the 5d �-backgroundR4

ε1,ε2
× S1, and with the angular momentum

fugacity ε and adjoint real mass in the 3d theory. The choice a = a∗(r) determines
the rank r of the 3d gauge group and the number of screening currents, which must be
in turn distributed among the N flavors and insertion points according to a choice of
partition r = ∑N

a=1 ra . This choice corresponds to an integration contour and provides
additional discrete variables (filling fractions [53–55]) entering the allowed values of
the internal momenta in the correlator. This kind of “triality” can be extended to quiver
gauge theories and q-WM correlators [56] (the generalization to DE root systems and
applications to little string theories [57–59] can be found in [60]).

The natural lift of the 3d setup is provided by 4dN = 1 gauge theories compactified
on R

2
ε × T

2. Partition functions on this background can be computed through the 4d
holomorphic block integrals (B4d) introduced in [61]. These objects can be thought
of as a 1-parameter deformation of 3d block integrals, in the sense that

B4d =
∮

dz

2π iz
ϒ4d(z)

3d limit−−−−→ B3d =
∮

dz

2π iz
ϒ3d(z).

Due to the algebraic interpretation of 3d holomorphic blocks with adjoint matter as q-
Virasoro chiral blocks in free field representation, we are naturally led to ask whether
4d holomorphic blocks with adjoint matter can be similarly interpreted as chiral blocks
of an elliptic deformation of the Virasoro algebra. A central result of the current paper
is that we can give an affirmative answer to that question, namely

B4d[U (r)] �
∮
dz 〈γ∞|

N∏

i=1

Vγi (xi )
r∏

j=1

S(z j )|γ0〉e-Vir.

In turn, we are also able to match the evaluation of the 4d block integral with the
topological string partition function on the Calabi–Yau geometry obtained by gluing
two periodic strips [62–64], for special values of theKählermoduli. The latter captures
the M-theory partition function of two M5-branes extending in R4 × T

2 and probing
a transverse AN−1 singularity, and hence we can also argue that the 4d gauge theories
under examination describe vortices of 6d (1, 0) theories so engineered. This chain of
results, togetherwith large r duality [65–68], strongly supports a 6d version of theAGT
correspondence (discussed also in [69] from the M-theory perspective) by identifying
generic chiral blocks of the elliptic Virasoro algebra withR4 ×T

2 Nekrasov instanton
partition functions. Lately, 6d (1, 0) theories have attracted much attention [70–81].
We hope that the methods developed in this work will be useful to get further insights
into the elusive 6d physics.

The rest of this paper is organized as follows. In Sect. 2, we define an elliptic
deformation of the Virasoro algebra and compute free field correlators. In Sect. 3,
we briefly review the 4d block integral formalism and we consider its application to
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the U (r) theory with adjoint matter, manifestly matching free field correlators of the
elliptic Virasoro algebra. In Sect. 4, we compute the R

4 × T
2 Nekrasov instanton

partition function by using the topological vertex on the periodic strip, and we show
that at specific points it coincides with the elliptic vortex partition function of the 4d
theory. In Sect. 5, we discuss our results further as well as interesting directions for
future research. Other and more technical aspects of this work are discussed in several
appendices.

2 Elliptic Virasoro Algebra

In this section we define a 1-parameter deformation of the Deformed Virasoro Algebra
(DVA or q-Virasoro) of [22], which we call the Elliptic Virasoro Algebra (EVA or
e-Virasoro). We give a free field representation of the EVA and find its screening
currents. We then compute free field correlators of suitably defined vertex operators
and screening charges. The special functions used in this section are collected in
Appendix 1, while part of our notation is set in Appendix 2.

2.1 Defining relation

We define the EVA to an be associative algebra generated by the coefficients of the
current T (z) = ∑

n∈Z Tnz−n , with the defining relations encoded by

f

(
w

z

)
T (z)T (w) − T (w)T (z) f

( z

w

)

= −�(q; q ′)�(t−1; q ′)
(q ′; q ′)2∞�(p; q ′)

(
δ

(
p
w

z

)
− δ

(
p−1w

z

))
, (2.1)

where the coefficients of the structure function f (x) = ∑
	∈Z f	x	 are defined by the

series expansion of

f (x) = 
(x; p2, q ′)
(p2q−1x; p2, q ′)
(pqx; p2, q ′)

(p2x; p2, q ′)
(pq−1x; p2, q ′)
(qx; p2, q ′)

, (2.2)

with the elliptic Gamma function defined in (6.9) in the region |p2|, |q ′| < 1, while
δ(x) = ∑

n∈Z xn is the multiplicative δ function, i.e., δ(x)φ(x) = δ(x)φ(1) for any
Laurent series φ(x). The parameters q, t, q ′ are complex, p = qt−1, and for later
convenience we also define β ∈ C such that t = qβ .

Remark The associativity of the algebra is equivalent to the requirement [82,83]

f (x) f (xp−1) − f (x−1) f (px−1) = κ(δ(xp−1) − δ(x)), (2.3)

for some constant coefficient κ , arising from the Yang–Baxter equation for T (z). The
validity of (2.3) can be explicitly verified by using (2.13), (2.14), (2.15).
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2152 F. Nieri

The choice of the structure function is motivated by the property above, the con-
struction given in Appendix 5, and by the fact that in the limit q ′ → 0, (2.1) manifestly
reduces to the defining relation of the DVA by using


(x; p2, 0) = 1

(x; p2)∞ , �(x; 0) = 1 − x . (2.4)

This trigonometric limit can be verified at various stages of our construction below.

Remark By comparing the coefficients of z−nw−m , the defining relation (2.1) is equiv-
alent to the quadratic relation

∑

	∈Z
f	(Tn−	Tm+	 − Tm−	Tn+	) = −�(q; q ′)�(t−1; q ′)

(q ′; q ′)2∞�(p; q ′)
(pn − p−n)δn+m,0. (2.5)

2.2 Free field representation

In order to find a free field representation of the EVA, we introduce two commut-
ing families of quantum bosonic oscillators {αn, βn, n ∈ Z\{0}}. They satisfy the
commutation relations (we display the non-trivial relations only)

[αn, αm] = 1

n
(1 − q ′|n|)

(
q

n
2 − q− n

2

) (
t
n
2 − t−

n
2

) (
p

n
2 + p− n

2

)
δm+n,0,

[βn, βm] = q ′|n|

n
(1 − q ′|n|)

(
q

n
2 − q− n

2

) (
t
n
2 − t−

n
2

) (
p

n
2 + p− n

2

)
δm+n,0.

(2.6)

We also introduce zero mode operators P,Q commuting with all the oscillators and
normalized according to

[P,Q] = 2. (2.7)

We then define the currents

�σ (z)= : eσ
∑

n 
=0
z−n

(1+p−σn )(1−q′|n|) αne
σ

∑
n 
=0

zn

(1+pσn )(1−q′|n|) βn : qσ
√

β
2 P pσ 1

2 , σ ∈ {+,−}.
(2.8)

The symbol : : denotes normal ordering, i.e., all the positive oscillators are placed
to the right of the negative ones, and P to the right of the Q. Using the commutation
relations (2.6), the definition (6.9) of the elliptic Gamma function and the free boson
tools summarized in Appendix 2, we can verify that the current

T(z) = �+(z) + �−(z) =
∑

n∈Z
Tnz

−n (2.9)

satisfies the defining relation (2.1) of the EVA. The explicit verification of this claim
is straightforward but lengthy, and hence presented in Appendix 3. The key relations
to be used are

�σ (z)�ρ(w) = : �σ (z)�ρ(w) : fσ,ρ(wz−1)−1, (σ, ρ) ∈ {±,±}, (2.10)
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where

fσ,ρ(x) =
⎛

⎝



(
p

σ ·1−ρ·1
2 x; p2, q ′

)



(
p

σ ·1−ρ·1
2 p2q−1x; p2, q ′

)



(
p

σ ·1−ρ·1
2 pqx; p2, q ′

)



(
p

σ ·1−ρ·1
2 p2x; p2, q ′

)



(
p

σ ·1−ρ·1
2 pq−1x; p2, q ′

)



(
p

σ ·1−ρ·1
2 qx; p2, q ′

)

⎞

⎠
σρ ·1

,

(2.11)

and
: �+(z)�−(p−1z) : = 1. (2.12)

One also needs

f (x) = f+,+(x) = f−,−(x) = f+,−(x)γ
(
p

1
2 x

)
= f−,+(x)γ

(
p− 1

2 x
)

, (2.13)

where

γ (x) = �(p
1
2 q−1x; q ′)�(p− 1

2 qx; q ′)
�(p

1
2 x; q ′)�(p− 1

2 x; q ′)
, (2.14)

as well as the equality

γ (x) − γ (x−1) = −�(q; q ′)�(t−1; q ′)
(q ′; q ′)2∞�(p; q ′)

(
δ(p

1
2 x) − δ(p− 1

2 x)
)

, (2.15)

which follows from the representation (8.14) of the δ function. More details along
with technical comments are given in Appendix 3.

Remark Using (M−1)-dimensional oscillators �αn, �βn associated with the AM−1 root
system, it is possible to extend our construction to define an elliptic version of theWM

algebra, along the lines of [23,24,84].

2.3 Screening currents

The screening current S(z) of the EVA in the free field representation (2.9) is defined
by the relation

[Tn,S(w)] = d

dqw
An(w) =

An(q
1
2 w) − An

(
q− 1

2 w
)

w
(
q

1
2 − q− 1

2

) (2.16)

for some operator An(w), so that the EVA generators and the screening charge∮
dw S(w) commute for a suitable q-invariant integration contour (e.g., around the
origin). With the definition

S(z) = : e−∑
n 
=0

z−n

(qn/2−q−n/2)(1−q′|n|) αne

∑
n 
=0

zn

(qn/2−q−n/2)(1−q′|n|) βn : e
√

βQz
√

βP,

(2.17)
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2154 F. Nieri

we can verify that (2.16) is satisfied. Since this particular choice of screening current
will be crucial for actual computations, in Appendix 4 we explicitly show how the
claim (2.16) can be verified.

Remark Another screening current can also be defined through the map q → t, t →
q, αn → −αn, βn → −βn,

√
β → −1/

√
β, but we do not need it for our purposes.

The product of several screening currents can be written as

r∏

i=1

S(zi ) = :
r∏

i=1

S(zi ) : ×
∏

1≤i 
= j≤r


(t z j z
−1
i ; q, q ′)


(z j z
−1
i ; q, q ′)

∏

1≤i< j≤r

�(t zi z
−1
j ; q)

�(zi z
−1
j ; q)

×
r∏

i=1

z2β(r−i)
i . (2.18)

The last factor arises from the normal ordering of the zero modes

∏

i

(
e
√

βQz
√

βP
i

)
=

∏

i

e
√

βQ
∏

i

z
√

βP
i ×

∏

i< j

z2βi , (2.19)

and it can also be rewritten as

∏

i< j

z2βi =
r∏

i=1

z2β(r−i)
i =

r∏

i=1

z
√

β(
√

βr−Q)

i

zi
×

∏

1≤i< j≤r

(
zi
z j

)β

, (2.20)

where we defined

Q = √
β − 1√

β
. (2.21)

The last factor in the r.h.s. of (2.20) can be put with the �s in (2.18) to form the
q-constant1

cβ(z; q) =
∏

1≤i< j≤r

(
zi
z j

)β �(t zi z
−1
j ; q)

�(zi z
−1
j ; q)

, (2.22)

while we can use the product of the
s in (2.18) to define an elliptic Vandermonde-like
determinant

�E (z) =
∏

1≤i 
= j≤r


(t zi z
−1
j ; q, q ′)


(zi z
−1
j ; q, q ′)

. (2.23)

When considering free field correlators with integrated screening currents, this object
will provide the integrationmeasure. In fact, we can simply forget about the q-constant
(2.22) because of the integration contour that we will prescribe (see discussion in
Sect. 3).

1 This is a function invariant w.r.t. to q-shifts of its arguments, i.e., cβ(z; q)|zi→qzi = cβ(z; q).

123



An elliptic Virasoro symmetry in 6d 2155

2.4 Vertex operators

Let us define the following vertex operator built out of the bosonic oscillators and zero
modes

Vu(x) = : e
∑

n 
=0
[u]n x−n

(qn/2−q−n/2)(1−q′|n|) αne
−∑

n 
=0
[u]n xn

(qn/2−q−n/2)(1−q′|n|) βn : e− γ
2
√

βQx− γ
2
√

βP,

(2.24)
where

[u]n = u
n
2 − u− n

2

(t
n
2 − t− n

2 )(p
n
2 + p− n

2 )
, u = tγ . (2.25)

The momentum γ (or equivalently u) is a free parameter labeling the vertex operator.
The “OPE” between this vertex operator and the screening current can be written as

Vu(x)S(z) = : Vu(x)S(z) : ×
(q
1
2 u− 1

2 zx−1; q, q ′)

(q

1
2 u

1
2 zx−1; q, q ′)

× x−βγ , (2.26)

where the last factor arises from the normal ordering of the zero modes

x− γ
2
√

βPe
√

βQ = e
√

βQx− γ
2
√

βP × x−βγ . (2.27)

In the following, we do not need the explicit form of the “OPE” between vertex
operators alone.

2.5 Correlators

Let us start by defining the zero momentum Fock space F0. It is the left module over
the oscillator algebra (2.6) generated by the vacuum |0〉 defined by

αn|0〉 = βn|0〉 = 0, n ∈ Z>0, (2.28)

namely

F0 = Span
{
α−μβ−ν |0〉, μ, ν ∈ P

}
, (2.29)

whereP is the set of partitions, and for length 	(μ), 	(ν) partitions we defined α−μ =
α−μ1 · · · α−μ	(μ)

, β−ν = β−ν1 · · · β−ν	(ν)
. Let us also define the dual (right) Fock

module
F∗
0 = Span

{
〈0|αμβν, μ, ν ∈ P

}
, (2.30)

generated by the dual vacuum 〈0| defined by 〈0|α−nβ−m = 0, n,m ∈ Z>0.2 Acting
with the exponential of the zero mode operator Q on the neutral vacua, we can define
charged Fock vacua generating the charged Fock modules Fγ ,F∗

γ

2 We identify α
†
n = α−n , β

†
n = β−n .
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|γ 〉 = e
γ
2Q|0〉, 〈γ | = 〈0|e− γ

2 Q, γ ∈ C. (2.31)

The charged vacua are eigenstates of the momentum operator P

P|γ 〉 = γ |γ 〉, 〈γ |P = γ 〈γ |, (2.32)

and we define the following pairing between the left and right charged Fock modules

〈
γ |γ ′〉 = δγ,γ ′ . (2.33)

We are now ready to compute correlators of N vertex operators and r integrated
screening currents between external Fock states. We start by using the manipulations
of the previous subsection to write

N∏

i=1

Vui (xi )
r∏

i=1

S(zi ) = :
N∏

i=1

Vui (xi )
r∏

i=1

S(zi ) : ×“OPE′′ ×
N∏

j=1

x
−βrγ j
j

×cβ(z; q) × �E (z)
r∏

i=1

z
√

β(
√

βr−Q)

i

zi

r∏

i=1

N∏

j=1


(q
1
2 u

− 1
2

j zi x
−1
j ; q, q ′)


(q
1
2 u

1
2
j zi x

−1
j ; q, q ′)

, (2.34)

where we set u j = tγ j . The “OPE′′ prefactor denotes all the normal ordering terms
arising from vertex operators alone, which are not important for the present analysis
and hence will be neglected in the following. Sandwiching (2.34) between two Fock
states |γ0〉 and 〈γ∞| we get (up to constant, i.e., zi -independent factors)

〈γ∞|
N∏

i=1

Vui (xi )
r∏

i=1

S(zi )|γ0〉 ∝
〈
γ∞|γ0 + √

β(2r −
∑

i

γi )

〉

×cβ(z; q) × �E (z)
r∏

i=1

z
√

β(γ0+√
βr−Q)

i

zi

r∏

i=1

N∏

j=1


(q
1
2 u

− 1
2

j zi x
−1
j ; q, q ′)


(q
1
2 u

1
2
j zi x

−1
j ; q, q ′)

,

(2.35)

which is nonzero provided the neutrality condition
√

β(2r −∑N
i=1 γi )+γ0 −γ∞ = 0

holds. In this case, the correlator integrated over the positions of the screening currents
reads

G(N )
γ∞,γ0

=
∮ r∏

i=1

dzi
2π i

〈γ∞|
N∏

i=1

Vui (xi )
r∏

i=1

S(zi )|γ0〉

∝
∮ r∏

i=1

dzi
2π izi

cβ(z; q) �E (z)
r∏

i=1

z
√

β(γ0+√
βr−Q)

i

r∏

i=1

N∏

j=1


(q
1
2 u

− 1
2

j zi x
−1
j ; q, q ′)


(q
1
2 u

1
2
j zi x

−1
j ; q, q ′)

,

(2.36)
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where we left the integration contour momentarily unspecified. For later purposes,
it is useful to reorder the integration variables zi → zr−i+1, perform the change
zi → z−1

i , and set q1/2u−1/2
j x−1

j = y j . The combination of these transformations
acts as the identity on �E (z) and cβ(z; q), and then, we have

G(N )
γ∞,γ0

∝
∮ r∏

i=1

dzi
2π izi

cβ(z; q) �E (z)
r∏

i=1

z
√

β(Q−γ0−√
βr)

i

r∏

i=1

N∏

j=1


(y j z
−1
i ; q, q ′)


(u j y j z
−1
i ; q, q ′)

.

(2.37)
This integral looks like an elliptic deformation of the Dotsenko–Fateev representation
of the chiral blocks of the DVA.3 In fact, in the trigonometric limit q ′ → 0 we get

lim
q ′→0

G(N )
γ∞,γ0

∝
∮ r∏

i=1

dzi
2π izi

cβ(z; q) �T (z)
r∏

i=1

z
√

β(Q−γ0−√
βr)

i

×
r∏

i=1

N∏

j=1

(u j y j z
−1
i ; q)∞

(y j z
−1
i ; q)∞

, (2.38)

where

�T (z) =
∏

1≤i 
= j≤r

(zi z
−1
j ; q)∞

(t zi z
−1
j ; q)∞

(2.39)

is the trigonometric Vandermonde-like determinant appearing in the q-deformed β-
ensemble studied, for example, in [25] in the context of the 5d AGT correspondence.
In the special case t = qβ, β ∈ Z>0, we find

�E (z) =
∏

1≤i 
= j≤r

β−1∏

k=0

�(qkz j z
−1
i ; q ′), (2.40)

which in the trigonometric limit q ′ → 0 reduces to

�T (z) =
∏

1≤i 
= j≤r

β−1∏

k=0

(1 − qkz j z
−1
i ). (2.41)

The latter represents, apart for a factor of
∏r

i=1 z
−β(r−1)
i which can be reabsorbed

into the integrand factors, the ordinary q-deformation [26] of the β-deformed rational
Vandermonde determinant

�R(z) =
∏

1≤i< j≤r

(zi − z j )
2β. (2.42)

3 For the role of Dotsenko–Fateev integrals in the 5d AGT duality we refer to [25,26,28,29,47,56].
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3 4d holomorphic blocks

In [61] we have analyzed the structure of supersymmetric partition functions of 4d
N = 1 theories with R-symmetry on compact manifolds (M4

g). This class of theories
can be coupled to new minimal supergravity backgrounds [85], and in the rigid limit
[86] 2 supercharges of opposite R-charge can be preserved. In this case M4

g must be
a Hermitian manifold given by a T2 fibration over a Riemann surface. When the base
has the topology of S2,M4

g can be considered to be S
3 × S1, S3/Zk × S1 or S2 ×T

2.
From our viewpoint, M4

g is not an elementary geometry in the sense that it admits a
Heegaard-like splitting into solid tori D2 × T

2 � R
2
ε × T

2 (Fig. 1)

M4
g � (D2 × T

2) ∪g (D2 × T
2), (3.1)

where g represents a certain element in SL(3,Z) implementing the T
3 boundary

homeomorphism realizing the compact geometry and acting on the fibration moduli
τ, σ . In this construction τ ∝ ε is to be identified with the disk equivariant parameter
(�-deformation) while σ with the torus modular parameter. Eventually, one can map
τ and σ to the complex structure parameters ofM4

g (see, for example, the discussion
in [87,88] and references therein).

These geometric observations acquire even more importance if we recall that the
compact space partition functions of the class of theories we are considering are quasi-
topological objects, as they depend on the complex structure but do not depend on the
Hermitianmetric [85,89].Assuming that there are deformations ofM4

g into a stretched
geometry which preserve the complex structure (similarly to the 3d case [90]), one
expects that the associated partition function (Z ) can be factorized according to the
underlying geometric decomposition of M4

g

ZM4
g

=
∑

c

∥∥∥B4d
c

∥∥∥
2

g
, (3.2)

where B4d
c is identified with the R

2
ε × T

2 partition function of the 4d theory and c
runs over the supersymmetric vacua of the effective 2d theory. The functionsB4d

c were
called 4d holomorphic blocks [61] because the g-pairing acts as an involutionmapping
a block to the conjugate block, where the g-action is on τ, σ and on a set of variables
parametrizing global fugacities.

Fig. 1 Decomposition ofM4
g

into solid tori D2 × T
2

M4
g =

D2 D2

T
2

T
2 ×

× ×

×

g
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In [61] we have explicitly proved this structure in rank 1 gauge theories and argued
its general validity for anomaly free theories by means of other arguments, such as
the existence of a commuting set of difference operators annihilating the partition
functions, Higgs branch localization [91] or the close relation to t t∗ geometries [92].
In fact, for a given gauge theory we have found a specific recipe to compute B4d

c
through a block integral formalism, similar to that developed in [50] for the 3d case.
The fundamental object of this formalism is an integral kernel ϒ4d(z) whose contour
integrals produce the 4d holomorphic blocks4

B4d
c =

∮

Pc

dz

2π iz
ϒ4d(z), (3.3)

wherePc belongs to a basis ofmiddle dimensional integration cycles in (C×)|G| which
can be determined by the specificmatter content and gauge groupG. The kernelϒ4d(z)
can be assembled using the rules derived in [61], which can be briefly summarized as
follows (we refer to [61] for a full account):

• To a vector multiplet we associate a factor of

B4d
vec(z) =

∏

α

1


(zα; qτ , qσ )
, (3.4)

where α denotes a gauge root.
• To a chiral multiplet we associate a factor of

B4d
N (z, x) =

∏

ρ


(zρx; qτ , qσ ), or B4d
D (z, x) =

∏

ρ

1


(qτ z
−1
ρ x−1; qτ , qσ )

,

(3.5)
where ρ is a gauge weight while x is a global U (1) fugacity.

The parameters qτ = e2π iτ and qσ = e2π iσ can be interpreted as fugacities for
rotations on the disk and translations on the torus. We should also observe that the
construction of the integral kernel suffers from some ambiguity represented by qτ -
constants.5

We can now apply the 4d block integral formalism to the higher rank example we
have mentioned in the introduction, namely theU (r) theory with N fundamentals and
anti-fundamental chirals, 1 adjoint and FI parameter (ξ ). Using the rules summarized
above, the block integral for this theory can be written as

B4d =
∮ r∏

i=1

dzi
2π izi

ϒ4d(z),

4 In order to avoid cluttering, we will denote dz
2π iz=

∏
j dz j∏

j 2π iz j
, with the range of j clear from the context.

5 We will see that this is also related to the discussion around (2.22).
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ϒ4d(z) =
∏

1≤i 
= j≤r


(t zi z
−1
j ; qτ , qσ )


(zi z
−1
j ; qτ , qσ )

r∏

i=1

zξi

N∏

a=1


(yaz
−1
i ; qτ , qσ )


(ua yaz
−1
i ; qτ , qσ )

, (3.6)

where for later convenience the global parameters have been encoded into t, u, y.6

In this parametrization the 4d block integral (3.6) is manifestly equal (up to pref-
actors) to the correlator (2.37) that we have introduced in the previous section

B4d ∝ G(N )
γ∞,γ0

, (3.7)

where the identification of parameters is as follows

Gauge theory qτ qσ t u y ξ

EVA q q ′ t u y Q − γ0 − √
βr

. (3.8)

In particular, the gauge theory integration measure given by the adjoint and vector
multiplets and the elliptic Vandermonde-like determinant (2.23) coming from “OPE”
factor of the screening currents are identified. As we mentioned around (2.22), the
actual measures may differ by q-constants, but they give the same result (up to pro-
portionality factors) when integrating along paths enclosing the poles specified in the
following (3.14).7 It then follows that (3.6) can be interpreted as the Dotsenko–Fateev
representation of the chiral blocks of the EVA, as summarized in (3.7).

We now turn to discussing the integration contour (C), which was left unspecified
so far, and the evaluation of the block integral/correlator (3.6) by residues. We assume
|qτ | < 1, |qσ | < 1, |t | < 1 and that they are generic, namely qmτ 
= qnσ 
= tk for any
m, n, k ∈ Z\{0}. We begin by studying the pole distribution of the block integrand in
(3.6), focusing on the u-independent ones. These are associated with anti-fundamental
matter in our conventions, and they determine C as we are going to explain. The poles
coming from the numerator of the matter contribution are located at

zi = yaq
n
τ q

k
σ , n, k ∈ Z≥0. (3.9)

Further poles come from the numerator of the integration measure (adjoint) and are
determined by the condition

zi
z j

= tqnτ q
k
σ , n, k ∈ Z≥0. (3.10)

Importantly, there are zeros coming from the denominator of the integration measure
(vector) whenever

zi
z j

= qnτ q
k
σ , n, k ∈ Z≥0. (3.11)

6 The 6d origin of t will be clarified in Sect. 4.
7 See also an analogous discussion in appendix C of [25].
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The contour C is chosen to encircle only the poles of the form

zi = yat
kqnτ , n, k ∈ Z≥0. (3.12)

As explained in detail in [61], this prescription arises by interpreting the contributions
from poles containing powers of qσ as unphysical replicas because of the quasi-
periodicity on T2. Moreover, this prescription works in rank 1 examples [61], and we
adopt it also in the present case. In order to completely specify the integration path,
we split the integration variables into N groups of ra , namely

r =
N∑

a=1

ra, {zi } = {z(a,	) | a = 1, . . . , N , 	 = 1, . . . , ra}, (3.13)

and we assign a contour to each group. Within each group, the sequence z(a,	) = yaqnτ
connects the points z(a,	) = 0 and z(a,	) = ya , and the contour is taken to go around
that path. In order to understand what are the contributing poles, let us focus on
the ath group. First of all, we have a permutation symmetry among the z(a,	) which
we fix by starting to integrate from the last variable of the group all the way to the
first one, namely we perform the integrations in the order z(a,ra), z(a,ra−1), . . . , z(a,1).
For the last variable the contributing poles are just those from the anti-fundamentals,
namely z(a,ra) = yaqnτ . Then, we perform the integration over the next-to-last vari-
able z(a,ra−1). The possible contributing poles arise from the anti-fundamentals at
z(a,ra−1) = yaqkτ , or from the adjoint at z(a,ra−1) = yatqn+k

τ . The first family does
not contribute because the condition z(a,ra−1)

z(a,ra )
= qZτ is satisfied and hence the vector

contributes with a zero. Similarly, for the variable z(a,ra−2) we find the contributing

poles are those at z(a,ra−2) = yat2q
n+k+ j
τ , and so on. The same reasoning applies to

each group, and we can eventually realize that the relevant poles are labeled by an
N -tuple of Young tableaux Ya with at most ra rows of length Ya

	

z(a,	) = zYa
	

= yat
ra−	q

Ya
	

τ , Ya
	 ≥ Ya

	+1. (3.14)

The sum of the residues of (3.6) over these poles can be evaluated by using the
properties in (6.12), and we can finally write

B4d
C = Resz=z�∅

ϒ4d(z)

z
×

∑

�Y

ϒ4d(z)|z �Y
ϒ4d(z)|z�∅

. (3.15)

The summands of the series reads as

ϒ4d(z)|z �Y
ϒ4d(z)|z�∅

= qξ | �Y |
τ

∏

(a,	) 
=(b,k)

�(t ya y
−1
b tra−rb−	+k; qσ , qτ )Ya

	 −Yb
k

�(ya y
−1
b tra−rb−	+k; qσ , qτ )Ya

	 −Yb
k

∏

a,b,	

�(yb y−1
a t−ra+	; qσ , qτ )−Ya

	

�(ubyb y
−1
a t−ra+	; qσ , qτ )−Ya

	

, (3.16)
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where | �Y |=∑N
a=1

∑ra
	=1Y

a
	 and the �-factorial is defined in (6.14). We see that B4d

C
is similar to a multiple elliptic hypergeometric series studied, for example, in [93].

In [61]wehave shown that theAbelian blocks (r = 1) are annihilated by adifference
operatorwhich is an elliptic deformation (in the shift operator) of theq-hypergeometric
operator. We believe that there should exist a similar operator annihilating the more
general block given in (3.15), and it would be interesting to determine it.

The 4d holomorphic block (3.15) has the form of an elliptic deformation of a
vortex partition function [94], similar to those appearing in [61,91,95,96]. Given
the relation between vortex and instanton counting [94,97–100], it is natural to ask
whether (3.15) can be seen as the vortex partition function of a 1/2 BPS codimension 2
theory inR4

ε1,ε2
×T

2. Granted the comment in the previous paragraph, this possibility
is also strongly supported by the very well-known fact that partition functions of
defect theories obey difference equations [44,98–102]. Indeed, in the next section
we will verify that the elliptic vortex sum in (3.15) equals the R

4 × T
2 Nekrasov

instanton partition function [62–64] of theU (N ) theory with N fundamental and anti-
fundamental flavors for particular values of the Coulomb branch parameters of the 6d
theory.

4 6d Nekrasov partition function

In this section, we compute the instanton partition function on R
4
ε1,ε2

× T
2, which

can be defined as the generating function of elliptic genera [103,104] of the instanton
moduli space.Our goal is to show that the ellipticNekrasov instanton partition function
reduces to the elliptic vortex partition function (3.15) at specific points in the Coulomb
branch. In fact, in analogy with the lower dimensional cases, these should correspond
to the points where vortex solutions exist and where the low energy dynamics can be
described by a 1/2 BPS codimension 2 theory on R

2
ε × T

2.8

There are diverse methods [62] to compute the supersymmetric partition function
we are interested in, such as instanton calculus [4,5] or topological string methods
[106,107]. We adopt the second perspective. We start by considering an M-theory
setup provided by M parallel M5-branes wrapped on a torus and probing a transverse
AN−1 singularity as in [63,64]

T
2

R
4‖ R⊥ AN−1

M M5 • • • • • • . (4.1)

Our aim is then to compute the M-theory partition function on such background. The
result we are looking for can be found in [63], here we briefly review the points of that
construction which are more relevant for our analysis and adapt to our notation. For
coincident M5-branes the configuration leads to a 6d (1, 0) superconformal theory.
However, one can also consider a deformation away from the superconformal fixed
point by separating the M5-branes along a transverse direction, and suspending M2-
branes between consecutive M5-branes. The ends of the M2-branes appear as strings

8 A relation between N = 2 theories on S2×T
2 and M-strings (see below) is discussed in [105].
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from the M5-brane viewpoint, and hence were called MA-strings in [63] (the N > 1
generalization of M-strings [108]). The M-theory partition function can be obtained
by computing the BPS degeneracies of the states arising from theM2-branes wrapping
T
2. Through a chain of dualities, the M-theory background has a dual description in

type IIB string theory as the (p, q)-web [109,110]

S1 S1(p,q) R
4‖ R(p,q) R

3⊥
M NS5 • • • • • •
N D5 • • • • • •

, (4.2)

where the subindex denotes the (p, q)-cylinder. The (p, q)-web is dual to an ellip-
tically fibered toric Calabi–Yau threefold [111,112]. This geometry can be used to
compute IIA topological string amplitudes by using the refined topological vertex
[107,113,114]. The basic building block of the geometry is given by the periodic strip
depicted in Fig. 2 (left), where we have explicitly shown the external Young diagrams
and the various Kähler parameters. Because of the periodic identification, all the vari-
ables of the strip are subject to the equivalence relation n ∼ n + N for any subindex
of Kähler parameters or Young diagrams. Notice that there is an additional Kähler
parameter (Q f,0 ∼ Q f,N ) and internal Young diagram (ν1 ∼ νN+1) with respect to
the uncompactified strip. By choosing the horizontal direction as the preferred one, the
sums over the internal diagrams can be performed through the refined version of the
method of [115], the main difference being the appearance of an extra infinite product
taking into account the multi-covering contributions of the basic holomorphic curves
due to the periodic identification. The resulting (normalized) periodic strip amplitude
can be written as (11.15)

K�α
�β(Qm, Q f ; q, t)

K�∅
�∅(Qm, Q f ; q, t)

=
N∏

a=1

q
‖αa‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

∏∞
k=0 Nβaβa (pq

′k+1; q, t)Nαaαa (q
′k+1; q, t)

×
∏N

a,b=1 Nαaβb (p
1
2 QabQm,b; q, t |q ′)

∏
1≤a 
=b≤N

∏∞
k=0 Nβaβb (pq

′k QabQ
−1
m,aQm,b; q, t)Nαaαb (q

′k Qab; q, t)
,

(4.3)

with

p = qt−1, q ′ =
N∏

k=1

Qm,k Q f,k, Qab =
⎧
⎨

⎩

∏b−1
k=a Qm,k Q f,k, a < b

1, a = b
q ′Q−1

ba , a > b
. (4.4)

The function Nμν(Q; q, t |q ′)defined in (11.14) is the elliptic version of theK-theoretic
Nekrasov function Nμν(Q; q, t) (11.10). The parameters of the �-background are
identified as q = e2π iε1 , t = e−2π iε2 , q ′ = e2π iσ , where σ is the elliptic modulus.
The 6d theory we are interested in can be engineered by gluing two periodic strips
(M = 2) as in Fig. 2 (right) with the constraint

Qm,aQ f,a = Q̄m,a+1 Q̄ f,a ⇒ Q̄ab = Qab Q̄m,a Q̄
−1
m,b. (4.5)
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Fig. 2 Left the (dual) toric diagram of the periodic strip. Right gluing two strips

Setting the external legs to empty Young tableaux, we can compute the R
4 × T

2

Nekrasov instanton partition function for the U (N ) theory with N fundamental and
anti-fundamental hypers [62]. The details of the gluing are reported in Appendix 6,
the final result is9

ZR
4×T

2

inst =
∑

�Y
Q̃| �Y |

B

N∏

a,b=1

N∅Yb(A−1
b Q̄a; q, t |q ′)NYa∅(AaQb; q, t |q ′)
NYaYb (Aa A

−1
b ; q, t |q ′)

, (4.6)

where we set

Qab =
{
Aa A

−1
b , a ≤ b

q ′Aa A
−1
b , a > b

, Qm,a = AaQa p
− 1

2 , Q̄m,a = A−1
a Q̄a p

− 1
2 . (4.7)

Due to NYaYb (Q; q, t |0) = NYaYb (Q; q, t), in the decompactification limit q ′ → 0
we can recognize in the expression above the R4 × S1 Nekrasov instanton partition
function upon identifying

Ab = eRab , Qb = eRmb , Q̄b = eRm̄b , Q̃B = �5d
inst, (4.8)

where R is the scale of the surviving circle, while ab,mb, m̄b,�
5d
inst are, respectively,

the Coulomb branch parameters, the masses of fundamental and anti-fundamental
hypers and the 5d instanton parameter.

We now consider a particular specialization of the parameters Aa . If we tune

AaQa = tra , ra ∈ Z>0, a = 1, . . . , N , (4.9)

9 For a mathematical definition of the instanton partition function we refer to [4,5,18,19,116].
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the numerator of (4.6) yields zero at the box (ra + 1, 1) ∈ Ya , and hence the sum
over the Young tableaux is truncated to tableaux with at most ra rows. When Ya has
at most ra rows we have

NYa∅(Q; q, t |q ′) =
ra∏

i=1

Ya
i∏

j=1

�(Qq j−1t1−i ; q ′) =
ra∏

i=1


(QqY
a
i t1−i ; q, q ′)


(Qt1−i ; q, q ′)
, (4.10)

where we used {λi − j} = { j − 1} at fixed i and the definition of the �-factorial
(6.14). Similarly

N∅Ya (Q; q, t |q ′) =
ra∏

i=1

Ya
i∏

j=1

�(Qq− j t i ; q ′) =
ra∏

i=1


(qq ′Q−1qY
a
i t−i ; q, q ′)


(qq ′Q−1t−i ; q, q ′)
. (4.11)

When the diagrams are both non-empty, we can use the identity (for |q| < 1) [117]

Nμν(Q; q, t) =
∏

i, j≥1

(Qqμi−ν j t j−i+1; q)∞
(Qt j−i+1; q)∞

(Qt j−i ; q)∞
(Qqμi−ν j t j−i ; q)∞

, (4.12)

and the definitions (6.9), (11.14) to write

Nμν(Q; q, t |q ′) =
∏

i, j≥1


(Qt j−i+1; q, q ′)

(Qqμi−ν j t j−i+1; q, q ′)


(Qqμi−ν j t j−i ; q, q ′)

(Qt j−i ; q, q ′)

. (4.13)

Therefore, when Ya and Yb have at most ra and rb rows, respectively, we have

NYaYb(Q; q, t |q ′) =
ra∏

i=1

rb∏

j=1


(Qt j−i+1; q, q ′)


(QqY
a
i −Yb

j t j−i+1; q, q ′)


(QqY
a
i −Yb

j t j−i ; q, q ′)

(Qt j−i ; q, q ′)

×NYa∅(Qtrb ; q, t |q ′)N∅Yb (Qt−ra ; q, t |q ′), (4.14)

where we have divided the infinite products in four regions, namely (i, j) ∈ [1, ra] ×
[1, rb], (i, j) ∈ [1, ra] × [rb + 1,+∞], (i, j) ∈ [ra + 1,+∞] × [1, rb], (i, j) ∈
[ra + 1,+∞] × [rb + 1,+∞]. The first region contributes with the first factor, the
second and the third regions yield the elliptic Nekrasov functions with an empty
tableaux, while the fourth region does not contribute. Finally, the evaluation of (11.16)
at Aa = Q−1

a tra yields

ZR
4×T

2

inst =
∑

�Y
Q̃| �Y |

B

N∏

a,b=1

Zad
YaY b

Zad
∅∅

N∏

a=1

Z f
YaZ f̄

Ya

Z f
∅Z f̄

∅
, (4.15)
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where

Zad
YaY b =

ra∏

i=1

rb∏

j=1


(t QbQ−1
a tra−rb+ j−i qY

a
i −Yb

j ; q, q ′)


(QbQ
−1
a tra−rb+ j−i qY

a
i −Yb

j ; q, q ′)
,

Z f
YaZ f̄

Ya =
N∏

b=1

ra∏

i=1


(Q−1
b Qat−ra+i q−Ya

i ; q, q ′)

(Q̄bQat−ra+i q−Ya

i ; q, q ′)
.

(4.16)

We can now easily identify (4.15) with the elliptic vortex sum in (3.15) provided the
following identifications hold10

R
2 × T

2/EVA qτ qσ t ua ya qξ
τ

R
4 × T

2 q q ′ t Qa Q̄a Q−1
a Q̃B

. (4.17)

Moreover, the specialization of the Coulomb branch parameters/internal momenta
encodes the rank r of the 4d gauge group/number of screening currents, and it also
determines the choice of the 4d block integral/EVA correlator contour through the
breaking pattern r = ∑N

a=1 ra .

5 Discussion and outlook

In the special case of the 4-point function (N = 2) with a single screening current
(r = 1), corresponding to the SQED theory with N = 2 fundamentals and anti-
fundamentals, we have shown in [61] that the 4d holomorphic block (proportional to
the elliptic series 2E1) satisfies a q-difference equation representing an elliptic defor-
mation of the equation satisfied by the 2φ1 q-hypergeometric. In q-Virasoro theories
this corresponds to the fact that the 4-point correlator has a degenerate insertion at level
2, analogously to the very well-known case of (undeformed) Virasoro theories. It is
tempting tomake an analogous statement for elliptic Virasoro theories, interpreting the
elliptic q-difference equation as a decoupling equation for the insertion of a degenerate
operator. This is certainly true from the gauge theory viewpoint, as we have shown
that the Abelian block arises upon the specialization (4.9) a1 = −m1 − ε2, a2 = −m2
of the elliptic Nekrasov instanton partition function, corresponding in the AGT dictio-
nary to the insertion of a level 2 degenerate external momentum [14]. In order to fully
understand this aspect, a study of the representation theory of the EVA is required.

The results of this work summarized in the “triality” (4.17) and the above obser-
vations strongly suggest that, in the spirit of the AGT correspondence, generic chiral
blocks of the EVA are described by elliptic Nekrasov instanton partition functions.We
hope that this 6d AGT relation and the EVA can be a useful tool for studying certain
6d supersymmetric theories and their defects. It would also be interesting to study the
4d/6d/EVA “triality” from the perspective of [119–121].

10 This relation was anticipated in [118], where a review of factorization of supersymmetric partition
functions in various dimensions and for diverse compact spaces, 4d and 5d AGT can also be found.
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As we mentioned in the main text, our construction of the EVA can be easily gen-
eralized to define an elliptic deformation of the WM algebra. We expect this extended
algebra to be important for studying 4d quiver gauge theories and 6d theories engi-
neered bygluing an arbitrary number of periodic strips. Itwould be also very interesting
to develop a stronger version of the 6d AGT correspondence through the identification
of compact space partition functions with non-chiral correlators in QFTs with elliptic
Virasoro symmetry, along the lines of [30,31] for the 5d case.

The EVA may be also interesting from a purely mathematical viewpoint and
applications to elliptic integrable systems. The DVA was introduced to understand
the symmetry algebra behind Macdonald polynomials, in analogy with the relation
between Jack polynomials and singular vectors of the Virasoro algebra. It was eventu-
ally understood [122] that the DVA and Macdonald polynomials are naturally related
to a more elementary algebra, the trigonometric Ding–Iohara algebra [123]. Elliptic
Macdonald functions can be defined as eigenfunctions of the elliptic Macdonald oper-
ator. However, their study is much more complicated than in the trigonometric case
(see [102,124] for developments from a gauge theory viewpoint). In [125] an ellip-
tic Ding–Iohara algebra was introduced11 and its connection to elliptic Macdonald
functions was established. In Appendix 5, we show that the EVA can be realized on
a tensor product of two Fock representations of the elliptic Ding–Iohara algebra. It
is then natural to ask whether elliptic Macdonald functions can be studied by means
of the EVA, perhaps through their correspondence with some kind of singular vec-
tors. This perspective may eventually lead to a neat integral representation of elliptic
Macdonald functions, as in [22,127] for the trigonometric case.

Finally, in [128] the important role of the trigonometric Ding–Iohara algebra for
the 5d AGT relation was extensively discussed. It was conjectured (and proved in the
Abelian case) that topological string amplitudes on the strip, the basic building block
for the 5d Nekrasov instanton partition function, can be computed as matrix elements
of a vertex operator intertwining representations of the trigonometric Ding–Iohara
algebra. Given the relation among the 6d Nekrasov instanton partition function, the
EVA and the elliptic Ding–Iohara algebra found in this work, it would be interesting
to understand whether periodic strip amplitudes have a similar interpretation.12

Comment added Clavelli–Shapiro trace technique [130] allows torus correlators in
q-WM algebras to be interpreted as sphere correlators in elliptic WM algebras. The
advantage of this perspective is that the latter are usually easier to handle. This relation
between trigonometric and elliptic algebras is related to the fiber/base duality in the
context of 5d or 6d theories arising from toric Calabi–Yau threefolds with a periodic
direction discussed in this paper. However, this duality does not imply that all the
elliptic WM algebra observables can be recast in terms of q-WM algebra ones. This
is, for instance, the case of elliptic torus correlators, which should be interesting for
doubly compactified toric geometries. Moreover, it seems to be a non-trivial fact that
the elliptic deformation leads to a well-defined associative algebra.

11 See also [123] for another elliptic deformation, and [126] for its application to 3d/5d coupled supersym-
metric gauge theories and integrable models.
12 Some of these aspects have been considered in the related work [129].
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A Elliptic functions

In this appendix, we collect useful definitions and properties of some elliptic functions
used in the main text. We refer to [135] for further details. We start by defining the
(infinite) q-factorial

(x; q)∞ = e−Li2(x;q), Li2(x; q) =
∑

k≥1

xk

k(1 − qk)
. (6.1)

In the region |q| < 1, it has the compact product representation

(x; q)∞ =
∏

k≥0

(1 − qkx), (6.2)

which can be extended to the domain |q| > 1 through

(x; q)∞ = 1∏
k≥1(1 − q−k x)

. (6.3)

The Jacobi Theta function that we use is defined by

�(x; q) = (x; q)∞(qx−1; q)∞ = e−∑
n 
=0

xn

n(1−qn ) . (6.4)

From this simple expression we can realize that throughout this paper we will consider
exponentials of infinite sums running in both directions. These series can be organized
by replacing the expansion parameter xn with 	|n|xn , expanding in 	 and then letting
	 → 1. This is, for instance, how one can verify on a computer Jacobi’s triple product
identity

(x; q)∞(qx−1; q)∞ = 1

(q; q)∞

∑

n∈Z
(−1)nqn(n−1)/2xn . (6.5)

Useful properties of Theta functions are (m ∈ Z≥0)

�(qmx; q)

�(x; q)
= (−xq(m−1)/2)−m,

�(q−mx; q)

�(x; q)
= (−x−1q(m+1)/2)−m . (6.6)
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The double (infinite) q-factorial is defined by

(x; p, q)∞ =
∏

j,k≥0

(1 − p jqk x), |p|, |q| < 1, (6.7)

and it can be extended to other regions by using the representation

(x; p, q)∞ = e−Li3(x;p,q), Li3(x; p, q) =
∑

k≥1

xk

k(1 − pk)(1 − qk)
. (6.8)

The elliptic Gamma function is defined by


(x; p, q) = (pqx−1; p, q)∞
(x; p, q)∞

= e
∑

k 
=0
xk

k(1−pk )(1−qk ) = e
∑

k>0
(q−1/2 p−1/2x)k

k(qk/2−q−k/2)(pk/2−p−k/2) .

(6.9)
Assuming |p|, |q| < 1, it has zeros and poles at

zeros : x = pm+1qn+1, poles : x = p−mq−n, m, n ∈ Z≥0. (6.10)

Useful properties of the elliptic Gamma function are (m, n ∈ Z≥0)

Reflection : 
(x; p, q)
(pqx−1; p, q) = 1, (6.11)

Shift :

(pmqnx; p, q)


(x; p, q)
= (−xp(m−1)/2q(n−1)/2)−mn�(x; p, q)n�(x; q, p)m,


(pmq−nx; p, q)


(x; p, q)
= (−xp(m−1)/2q−(n+1)/2)mn �(x; q, p)m

�(pqx−1; p, q)n
,

(6.12)

Residues : Resx=ypmqn

(yx−1; p, q)

x

= Resx=1
(x; p, q)
(−pq q(n−1)/2 p(m−1)/2)mn

�(pq; p, q)n�(pq; q, p)m
. (6.13)

Here we introduced the �-factorial

�(x; p, q)n = 
(qnx; p, q)


(x; p, q)
=

n−1∏

k=0

�(xqk; p), (6.14)

�(x; p, q)−n = �(q−nx; p, q)−1
n . (6.15)

Notice that in the limit p → 0 the �-factorial reduces to the q-factorial

�(x; 0, q)n = (x; q)n =
n−1∏

k=0

(1 − qkx), (6.16)
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because
�(x; 0) = 1 − x . (6.17)

B Free boson tools

The master formula when manipulating with bosonic oscillators is the BCH formula.
Given two operators A,B such that [A,B] = c · 1 for some constant c ∈ C, the BCH
formula reduces to

eAeB = eBeAec, e−ABeA = B − [A,B]. (7.1)

Let us now consider an algebra generated by the operators {an, n ∈ Z\{0}} with the
defining relations

[am,an] = cnδm+n,0 · 1, cn ∈ C. (7.2)

We can construct the following vertex operators

Vi = : evi :, vi =
∑

n 
=0

vi,nan, (7.3)

where vi,n are generic complex numbers and the normal ordering symbol : : means
all the positive modes are moved to the right of all the negative modes. If we denote
by [ ]± the positive and negative mode parts, we can then write

Vi = [Vi ]−[Vi ]+, [Vi ]± = e[vi ]± . (7.4)

In the main text, we have to compute correlators containing expressions such as

M∏

i=1

Vi = [V1]−[V1]+[V2]−[V2]+ · · · [VM ]−[VM ]+. (7.5)

To this end, we bring all the [Vi ]+s to the right of all the [V j ]−s. The first, [V1]+, has
to cross all the [Vi ]− with i = 2, . . . , M , while it commutes with all the [Vi ]+s. In
the process it produces e[[v1]+,[v2]−] · · · e[[v1]+,[vM ]−] due to (7.1). The second, [V2]+,
has to cross all the [Vi ]− with i = 3, . . . , M , and so on. Eventually, we get

M∏

i=1

Vi = :
M∏

i=1

Vi : ×
∏

1≤i< j≤M

e[[vi ]+,[v j ]−]. (7.6)
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C Free boson representation of the EVA

In this section we give the proof that the current (2.9) satisfies the defining relation
(2.1) of the EVA.13 Let us start by computing the “OPE”

T(z)T(w) = �+(z)�+(w) + �+(z)�−(w) + �−(z)�+(w) + �−(z)�−(w)

= : �+(z)�+(w) : f+,+(w/z)−1+ : �+(z)�−(w) : f+,−(w/z)−1

+ : �−(z)�+(w) : f−,+(w/z)−1+ : �−(z)�−(w) : f−,−(w/z)−1.

(8.1)

Using (2.13) we have

f (w/z)T(z)T(w) = : �+(z)�+(w) : + : �+(z)�−(w) : γ (p1/2w/z)

+ : �−(z)�+(w) : γ (p−1/2w/z)+ : �−(z)�−(w) :, (8.2)

and similarly for T(w)T(z) f (z/w) which is obtained by exchanging z ↔ w. Sub-
tracting the two equalities we get

f (w/z)T(z)T(w) − T(w)T(z) f (z/w) = : �+(z)�−(w) : (γ (p1/2w/z)

−γ (p−1/2z/w))+ : �−(z)�+(w) : (γ (p−1/2w/z) − γ (p−1/2z/w)). (8.3)

Now using (2.15) we have (κ = �(q;q ′)�(t−1;q ′)
(q ′;q ′)2∞�(p,;q ′) )

f (w/z)T(z)T(w) − T(w)T(z) f (z/w)

= −κ : �+(z)�−(w) : (δ(pw/z) − δ(w/z))

− κ : �−(z)�+(w) : (δ(w/z) − δ(p−1w/z))

= −κ : �+(z)�−(p−1z) : δ(pw/z)

+ κ : �−(z)�+(pz) : δ(p−1w/z), (8.4)

and we can use (2.12) to conclude the proof. This is the final result, but the relation
(2.15) needs to be considered more carefully. First of all, one may naively conclude
that

γ (x) − γ (x−1) = 0, (8.5)

because
γ (x) = �(p1/2q−1x; q ′)�(p−1/2qx; q ′)

�(p1/2x; q ′)�(p−1/2x; q ′)
= γ (x−1), (8.6)

where in the last equality we used the property

�(x−1; q ′) = �(q ′x; q ′) = −x−1�(x; q ′). (8.7)

13 We will follow the lines of the derivation for the q-Virasoro case given, for example, in [83].
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This is the elliptic analogue of the identity

1

1 − x
= − x−1

1 − x−1 , (8.8)

to which it reduces in the limit q ′ → 0. However, we have to remember that the
difference γ (x) − γ (x−1) is coming from subtracting the operator T(w)T(z) f (z/w)

from the operator T(z)T(w) f (w/z), and hence non-trivial contact terms, signaled
by δ functions, may arise in the process because a radial ordering prescription is
needed. In other words, the difference γ (x) − γ (x−1) must be treated in the sense of
hyperfunctions (see, for example, [131]). All in all, the problem is to find a concrete
formula for the hyperfunction γ (x) − γ (x−1). Before considering the elliptic case,
it might be useful to recall how δ function terms arise in the q-Virasoro limit (see,
for example, appendix of [83]), in which case the γ (x) function is substituted by the
q ′ → 0 limit of the one appearing here

γ (x)
q ′→0→ γ̃ (x) = (1 − p1/2q−1x)(1 − p−1/2qx)

(1 − p1/2x)(1 − p−1/2x)
. (8.9)

First of all, the identity (8.8) must now be replaced/modified by

δ(x) = 1

1 − x
+ x−1

1 − x−1 , (8.10)

which can be easily proved by series expanding the two terms in the r.h.s. separately.
Now we focus on the factor (1 − p1/2x) in the denominator of γ̃ (x), which will be
replaced by

1

1 − p1/2x
= δ(p1/2x) − p−1/2x−1

1 − p−1/2x−1 , (8.11)

and similarly for the factor (1 − p1/2x−1) in the denominator of γ̃ (x−1)

p1/2x−1

1 − p1/2x−1 = δ(p−1/2x) − 1

1 − p−1/2x
. (8.12)

Now we can take the difference γ̃ (x)− γ̃ (x−1) naively, and only the δ function terms
will survive

γ̃ (x) − γ̃ (x−1) = − (1 − q)(1 − t−1)

(1 − p)
(δ(p1/2x) − δ(p−1/2x)). (8.13)

In the elliptic case one can repeat exactly the same steps, the crucial point being
to find a δ function representation involving Theta functions which can be used to
replace/modify the identity (8.7). This representation is

δ(x) = (q ′; q ′)2∞
�(x; q ′)

+ (q ′; q ′)2∞x−1

�(x−1; q ′)
, (8.14)
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which is given in [125] (Lemma 3.5). Now we can use this representation to replace
the factor �(p1/2x; q ′) in the denominator of γ (x) with

1

�(p1/2x; q ′)
= δ(p1/2x)

(q ′; q ′)2∞
− p−1/2x−1

�(p−1/2x−1; q ′)
, (8.15)

and similarly for the factor �(p1/2x−1; q ′) in the denominator of γ (x−1)

p1/2x−1

�(p1/2x−1; q ′)
= δ(p−1/2x)

(q ′; q ′)2∞
− 1

�(p−1/2x; q ′)
. (8.16)

This prescription defines the hyperfunction γ (x) − γ (x−1) in (2.15), which is not
identically zero due to contact terms.

D Screening current of the EVA

In this appendix, we provide the explicit verification of (2.16) using (2.9), (2.17). We
set

�σ (z) = : eλσ (z) : [�σ (z)]0, S(w) = : es(w) : [S(w)]0, (9.1)

where [ ]+,−,0 denotes the positive, negative or zero mode part. Then, we have

[�σ (z),S(w)] = : �σ (z)S(w) :
(
tσ e[[λσ (z)]+,[s(w)]−] − e[[s(w)]+,[λσ (z)]−]) . (9.2)

Since

[[λσ (z)]+, [s(w)]−] = σ
∑

n>0

(p
σ
2 wz−1)n(t

n
2 − t− n

2 )

n(1 − q ′n)

+ σ
∑

n>0

(q ′ p− σ
2 zw−1)n(t− n

2 − t
n
2 )

n(1 − q ′n)
,

[[s(w)]+, [λσ (z)]−] = −σ
∑

n>0

(p− σ
2 zw−1)n(t

n
2 − t− n

2 )

n(1 − q ′n)

− σ
∑

n>0

(q ′ p σ
2 wz−1)n(t− n

2 − t
n
2 )

n(1 − q ′n)
, (9.3)

we get

[�σ (z),S(w)] = : �σ (z)S(w) : Fσ (p
σ
2 t

1
2 wz−1), (9.4)

where

Fσ (x) = tσ
�(t−1x; q ′)σ

�(x; q ′)σ
− �(t x−1; q ′)σ

�(x−1; q ′)σ
. (9.5)
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This function should be interpreted again as a hyperfunction (otherwise it is identically
zero). Then,

F+(x) = t
�(t−1x; q ′)
(q ′; q ′)2∞

δ(x), F−(x) = t−1 �(x; q ′)
(q ′; q ′)2∞

δ(xt−1), (9.6)

where we used the representation (8.14). We can therefore write

[T(z),S(w)] = t
1
2
�(t−1; q ′)
(q ′; q ′)2∞

∑

σ

σ : �σ (q
σ
2 w)S(w) : t σ

2 δ(q
σ
2 wz−1). (9.7)

It is now easy to verify that

: �+(q
1
2 w)S(w) : t 12 = X(q

1
2 w)

w
, : �−

(
q− 1

2 w
)
S(w) : t− 1

2 =
X

(
q− 1

2 w
)

w
,

(9.8)
where

X(w)

w
= : e−∑

n 
=0
(qn/2 p−n+q−n/2)

(1+p−n )(qn/2−q−n/2)(1−q′|n|) (w
−nαn−wnβn) : e

√
βQw

√
βP, (9.9)

so that

[T(z),S(w)] =
(
q

1
2 − q− 1

2

)
t
1
2
�(t−1; q ′)
(q ′; q ′)2∞

d

dqw
δ(wz−1)X(w). (9.10)

E Relation with the elliptic Ding–Iohara algebra

TheDing–Iohara algebra [132] is an associative unital (functional)C-algebra endowed
with a coproduct � (in fact, a Hopf algebra) and defined by a matrix of analytic
structure functions gi j (z) satisfying the property gi j (z) = g ji (z−1)−1. It provides a
generalization of the Drinfeld realization of quantum affine algebras, giving rise to
standard examples for particular choices of the structure matrix.

By considering a single structure function of elliptic type

g(z) = �(qz; q ′)�(t−1z; q ′)�(p−1z; q ′)
�(q−1z; q ′)�(t z; q ′)�(pz; q ′)

, (10.1)

the author of [125]14 introduced the elliptic Ding–Iohara algebra U(q, t, q ′) generated
by the coefficients of the currents

x±(z) =
∑

n

x±
n z−n, ψ±(z) =

∑

n

ψ±
n z−n, n ∈ Z, (10.2)

14 We thank S. Shakirov for pointing out this reference to us.
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and the invertible central element γ 1/2, subject to the following defining relations

[ψ±(z), ψ±(w)] = 0,

ψ+(z)ψ−(w) = ψ−(w)ψ+(z)
g(γ zw−1)

g(γ −1zw−1)
,

ψρ(z)xσ (w) = xσ (w)ψρ(z)g(γ ρσ 1
2 zw−1)σ , (σ, ρ) ∈ {±,±},

x±(z)x±(w) = x±(w)x±(z)g(zw−1)±1,

[x+(z), x−(w)] = �(q; q ′)�(t−1; q ′)
(q ′; q ′)2∞�(p; q ′)

(
δ

(
γ

w

z

)
ψ+(γ

1
2 w)

−δ

(
γ −1w

z

)
ψ−(γ − 1

2 w)

)
.

(10.3)

The coproduct reads

�(γ ± 1
2 ) = γ ± 1

2 ⊗ γ ± 1
2 ,

�(ψ±(z)) = ψ±
(

γ
± 1

2
(2) z

)
⊗ ψ±

(
γ

∓ 1
2

(1) z

)
,

�(x+(z)) = x+(z) ⊗ 1 + ψ−
(

γ
1
2

(1)z

)
⊗ x+(γ(1)z),

�(x−(z)) = 1 ⊗ x−(z) + x−(γ(2)z) ⊗ ψ+
(

γ
1
2

(2)z

)
,

(10.4)

where γ
± 1

2
(1) = γ ± 1

2 ⊗ 1, γ
± 1

2
(2) = 1 ⊗ γ ± 1

2 .

We now show that, using the following level 115 Fock representation ρy (y ∈ C
×)

of U(q, t, q ′) ([125], Theorem 1.2)

ρy(γ
± 1

2 ) = p∓ 1
4 , ρy(ψ

±(z)) = ϕ±(z), ρy(x
+(z)) = yη(z),

ρy(x
−(z)) = y−1ξ(z), (10.5)

15 When ρ(γ
± 1

2 ) = p∓m
4 ,m is called the level of the representation.
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where16

ϕ±(z) = [ϕ(z)]±,

ϕ(z)=: e
∑

n 
=0
(1−tn )(p−|n|/2−p|n|/2)p−|n|/4z−n

n(1−q′|n|) an

e
−∑

n
=0
(1−t−n )(p−|n|/2−p|n|/2)p|n|/4q′|n|zn

n(1−q′|n|) bn :,

η(z) = : e−∑
n 
=0

(1−tn )z−n

n(1−q′|n|) ane
−∑

n 
=0
(1−t−n )q′|n|zn

n(1−q′|n|) bn :,

ξ(z) = : e
∑

n 
=0
(1−tn )p−|n|/2z−n

n(1−q′|n|) an
e
∑

n 
=0
(1−t−n )p|n|/2q′|n|zn

n(1−q′|n|) bn :,

[am,an] = m
(1 − q ′|m|)(1 − q |m|)

1 − t |m| δm+n,0, m, n ∈ Z\{0},

[bm,bn] = m
(1 − q ′|m|)(1 − q |m|)
(pq ′)|m|(1 − t |m|)

δm+n,0, [am,bn] = 0, m, n ∈ Z\{0},
(10.6)

we can give a representation of the EVA algebra defined in (2.1) through the tensor
product representation ρy1 ⊗ ρy2 . Our derivation follows the analogous construction
of [122], where it is shown how to realize the q-WM algebra of [22,23] starting from
the trigonometric Ding–Iohara algebra, the q ′ → 0 limit of U(q, t, q ′). To begin with,
we define the dressed current

t (z) = α−(z)x+(z)α+(z), (10.7)

where the currents α±(z) are defined by means of the modes of ψ±(z) as follows. In
analogy with [122] and having in mind the Fock representation (10.5), we set

ψ±(z) = ψ±
0 e±∑

n>0 �±nγ
n/2z∓n

e∓∑
n>0 � ′±nγ

−n/2z±n
, [ψ+

0 , ψ−
0 ] = 0,

[�m, �n] = (1 − q−m)(1 − tm)(1 − pm)

m(1 − q ′|m|)
(γm − γ −m)γ −|m|δm+n,0,

[� ′
m, � ′

n] = q ′|m|(1 − q−m)(1 − tm)(1 − pm)

m(1 − q ′|m|)
(γm − γ −m)γ |m|δm+n,0,

(10.8)

and take

α±(z) = e
±∑

n>0
z∓n

γ n−γ−n �±ne
±∑

n>0
z±n

γ n−γ−n � ′±n . (10.9)

Notice that the action of the coproduct on �n, �
′
n reads

�(�n) = �n ⊗ γ −|n| + 1 ⊗ �n, �(� ′
n) = � ′

n ⊗ γ |n| + 1 ⊗ � ′
n, (10.10)

16 See Appendix 2 for notation.
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while the ρy representation is given by ρy(ψ
±
0 ) = 1 and

ρy(�n) = (1 − tn)(p−|n|/2 − p|n|/2)
|n|(1 − q ′|n|)

an,

ρy(�
′
n) = q ′|n|(1 − t−n)(p−|n|/2 − p|n|/2)

|n|(1 − q ′|n|)
bn . (10.11)

We now consider the twofold tensor product representation

ρ(2)
y1,y2 = ρy1 ⊗ ρy2 ◦ �, (10.12)

and we want to compute

ρ(2)
y1,y2(t (z)) =

∑

i=1,2

yi�i (z). (10.13)

Notice that we are constructing a level 2 representation since ρ
(2)
y1,y2(γ

± 1
2 ) = p∓ 1

2 . In
particular, we have

ρ(2)
y1,y2(�n) =

∑

i=1,2

ρ
(2)
y1,y2,i

(�n),

ρ
(2)
y1,y2,i

(�n) = − (1 − tn)(1 − p−|n|)p
|n|
2 (2−i+1)

|n|(1 − q ′|n|)
an,i ,

ρ(2)
y1,y2(�

′
n) =

∑

i=1,2

ρ
(2)
y1,y2,i

(� ′
n),

ρ
(2)
y1,y2,i

(� ′
n) = q ′|n|(1 − t−n)(1 − p|n|)p− |n|

2 (2−i+1)

|n|(1 − q ′|n|)
bn,i ,

(10.14)

where the subindex i denotes that the operators are in the i th tensor component. There-
fore,

ρ(2)
y1,y2(α

+(z)) =
∏

i=1,2

λ+
i (z),

λ+
i (z) = e

∑
n>0

z−n

p−n−pn
ρ

(2)
y1,y2,i (�n)e

∑
n>0

zn

p−n−pn
ρ

(2)
y1,y2,i (�

′
n),

ρ(2)
y1,y2(α

−(z)) =
∏

i=1,2

λ−
i (z),

λ−
i (z) = e

−∑
n>0

zn

p−n−pn
ρ

(2)
y1,y2,i (�−n)e

−∑
n>0

z−n

p−n−pn
ρ

(2)
y1,y2,i (�

′−n).

(10.15)

We also have

ρ(2)
y1,y2(x

+(z)) =
∑

i=1,2

yi �̃i (z), �̃1(z) = η(z) ⊗ 1,

123



2178 F. Nieri

�̃2(z) = ϕ−(p−1/4z) ⊗ η(p−1/2z), (10.16)

and hence
�i (z) =

∏

j=1,2

λ−
j (z)�̃i (z)

∏

k=1,2

λ+
k (z). (10.17)

Notice that : �1(z)�2(p−1z) : = 1. Finally, we can verify that (2.10) is satisfied with
�+(z) → �1(z),�−(z) → �2(z), namely

�1,2(z)�1,2(w) = : �1,2(z)�1,2(w) : f±,±(wz−1)−1, (10.18)

which proves that the current ρ
(2)
1,1(t (z)) gives a representation of the EVA algebra.

For completeness, let us work out explicitly the case of �1(z)�1(w), the others
can be treated similarly. The first tensor component in the above representation of
�1(z)�1(w) arises from

λ−
1 (z)η(z)λ+

1 (z)λ−
1 (w)η(w)λ+

1 (w)

= λ−
1 (z)[η(z)]−

(
[η(z)]+λ+

1 (z)λ−
1 (w)[η(w)]−

)
[η(w)]+λ+

1 (w), (10.19)

where we put in brackets the terms which need to be normal ordered. Let us focus on
the part containing the as. They give four contributions, which sum up to

e
−∑

m>0

(
w
z

)m
(1−qm )(1−t−m )

m(1−q′m )(1−p2m )

(
1−2pm+p2m+ (1−p−m )2 p4m

(1−p2m )

)

. (10.20)

The second tensor component arises from

λ−
2 (z)λ+

2 (z)λ−
2 (w)λ+

2 (w) = λ−
2 (z)

(
λ+
2 (z)λ−

2 (w)
)
λ+
2 (w), (10.21)

and the normal ordering function from the part containing the as reads

e
−∑

m>0

(
w
z

)m
(1−qm )(1−t−m )

m(1−q′m )(1−p2m )

(1−p−m )2 p3m

(1−p2m ) . (10.22)

Analogous results come from the parts containing the bs but with the replacements
w
z → q ′z

w
, (q, t, p) → (q−1, t−1, p−1). Multiplying all these contributions together

yields

e
−∑

m>0

(
w
z

)m
(1−qm )(1−t−m )(1−pm )

m(1−q′m )(1−p2m ) e

∑
m>0

(
p2q′z

w

)m
(1−q−m )(1−tm )(1−p−m )

m(1−q′m )(1−p2m ) = f+,+(wz−1)−1,

(10.23)
where f+,+(x) is defined in (2.11).
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F The refined periodic strip

The amplitude of the periodic strip geometry depicted in Fig. 2 (left) reads as17

K�α
�β(Qm, Q f ; q, t)=

∑

�μ,�ν

N∏

a=1

(−Qm,a)
|μa |

N∏

b=1

(−Q f,b)
|νb+1|

×
N∏

a=1

Cνaμaαa (t, q)

N∏

b=1

Cν∨
b+1μ

∨
b β∨

b
(q, t)

=
N∏

a=1

q
‖αa‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

∑

�μ,�ν,�η,�σ

N∏

a=1

(−Qm,a)
|μa |

N∏

b=1

(−Q f,b)
|νb+1|

×
N∏

a=1

sν∨
a /ηa (p

− 1
2 t−ρq−αa )sμa/ηa (q

−ρ t−α∨
a )

×
N∏

b=1

sνb+1/σb (p
1
2 tq−ρ t−β∨

b )sμ∨
b /σb

(t−ρq−βb ), (11.1)

where we introduced p = qt−1, and

Z̃μ(t, q) =
∏

(i, j)∈μ

1

1 − qμi− j tμ
∨
j −i+1

. (11.2)

We need to evaluate

G(x, y, Qm, Q f ) =
∑

�X , �Y

2N∏

a=1

(−Q̃a)
|Xa |

2N∏

a=1

sXa/Ya (xa)sX∨
a /Ya+1(ya), (11.3)

where we grouped the relevant variables according to

Xa =
{

μ a+1
2

, a odd

ν a
2+1, a even

, Ya =
{

η a+1
2

, a odd

σ a
2
, a even

, (11.4)

Q̃a =
{
Qm, a+1

2
, a odd

Q f, a2
, a even

, (11.5)

(xa, ya) =

⎧
⎪⎪⎨

⎪⎪⎩

(
q−ρ t

−α∨
a+1
2 , t−ρq

−β a+1
2

)
, a odd

(
q−ρ+ 1

2 t
−β∨

a
2
− 1

2
, t−ρ+ 1

2 q
−α a

2 +1− 1
2

)
, a even

. (11.6)

17 The diagram μ∨ is the transpose of μ, and we also have |μ| = ∑
i μi , ‖μ‖2 = ∑

i μ2
i . We refer to

[117] for notations and useful combinatorics of Young diagrams.
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Using standard identities of Schur polynomials [133] we get18

G(x, y, Qm, Q f ) = 1

(q ′; q ′)∞

∞∏

i, j,k=1

2N∏

a=1

N∏

	=1

1 − q ′k−1 ∏a+2	−2
s=a Q̃s xa,i ya+2	−2, j

1 − q ′k−1
∏a+2	−1

s=a Q̃s xa,i ya+2	−1, j
,

(11.7)
where q ′ = ∏2N

a=1 Q̃a = ∏N
a=1 Qm,aQ f,a , and hence

K�α
�β(Qm, Q f ; q, t) = 1

(q ′; q ′)∞

N∏

a=1

q
‖αa‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

×
∞∏

i, j,k=1

N∏

r,	=1

(1 − q ′k−1Qr,r+	Q−1
m,r q

−αr+	,i+ j− 1
2 t−β∨

r, j+i− 1
2 )

(1 − q ′k−1Qr,r+	Q
−1
m,r Qm,r+	q−βr+	,i+ j t−β∨

r, j+i−1
)

× (1 − q ′k−1Qr,r+	−1Qm,r+	−1q−βr+	−1,i+ j− 1
2 t−α∨

r, j+i− 1
2 )

(1 − q ′k−1Qr,r+	q−αr+	,i+ j−1t−α∨
r, j+i

)
, (11.8)

where

Qa,b =

⎧
⎪⎪⎨

⎪⎪⎩

∏b−1
k=a Qm,k Q f,k, a < b

q ′Q−1
b,a, a > b

1, a = b
q ′, b = a + N

. (11.9)

Using the K-theoretic Nekrasov function (we use the notation of [117])

Nμν(Q; q, t) =
∏

(i, j)∈μ

(1−Qqμi− j tν
∨
j −i+1

)
∏

(i, j)∈ν

(1−Qq−νi+ j−1t−μ∨
j +i

), (11.10)

we also have ∞∏

i, j=1

1 − Qq−νi+ j−1t−μ∨
j +i

1 − Qq j−1t i
= Nμν(Q; q, t), (11.11)

and

K�α
�β(Qm , Q f ; q, t)

K�∅
�∅(Qm , Q f ; q, t)

=
N∏

a=1

q
‖αa ‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

×
N∏

r,	=1

∞∏

k=0

Nβrαr+	

(
p

1
2 q ′k Qr,r+	Q−1

m,r ; q, t
)
Nαrβr+	−1

(
p

1
2 q ′k Qr,r+	−1Qm,r+	−1; q, t

)

Nβrβr+	

(
pq ′k Qr,r+	Q

−1
m,r Qm,r+	; q, t

)
Nαrαr+	

(q ′k Qr,r+	; q, t)

=
N∏

a=1

q
‖αa‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

∞∏

k=0

Nβaαa

(
p

1
2 q ′k+1Q−1

m,a; q, t
)
Nαaβa

(
p

1
2 q ′k Qm,b; q, t

)

Nβaβa

(
pq ′k+1; q, t

)
Nαaαa (q

′k+1; q, t)

18 See appendix B of [108] and appendix A of [64] for a proof.
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×
∏

1≤a 
=b≤N

∞∏

k=0

Nβaαb

(
p

1
2 q ′k QabQ−1

m,a; q, t
)
Nαaβb

(
p

1
2 q ′k Qa,bQm,b; q, t

)

Nβaβb

(
pq ′k Qa,bQ

−1
m,a Qm,b; q, t

)
Nαaαb (q

′k Qab; q, t)
, (11.12)

where we used q ′ = Qa,bQb,a for a 
= b and Qa,a+N = q ′. Introducing the elliptic
version of the Nekrasov function19 20

Nμν(Q; q, t |q ′) =
∏

(i, j)∈μ

�(Qqμi− j tν
∨
j −i+1; q ′)

∏

(i, j)∈ν

�(Qq−νi+ j−1t−μ∨
j +i ; q ′),

(11.13)

=
∞∏

k=0

Nμν(q
′k Q; q, t)Nνμ(pq ′k+1Q−1; q, t), (11.14)

we also have

K�α
�β(Qm, Q f ; q, t)

K�∅
�∅(Qm, Q f ; q, t)

=
N∏

a=1

q
‖αa‖2

2 t
‖β∨

a ‖2
2 Z̃αa (t, q)Z̃β∨

a
(q, t)

Nβaβa (pq
′k+1; q, t)Nαaαa (q

′k+1; q, t)

×
∏N

a,b=1 Nαaβb (p
1
2 Qa,bQm,b; q, t |q ′)

∏
1≤a 
=b≤N

∏∞
k=0 Nβaβb (pq

′k Qa,bQ
−1
m,aQ f,a; q, t)Nαaαb (q

′k Qa,b; q, t)
.

(11.15)

The denominator cannot be expressed solely in terms of the ellipticNekrasov functions
because of the “wrong” q, t shift. This phenomenon has been related to the anomalous
modular transformation property of the open periodic strip [108].

The R
4 × T

2 Nekrasov instanton partition function of the U (N ) theory with N
fundamental and anti-fundamental hypers can be computed by gluing two periodic
strips, with the result

ZR
4×T

2

inst =
∑

�Y

N∏

a=1

(−QB,a)
|Ya |K

�Y
�∅ (Qm, Q f ; q, t)

K�∅
�∅(Qm, Q f ; q, t)

K�∅
�Y (Q̄m, Q̄ f ; q, t)

K�∅
�∅(Q̄m, Q̄ f ; q, t)

=
∑

�Y

N∏

a=1

(−QB,a)
|Ya |

N∏

a=1

q
‖Ya‖2

2 t
‖Ya∨‖2

2 Z̃Y a (t, q)Z̃Y a∨(q, t)∏∞
k=0 NYaYa (pq ′k+1; q, t)NYaYa (q ′k+1; q, t)

×
∏N

a,b=1 N∅Yb(p
1
2 Qab Q̄m,a; q, t |q ′)NYa∅(p

1
2 QabQm,b; q, t |q ′)

∏
1≤a 
=b≤N NYaYb(Qab; q, t |q ′)

.

(11.16)

19 Notice the symmetry Nμν(Q; q, t |q ′) = Nνμ(q ′ pQ−1; q, t |q ′).
20 Nμν(p

1
2 x |q ′) = x

|μ|+|ν|
2 q− ‖ν‖2−‖μ‖2

4 t−
‖μ∨‖2−‖ν∨‖2

4 ϑμν(x; q ′) in the notation of [64].
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Using

q
‖μ‖2
2 t

‖μ∨‖2
2 Z̃μ(t, q)Z̃μ∨(q, t) = (−p− 1

2 )|μ|

Nμμ(1; q, t)
, (11.17)

we can recast the second line of (11.16) as

∏N
a=1(p

− 1
2 QB,a)

|Ya |
∏N

a=1 NYaYa (1; q, t |q ′)
, (11.18)

and hence

ZR
4×T

2

inst =
∑

�Y

N∏

a=1

(p− 1
2 QB,a)

|Ya |

×
N∏

a,b=1

N∅Yb (p
1
2 Qab Q̄m,a; q, t |q ′)NYa∅(p

1
2 QabQm,b; q, t |q ′)

NYaYb (Qab; q, t |q ′)
.

(11.19)

In order to make contact with the field theory language, it is useful to introduce the
parametrization

Qab =
{
Aa A

−1
b , a ≤ b

q ′Aa A
−1
b , a > b

, Qm,a = AaQa p
− 1

2 , Q̄m,a = A−1
a Q̄a p

− 1
2 ,

(11.20)
so that (4.5) is automatically satisfied. Using the shift property

Nμν(q
′Q|q ′)=Nμν(Q|q ′) (−Q)−|μ|−|ν|q

1
2 (|ν|+‖ν‖2+|μ|−‖μ‖2)t−

1
2 (|μ|−‖μ∨‖2+|ν|+‖ν∨‖2),

(11.21)
we can rewrite

ZR
4×T

2

inst =
∑

�Y

N∏

a=1

⎛

⎝ p− 1
2 QB,a

∏N
b=1

(
p

1
2 Q̄m,b

)

⎞

⎠
|Ya | ∏

b≤a

(
p

1
2 Q̄m,b

)|Ya |

∏
b<a

(
p

1
2 Qm,b

)|Ya |

×
N∏

a,b=1

N∅Yb(A−1
b Q̄a; q, t |q ′)NYa∅(AaQb; q, t |q ′)
NYaYb(Aa A

−1
b ; q, t |q ′)

. (11.22)

Generically, for M glued strips labeled by (c) we have [134]

∏

a

Q(c)
B,a

|Y (c)
a | =

(
Q(c)

B,1 p
1
2 Q(c−1)

m,1

)∑
a |Y (c)

a |
∏

b<a

(
p

1
2 Q(c)

m,b

)|Y (c)
a |

∏
b≤a

(
p

1
2 Q(c−1)

m,b

)|Y (c)
a |

, (11.23)
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so that we can define a renormalized expansion parameter Q̃B and write (4.6).

References

1. Alday, L.F., Gaiotto, D., Tachikawa, Y.: Liouville correlation functions from four-dimensional gauge
theories. Lett. Math. Phys. 91, 167–197 (2010). arXiv:0906.3219 [hep-th]

2. Gaiotto, D.: N = 2 dualities. JHEP 08, 034 (2012). arXiv:0904.2715 [hep-th]
3. Wyllard, N.: AN−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N)

quiver gauge theories. JHEP 11, 002 (2009). arXiv:0907.2189 [hep-th]
4. Nekrasov, N.A.: Seiberg–Witten prepotential from instanton counting. Adv. Theor. Math. Phys. 7,

831–864 (2004). arXiv:hep-th/0206161 [hep-th]
5. Nekrasov, N., Okounkov, A.: Seiberg-Witten theory and random partitions. arXiv:hep-th/0306238

[hep-th]
6. Belavin, A.A., Polyakov, A.M., Zamolodchikov, A.B.: Infinite conformal symmetry in two-

dimensional quantum field theory. Nucl. Phys. B 241, 333–380 (1984)
7. Alday, L.F., Gaiotto, D., Gukov, S., Tachikawa, Y., Verlinde, H.: Loop and surface operators in N = 2

gauge theory and Liouville modular geometry. JHEP 01, 113 (2010). arXiv:0909.0945 [hep-th]
8. Drukker, N., Gomis, J., Okuda, T., Teschner, J.: Gauge theory loop operators and Liouville theory.

JHEP 02, 057 (2010). arXiv:0909.1105 [hep-th]
9. Frenkel, E., Gukov, S., Teschner, J.: Surface operators and separation of variables. arXiv:1506.07508

[hep-th]
10. Coman, I., Gabella, M., Teschner, J.: Line operators in theories of class S, quantized moduli space

of flat connections, and Toda field theory. JHEP 10, 143 (2015). arXiv:1505.05898 [hep-th]
11. Gomis, J., Le Floch, B.: M2-brane surface operators and gauge theory dualities in Toda.

arXiv:1407.1852 [hep-th]
12. Hosomichi, K., Lee, S., Park, J.: AGTon the S-dualityWall. JHEP 1012, 079 (2010). arXiv:1009.0340

[hep-th]
13. Teschner, J., Vartanov, G.: 6j symbols for the modular double, quantum hyperbolic geometry, and

supersymmetric gauge theories. Lett. Math. Phys. 104, 527–551 (2014). arXiv:1202.4698 [hep-th]
14. Doroud, N., Gomis, J., Le Floch, B., Lee, S.: Exact results in D = 2 supersymmetric gauge theories.

JHEP 05, 093 (2013). arXiv:1206.2606 [hep-th]
15. Teschner, J.: Exact results on N = 2 supersymmetric gauge theories. arXiv:1412.7145 [hep-th]
16. Okuda, T.: Line operators in supersymmetric gauge theories and the 2d–4d relation. arXiv:1412.7126

[hep-th]
17. Gukov, S.: Surface Operators. arXiv:1412.7127 [hep-th]
18. Nekrasov, N., Pestun, V.: Seiberg–Witten geometry of four dimensional N = 2 quiver gauge theories.

arXiv:1211.2240 [hep-th]
19. Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories.

arXiv:1312.6689 [hep-th]
20. Blum, J.D., Intriligator, K.A.: New phases of string theory and 6D RG fixed points via branes at

orbifold singularities. Nucl. Phys. B 506, 199–222 (1997). arXiv:hep-th/9705044 [hep-th]
21. Awata, H., Yamada, Y.: Five-dimensional AGT conjecture and the deformed Virasoro algebra. JHEP

01, 125 (2010). arXiv:0910.4431 [hep-th]
22. Shiraishi, J., Kubo, H., Awata, H., Odake, S.: A quantum deformation of the Virasoro algebra and the

Macdonald symmetric functions. Lett. Math. Phys. 38, 33–51 (1996). arXiv:q-alg/9507034 [q-alg]
23. Awata, H., Kubo, H., Odake, S., Shiraishi, J.: Quantum WN algebras and Macdonald polynomials.

Commun. Math. Phys. 179, 401–416 (1996). arXiv:q-alg/9508011 [q-alg]
24. Feigin, B., Frenkel, E.: Quantum W-algebras and elliptic algebras. Commun. Math. Phys. 178, 653–

678 (1996). arXiv:q-alg/9508009 [q-alg]
25. Awata, H., Yamada, Y.: Five-dimensional AGT relation and the deformed beta-ensemble. Prog. Theor.

Phys. 124, 227–262 (2010). arXiv:1004.5122 [hep-th]
26. Mironov, A., Morozov, A., Shakirov, S., Smirnov, A.: Proving AGT conjecture as HS duality: exten-

sion to five dimensions. Nucl. Phys. B 855, 128–151 (2012). arXiv:1105.0948 [hep-th]
27. Carlsson, E., Nekrasov, N., Okounkov, A.: Five dimensional gauge theories and vertex operators.

Mosc. Math. J. 14(1), 39–61 (2014). arXiv:1308.2465 [math.RT]

123

http://arxiv.org/abs/0906.3219
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0907.2189
http://arxiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://arxiv.org/abs/0909.0945
http://arxiv.org/abs/0909.1105
http://arxiv.org/abs/1506.07508
http://arxiv.org/abs/1505.05898
http://arxiv.org/abs/1407.1852
http://arxiv.org/abs/1009.0340
http://arxiv.org/abs/1202.4698
http://arxiv.org/abs/1206.2606
http://arxiv.org/abs/1412.7145
http://arxiv.org/abs/1412.7126
http://arxiv.org/abs/1412.7127
http://arxiv.org/abs/1211.2240
http://arxiv.org/abs/1312.6689
http://arxiv.org/abs/hep-th/9705044
http://arxiv.org/abs/0910.4431
http://arxiv.org/abs/q-alg/9507034
http://arxiv.org/abs/q-alg/9508011
http://arxiv.org/abs/q-alg/9508009
http://arxiv.org/abs/1004.5122
http://arxiv.org/abs/1105.0948
http://arxiv.org/abs/1308.2465


2184 F. Nieri

28. Zenkevich, Y.: Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT
correspondence in five dimensions. JHEP 05, 131 (2015). arXiv:1412.8592 [hep-th]

29. Morozov, A., Zenkevich, Y.: Decomposing Nekrasov Decomposition. arXiv:1510.01896 [hep-th]
30. Nieri, F., Pasquetti, S., Passerini, F.: 3d and 5d gauge theory partition functions as q-deformed CFT

correlators. Lett. Math. Phys. 105(1), 109–148 (2015). arXiv:1303.2626 [hep-th]
31. Nieri, F., Pasquetti, S., Passerini, F., Torrielli, A.: 5D partition functions, q-Virasoro systems and

integrable spin-chains. JHEP 12, 040 (2014). arXiv:1312.1294 [hep-th]
32. Hosomichi, K., Seong, R.-K., Terashima, S.: Supersymmetric gauge theories on the five-sphere. Nucl.

Phys. B 865, 376–396 (2012). arXiv:1203.0371 [hep-th]
33. Källén, J., Zabzine, M.: Twisted supersymmetric 5D Yang-Mills theory and contact geometry. JHEP

05, 125 (2012). arXiv:1202.1956 [hep-th]
34. Källén, J., Qiu, J., Zabzine,M.: The perturbative partition function of supersymmetric 5DYang–Mills

theory with matter on the five-sphere. JHEP 08, 157 (2012). arXiv:1206.6008 [hep-th]
35. Imamura, Y.: Perturbative partition function for squashed S5. arXiv:1210.6308 [hep-th]
36. Lockhart, G., Vafa, C.: Superconformal Partition Functions andNon-perturbative Topological Strings.

arXiv:1210.5909 [hep-th]
37. Kim, H.-C., Kim, J., Kim, S.: Instantons on the 5-sphere and M5-branes. arXiv:1211.0144 [hep-th]
38. Kim, H.-C., Kim, S.: M5-branes from gauge theories on the 5-sphere. JHEP 05, 144 (2013).

arXiv:1206.6339 [hep-th]
39. Minahan, J.A., Nedelin, A., Zabzine, M.: 5D super Yang–Mills theory and the correspondence to

AdS7/CFT6. J. Phys. A 46, 355401 (2013). arXiv:1304.1016 [hep-th]
40. Kim, H.-C., Kim, S.-S., Lee, K.: 5-dim superconformal index with enhanced En global symmetry.

JHEP 10, 142 (2012). arXiv:1206.6781 [hep-th]
41. Terashima, S.: Supersymmetric gauge theories on S4 x S1. Phys. Rev. D89(12), 125001 (2014).

arXiv:1207.2163 [hep-th]
42. Iqbal, A., Vafa, C.: BPS degeneracies and superconformal index in diverse dimensions. Phys. Rev. D

90(10), 105031 (2014). arXiv:1210.3605 [hep-th]
43. Benini, F., Benvenuti, S., Tachikawa, Y.:Webs of five-branes and N = 2 superconformal field theories.

JHEP 09, 052 (2009). arXiv:0906.0359 [hep-th]
44. Kozcaz, C., Pasquetti, S.,Wyllard,N.:A&Bmodel approaches to surface operators andToda theories.

JHEP 08, 042 (2010). arXiv:1004.2025 [hep-th]
45. Mitev, V., Pomoni, E.: Toda 3-point functions from topological strings. JHEP 06, 049 (2015).

arXiv:1409.6313 [hep-th]
46. Isachenkov, M., Mitev, V., Pomoni, E.: Toda 3-point functions from topological strings II.

arXiv:1412.3395 [hep-th]
47. Aganagic, M., Haouzi, N., Kozcaz, C., Shakirov, S.: Gauge/Liouville Triality. arXiv:1309.1687 [hep-

th]
48. Aganagic, M., Shakirov, S.: Gauge/Vortex duality and AGT. arXiv:1412.7132 [hep-th]
49. Lukyanov, S.L., Pugai, Y.: Bosonization of ZF algebras: Direction toward deformed Virasoro alge-

bra. J. Exp. Theor. Phys.82, 1021–1045 (1996). arXiv:hep-th/9412128 [hep-th]. [Zh. Eksp. Teor.
Fiz.109,1900 (1996)]

50. Beem, C., Dimofte, T., Pasquetti, S.: Holomorphic blocks in three dimensions. JHEP 1412, 177
(2014). arXiv:1211.1986 [hep-th]

51. Pasquetti, S.: Factorisation of N = 2 theories on the squashed 3-sphere. JHEP 04, 120 (2012).
arXiv:1111.6905 [hep-th]

52. Yoshida, Y., Sugiyama, K.: Localization of 3d N = 2 Supersymmetric Theories on S1 × D2.
arXiv:1409.6713 [hep-th]

53. Dijkgraaf, R., Vafa, C.: TodaTheories,MatrixModels, Topological Strings, andN=2Gauge Systems.
arXiv:0909.2453 [hep-th]

54. Dijkgraaf, R., Vafa, C.: On geometry and matrix models. Nucl. Phys. B 644, 21–39 (2002).
arXiv:hep-th/0207106 [hep-th]

55. Dijkgraaf, R., Vafa, C.: Matrix models, topological strings, and supersymmetric gauge theories. Nucl.
Phys. B 644, 3–20 (2002). arXiv:hep-th/0206255 [hep-th]

56. Aganagic, M., Haouzi, N., Shakirov, S.: An -Triality. arXiv:1403.3657 [hep-th]
57. Seiberg, N.: New theories in six-dimensions and matrix description of M-theory on T 5 and T 5/Z2.

Phys. Lett. B 408, 98–104 (1997). arXiv:hep-th/9705221 [hep-th]

123

http://arxiv.org/abs/1412.8592
http://arxiv.org/abs/1510.01896
http://arxiv.org/abs/1303.2626
http://arxiv.org/abs/1312.1294
http://arxiv.org/abs/1203.0371
http://arxiv.org/abs/1202.1956
http://arxiv.org/abs/1206.6008
http://arxiv.org/abs/1210.6308
http://arxiv.org/abs/1210.5909
http://arxiv.org/abs/1211.0144
http://arxiv.org/abs/1206.6339
http://arxiv.org/abs/1304.1016
http://arxiv.org/abs/1206.6781
http://arxiv.org/abs/1207.2163
http://arxiv.org/abs/1210.3605
http://arxiv.org/abs/0906.0359
http://arxiv.org/abs/1004.2025
http://arxiv.org/abs/1409.6313
http://arxiv.org/abs/1412.3395
http://arxiv.org/abs/1309.1687
http://arxiv.org/abs/1412.7132
http://arxiv.org/abs/hep-th/9412128
http://arxiv.org/abs/1211.1986
http://arxiv.org/abs/1111.6905
http://arxiv.org/abs/1409.6713
http://arxiv.org/abs/0909.2453
http://arxiv.org/abs/hep-th/0207106
http://arxiv.org/abs/hep-th/0206255
http://arxiv.org/abs/1403.3657
http://arxiv.org/abs/hep-th/9705221


An elliptic Virasoro symmetry in 6d 2185

58. Berkooz, M., Rozali, M., Seiberg, N.: Matrix description of M-theory on T 4 and T 5. Phys. Lett. B
408, 105–110 (1997). arXiv:hep-th/9704089 [hep-th]

59. Losev, A., Moore, G.W., Shatashvili, S.L.: M & m’s. Nucl. Phys. B 522, 105–124 (1998).
arXiv:hep-th/9707250 [hep-th]

60. Aganagic, M., Haouzi, N.: ADE Little String Theory on a Riemann Surface (and Triality).
arXiv:1506.04183 [hep-th]

61. Nieri, F., Pasquetti, S.: Factorisation and holomorphic blocks in 4d. arXiv:1507.00261 [hep-th]
62. Hollowood, T.J., Iqbal, A., Vafa, C.: Matrix models, geometric engineering and elliptic genera. JHEP

03, 069 (2008). arXiv:hep-th/0310272 [hep-th]
63. Haghighat, B., Kozcaz, C., Lockhart, G., Vafa, C.: Orbifolds ofM-strings. Phys. Rev. D 89(4), 046003

(2014). arXiv:1310.1185 [hep-th]
64. Hohenegger, S., Iqbal, A.: M-strings, elliptic genera and N = 4 string amplitudes. Fortschr. Phys.

62, 155–206 (2014). arXiv:1310.1325 [hep-th]
65. Gopakumar, R., Vafa, C.: On the gauge theory / geometry correspondence. Adv. Theor. Math. Phys.

3, 1415–1443 (1999). arXiv:hep-th/9811131 [hep-th]
66. Cachazo, F., Intriligator, K.A., Vafa, C.: A large N duality via a geometric transition. Nucl. Phys. B

603, 3–41 (2001). arXiv:hep-th/0103067 [hep-th]
67. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: Matrix model as a mirror of Chern–Simons theory.

JHEP 02, 010 (2004). arXiv:hep-th/0211098 [hep-th]
68. Aganagic, M., Cheng, M.C.N., Dijkgraaf, R., Krefl, D., Vafa, C.: Quantum geometry of refined

topological strings. JHEP 11, 019 (2012). arXiv:1105.0630 [hep-th]
69. Tan, M.-C.: An M-theoretic derivation of a 5d and 6d AGT correspondence, and relativistic and

elliptized integrable systems. JHEP 12, 031 (2013). arXiv:1309.4775 [hep-th]
70. Heckman, J.J., Morrison, D.R., Rudelius, T., Vafa, C.: Atomic classification of 6D SCFTs. Fortschr.

Phys. 63, 468–530 (2015). arXiv:1502.05405 [hep-th]
71. Heckman, J.J., Morrison, D.R., Vafa, C.: On the classification of 6D SCFTs and generalized ADE

orbifolds. JHEP 05, 028 (2014). arXiv:1312.5746 [hep-th]. [Erratum: JHEP06,017(2015)]
72. Del Zotto, M., Vafa, C., Xie, D.: Geometric Engineering, Mirror Symmetry and 6d (1,0)→ 4d, N = 2.

arXiv:1504.08348 [hep-th]
73. Bhardwaj, L.: Classification of 6d N = (1, 0) gauge theories. arXiv:1502.06594 [hep-th]
74. Hohenegger, S., Iqbal, A., Rey, S.-J.: M-strings, monopole strings, and modular forms. Phys. Rev. D

92(6), 066005 (2015). arXiv:1503.06983 [hep-th]
75. Gadde,A.,Haghighat,B.,Kim, J.,Kim,S., Lockhart,G.,Vafa,C.: 6dStringChains. arXiv:1504.04614

[hep-th]
76. Haghighat, B.: From strings in 6d to strings in 5d. arXiv:1502.06645 [hep-th]
77. Ohmori, K., Shimizu, H., Tachikawa, Y., Yonekura, K.: 6d N = (1, 0) theories on T 2 and class S

theories: part I. JHEP 07, 014 (2015). arXiv:1503.06217 [hep-th]
78. Ohmori, K., Shimizu, H., Tachikawa, Y., Yonekura, K.: 6d N = (1, 0) theories on S1/T 2 and class

S theories: part II. arXiv:1508.00915 [hep-th]
79. Zafrir, G.: Brane webs, 5d gauge theories and 6dN = (1, 0) SCFT’s. arXiv:1509.02016 [hep-th]
80. Kim, J., Kim, S., Lee, K.: Higgsing towards E-strings. arXiv:1510.03128 [hep-th]
81. Ohmori, K., Shimizu, H.: S1/T 2 Compactifications of 6d N = (1, 0) Theories and Brane Webs.

arXiv:1509.03195 [hep-th]
82. Awata, H., Kubo, H., Odake, S., Shiraishi, J.: Virasoro-type symmetries in solvable models.

arXiv:hep-th/9612233 [hep-th]
83. Odake, S.: Beyond CFT: Deformed Virasoro and elliptic algebras. pp. 307–449 (1999).

arXiv:hep-th/9910226 [hep-th]
84. Frenkel, E., Reshetikhin, N.: Deformations of W-algebras associated to simple Lie algebras.

arXiv:q-alg/9708006 [q-alg]
85. Dumitrescu, T.T., Festuccia, G., Seiberg, N.: Exploring curved superspace. JHEP 08, 141 (2012).

arXiv:1205.1115 [hep-th]
86. Festuccia, G., Seiberg, N.: Rigid supersymmetric theories in curved superspace. JHEP 06, 114 (2011).

arXiv:1105.0689 [hep-th]
87. Assel, B., Cassani, D., Martelli, D.: Localization on Hopf surfaces. JHEP 08, 123 (2014).

arXiv:1405.5144 [hep-th]
88. Closset, C., Shamir, I.: The N = 1 chiral multiplet on T 2 × S2 and supersymmetric localization.

JHEP 1403, 040 (2014). arXiv:1311.2430 [hep-th]

123

http://arxiv.org/abs/hep-th/9704089
http://arxiv.org/abs/hep-th/9707250
http://arxiv.org/abs/1506.04183
http://arxiv.org/abs/1507.00261
http://arxiv.org/abs/hep-th/0310272
http://arxiv.org/abs/1310.1185
http://arxiv.org/abs/1310.1325
http://arxiv.org/abs/hep-th/9811131
http://arxiv.org/abs/hep-th/0103067
http://arxiv.org/abs/hep-th/0211098
http://arxiv.org/abs/1105.0630
http://arxiv.org/abs/1309.4775
http://arxiv.org/abs/1502.05405
http://arxiv.org/abs/1312.5746
http://arxiv.org/abs/1504.08348
http://arxiv.org/abs/1502.06594
http://arxiv.org/abs/1503.06983
http://arxiv.org/abs/1504.04614
http://arxiv.org/abs/1502.06645
http://arxiv.org/abs/1503.06217
http://arxiv.org/abs/1508.00915
http://arxiv.org/abs/1509.02016
http://arxiv.org/abs/1510.03128
http://arxiv.org/abs/1509.03195
http://arxiv.org/abs/hep-th/9612233
http://arxiv.org/abs/hep-th/9910226
http://arxiv.org/abs/q-alg/9708006
http://arxiv.org/abs/1205.1115
http://arxiv.org/abs/1105.0689
http://arxiv.org/abs/1405.5144
http://arxiv.org/abs/1311.2430


2186 F. Nieri

89. Closset, C., Dumitrescu, T.T., Festuccia, G., Komargodski, Z.: From rigid supersymmetry to twisted
holomorphic theories. Phys. Rev. D 90(8), 085006 (2014). arXiv:1407.2598 [hep-th]

90. Alday, L.F., Martelli, D., Richmond, P., Sparks, J.: Localization on three-manifolds. JHEP 1310, 095
(2013). arXiv:1307.6848 [hep-th]

91. Peelaers, W.: Higgs branch localization of N = 1 theories on S3 x S1. JHEP 08, 060 (2014).
arXiv:1403.2711 [hep-th]

92. Cecotti, S., Gaiotto, D., Vafa, C.: t t∗ geometry in 3 and 4 dimensions. JHEP 05, 055 (2014).
arXiv:1312.1008 [hep-th]

93. Spiridonov, V.P.: Theta hypergeometric series,” ArXiv Mathematics e-prints (Mar, 2003).
arXiv:math/0303204

94. Shadchin, S.: On F-term contribution to effective action. JHEP 08, 052 (2007). arXiv:hep-th/0611278
[hep-th]

95. Yoshida, Y.: Factorization of 4d N = 1 superconformal index. arXiv:1403.0891 [hep-th]
96. Chen, H.-Y., Chen, H.-Y.: Heterotic surface defects and dualities from 2d/4d indices. JHEP 10, 004

(2014). arXiv:1407.4587 [hep-th]
97. Hanany, A., Tong, D.: Vortices, instantons and branes. JHEP 07, 037 (2003). arXiv:hep-th/0306150

[hep-th]
98. Bonelli, G., Tanzini, A., Zhao, J.: Vertices, vortices and interacting surface operators. JHEP 06, 178

(2012). arXiv:1102.0184 [hep-th]
99. Fujimori, T., Kimura, T., Nitta, M., Ohashi, K.: 2d Partition function in omega-background and

vortex/instanton correspondence. arXiv:1509.08630 [hep-th]
100. Dimofte, T., Gukov, S., Hollands, L.: Vortex counting and Lagrangian 3-manifolds. Lett. Math. Phys.

98, 225–287 (2011). arXiv:1006.0977 [hep-th]
101. Bonelli, G., Tanzini, A., Zhao, J.: The Liouville side of the Vortex. JHEP 09, 096 (2011).

arXiv:1107.2787 [hep-th]
102. Bullimore, M., Kim, H.-C., Koroteev, P.: Defects and quantum Seiberg–Witten geometry. JHEP 05,

095 (2015). arXiv:1412.6081 [hep-th]
103. Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of two-dimensional N = 2 gauge theories

with rank-one gauge groups. Lett. Math. Phys. 104, 465–493 (2014). arXiv:1305.0533 [hep-th]
104. Benini, F., Eager, R., Hori, K., Tachikawa, Y.: Elliptic genera of 2dN = 2 gauge theories. Commun.

Math. Phys. 333(3), 1241–1286 (2015). arXiv:1308.4896 [hep-th]
105. Honda, M., Yoshida, Y.: Supersymmetric index on T 2 × S2 and elliptic genus. arXiv:1504.04355

[hep-th]
106. Aganagic, M., Klemm, A., Marino, M., Vafa, C.: The topological vertex. Commun. Math. Phys. 254,

425–478 (2005). arXiv:hep-th/0305132 [hep-th]
107. Iqbal, A., Kozcaz, C., Vafa, C.: The refined topological vertex. JHEP 10, 069 (2009).

arXiv:hep-th/0701156 [hep-th]
108. Haghighat, B., Iqbal, A., Kozcaz, C., Lockhart, G., Vafa, C.:M-strings. Commun.Math. Phys. 334(2),

779–842 (2015). arXiv:1305.6322 [hep-th]
109. Aharony, O., Hanany, A.: Branes, superpotentials and superconformal fixed points. Nucl. Phys. B

504, 239–271 (1997). arXiv:hep-th/9704170 [hep-th]
110. Aharony, O., Hanany, A., Kol, B.: Webs of (p, q) five-branes, five-dimensional field theories and grid

diagrams. JHEP 01, 002 (1998). arXiv:hep-th/9710116 [hep-th]
111. Leung, N.C., Vafa, C.: Branes and toric geometry. Adv. Theor. Math. Phys. 2, 91–118 (1998).

arXiv:hep-th/9711013 [hep-th]
112. Kol, B., Rahmfeld, J.: BPS spectrumof five-dimensional field theories, (p, q)webs and curve counting.

JHEP 08, 006 (1998). arXiv:hep-th/9801067 [hep-th]
113. Awata, H., Kanno, H.: Instanton counting, Macdonald functions and the moduli space of D-branes.

JHEP 05, 039 (2005). arXiv:hep-th/0502061 [hep-th]
114. Taki, M.: Refined topological vertex and instanton counting. JHEP 03, 048 (2008). arXiv:0710.1776

[hep-th]
115. Iqbal, A., Kashani-Poor, A.-K.: The vertex on a strip. Adv. Theor. Math. Phys. 10, 317–343 (2006).

arXiv:hep-th/0410174 [hep-th]
116. Okounkov, A.: Random partitions and instanton counting. ArXiv Mathematical Physics e-prints (Jan,

2006). arXiv:math-ph/0601062
117. Awata,H.,Kanno,H.: RefinedBPS state counting fromNekrasov’s formula andMacdonald functions.

Int. J. Mod. Phys. A 24, 2253–2306 (2009). arXiv:0805.0191 [hep-th]

123

http://arxiv.org/abs/1407.2598
http://arxiv.org/abs/1307.6848
http://arxiv.org/abs/1403.2711
http://arxiv.org/abs/1312.1008
http://arxiv.org/abs/math/0303204
http://arxiv.org/abs/hep-th/0611278
http://arxiv.org/abs/1403.0891
http://arxiv.org/abs/1407.4587
http://arxiv.org/abs/hep-th/0306150
http://arxiv.org/abs/1102.0184
http://arxiv.org/abs/1509.08630
http://arxiv.org/abs/1006.0977
http://arxiv.org/abs/1107.2787
http://arxiv.org/abs/1412.6081
http://arxiv.org/abs/1305.0533
http://arxiv.org/abs/1308.4896
http://arxiv.org/abs/1504.04355
http://arxiv.org/abs/hep-th/0305132
http://arxiv.org/abs/hep-th/0701156
http://arxiv.org/abs/1305.6322
http://arxiv.org/abs/hep-th/9704170
http://arxiv.org/abs/hep-th/9710116
http://arxiv.org/abs/hep-th/9711013
http://arxiv.org/abs/hep-th/9801067
http://arxiv.org/abs/hep-th/0502061
http://arxiv.org/abs/0710.1776
http://arxiv.org/abs/hep-th/0410174
http://arxiv.org/abs/math-ph/0601062
http://arxiv.org/abs/0805.0191


An elliptic Virasoro symmetry in 6d 2187

118. Nieri, F.: Integrable structures in supersymmetric gauge theories. PhD thesis, University of Surrey,
Guildford, UK, (2015)

119. Dorey, N., Hollowood, T.J., Lee, S.: Quantization of integrable systems and a 2d/4d duality. JHEP
10, 077 (2011). arXiv:1103.5726 [hep-th]

120. Chen, H.-Y., Dorey, N., Hollowood, T.J., Lee, S.: A new 2d/4d duality via integrability. JHEP 09, 040
(2011). arXiv:1104.3021 [hep-th]

121. Chen, H.-Y., Hollowood, T.J., Zhao, P.: A 5d/3d duality from relativistic integrable system. JHEP 07,
139 (2012). arXiv:1205.4230 [hep-th]

122. Feigin, B., Hoshino, A., Shibahara, J., Shiraishi, J., Yanagida, S.: Kernel function and quantum
algebras. ArXiv e-prints (Feb, 2010) . arXiv:1002.2485 [math.QA]

123. Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degen-
erate CP1 and Macdonald polynomials. J. Math. Phys. (Sept, 2009) . arXiv:0904.2291 [math.CO]

124. Razamat, S.S.: On the N = 2 superconformal index and eigenfunctions of the elliptic RS model.
Lett. Math. Phys. 104, 673–690 (2014). arXiv:1309.0278 [hep-th]

125. Saito, Y.: Elliptic Ding–Iohara Algebra and the Free Field Realization of the Elliptic Macdonald
Operator. ArXiv e-prints (Jan, 2013) . arXiv:1301.4912 [math.QA]

126. Koroteev, P., Sciarappa,A.:QuantumHydrodynamics fromLarge-n SupersymmetricGaugeTheories.
arXiv:1510.00972 [hep-th]

127. Awata, H., Odake, S., Shiraishi, J.: Integral representations of the Macdonald symmetric functions.
Commun. Math. Phys. 179, 647–666 (1996). arXiv:q-alg/9506006 [q-alg]

128. Awata, H., Feigin, B., Hoshino, A., Kanai, M., Shiraishi, J., Yanagida, S.: Notes on Ding–Iohara
algebra and AGT conjecture. ArXiv e-prints (June, 2011). arXiv:1106.4088 [math-ph]

129. Iqbal, A., Kozcaz, C., Yau, S.-T.: Elliptic Virasoro Conformal Blocks. arXiv:1511.00458 [hep-th]
130. Clavelli, L., Shapiro, J.A.: Pomeron factorization in general dual models. Nucl. Phys. B 57, 490–535

(1973)
131. Graf, U.: Introduction to Hyperfunctions and Their Integral Transforms. Birkhuser, Basel (2010)
132. Ding, J.-T., Iohara, K.: Generalization and deformation of Drinfeld quantum affine algebras. Lett.

Math. Phys. 41, 181–193 (1997)
133. Macdonald, I.: Symmetric Functions and Hall Polynomials. Oxford Mathematical Monographs.

Clarendon Press, Oxford (1998)
134. Bao, L., Pomoni, E., Taki, M., Yagi, F.: M5-branes, toric diagrams and gauge theory duality. JHEP

04, 105 (2012). arXiv:1112.5228 [hep-th]
135. Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma

functions. ArXiv Mathematics e-prints (June, 2003). arXiv:math/0306164 [math/0306164]

123

http://arxiv.org/abs/1103.5726
http://arxiv.org/abs/1104.3021
http://arxiv.org/abs/1205.4230
http://arxiv.org/abs/1002.2485
http://arxiv.org/abs/0904.2291
http://arxiv.org/abs/1309.0278
http://arxiv.org/abs/1301.4912
http://arxiv.org/abs/1510.00972
http://arxiv.org/abs/q-alg/9506006
http://arxiv.org/abs/1106.4088
http://arxiv.org/abs/1511.00458
http://arxiv.org/abs/1112.5228
http://arxiv.org/abs/math/0306164

	An elliptic Virasoro symmetry in 6d
	Abstract
	1 Introduction
	2 Elliptic Virasoro Algebra
	2.1 Defining relation
	2.2 Free field representation
	2.3 Screening currents
	2.4 Vertex operators
	2.5 Correlators

	3 4d holomorphic blocks
	4 6d Nekrasov partition function
	5 Discussion and outlook
	Acknowledgements
	A Elliptic functions
	B Free boson tools
	C Free boson representation of the EVA
	D Screening current of the EVA
	E Relation with the elliptic Ding–Iohara algebra
	F The refined periodic strip
	References


