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Abstract We define a distribution on the unit sphere S
d−1

called the elliptically symmetric angular Gaussian distribu-

tion. This distribution, which to our knowledge has not been

studied before, is a subfamily of the angular Gaussian distri-

bution closely analogous to the Kent subfamily of the general

Fisher–Bingham distribution. Like the Kent distribution, it

has ellipse-like contours, enabling modelling of rotational

asymmetry about the mean direction, but it has the additional

advantages of being simple and fast to simulate from, and

having a density and hence likelihood that is easy and very

quick to compute exactly. These advantages are especially

beneficial for computationally intensive statistical methods,

one example of which is a parametric bootstrap procedure

for inference for the directional mean that we describe.
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1 Introduction

A natural way to define a distribution on the unit sphere S
d−1

is to embed S
d−1 in R

d , specify a distribution for a random

variable z ∈ R
d , then consider the distribution of z either

conditioned to lie on, or projected onto, S
d−1. The general

Fisher–Bingham and angular Gaussian distributions, defined

respectively in Mardia (1975) and Mardia and Jupp (2000)

can both be constructed this way by taking z to be multivariate

Gaussian in R
d . Then the Fisher–Bingham distribution is the

conditional distribution of z conditioned on ‖z‖ = 1, and the

angular Gaussian is the distribution of the projection z/‖z‖.

The choice of the mean, μ, and covariance matrix, V , of z

controls the concentration and the shape of the contours of

the induced probability density on S
d−1.

It is usually not practical to work with the general

Fisher–Bingham or angular Gaussian distributions, however,

because they have too many free parameters to be identified

well by data. This motivates working instead with subfami-

lies that have fewer free parameters and stronger symmetries.

In the spherical case, d = 3, the general distributions

have 8 free parameters. Respective subfamilies with 3 free

parameters are the Fisher and the isotropic angular Gaussian

(IAG) distributions. Both are “isotropic” in the sense that

they are rotationally symmetric about the mean direction, i.e.,

contours on the sphere are small circles centred on the mean

direction. Respective subfamilies with 5 free parameters are

the Bingham and the central angular Gaussian distributions,

both of which are antipodally symmetric.

An important member of this Fisher–Bingham family is

the Kent distribution (Kent, 1982). For d = 3, it has 5 free

parameters, and it has ellipse-like contours on the sphere.

This offers a level of complexity well suited to many appli-

cations, since the distribution is flexible enough to model

anisotropic data yet its parameters can usually be estimated

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9756-4&domain=pdf


690 Stat Comput (2018) 28:689–697

well from data. To our knowledge, nobody to date has consid-

ered its analogue in the angular Gaussian family. The purpose

of this paper is to introduce such an analogue, which we

call the elliptically symmetric angular Gaussian (ESAG), and

establish some of its basic properties.

The motivation for doing so is that in some ways the angu-

lar Gaussian family (and hence ESAG) is much easier to

work with than the Fisher–Bingham family (and hence the

Kent distribution). In particular, simulation is easy and fast,

not requiring rejection methods (which are needed for the

Fisher–Bingham family Kent et al. 2013), and the density is

free of awkward normalising constants, so the likelihood can

be computed quickly and exactly. Hence in many modern

statistical settings the angular Gaussian family is the more

natural choice; see for example Presnell et al. (1998) who use

it in a frequentist approach for circular data, and Wang and

Gelfand (2013) and Hernandez-Stumpfhauser et al. (2017)

who use it in Bayesian approaches for circular and spherical

data, respectively.

In the following section, we introduce ESAG, first for

general d before specialising to the case d = 3.

2 The elliptically symmetric angular Gaussian

distribution (ESAG)

2.1 The general angular Gaussian distribution

The angular Gaussian distribution is the marginal distribu-

tion of the directional component of the multivariate normal

distribution. Let

φd(z|μ, V ) =
1

(2π)d/2|V |1/2

exp
{

−(z − μ)⊤V −1(z − μ)/2
}

(1)

denote the multivariate normal density in R
d with d×1 mean

vector μ, d × d covariance matrix V , assumed non-singular,

and where |V | denotes the determinant of V . Then, writing

z = r y, where r = ‖z‖ = (z⊤z)1/2 and y = z/‖z‖ ∈ Sd−1,

and using dz = rd−1dr dy, where dy denotes Lebesgue, or

geometric, measure on the unit sphere Sd−1, and integrating

r over r > 0, leads to

fAG(y) =
Cd

|V |1/2

1

(y⊤V −1 y)d/2

× exp

[

1

2

{

(

y⊤V −1μ
)2

y⊤V −1 y
− μ⊤V −1μ

}]

× Md−1

{

y⊤V −1μ
(

y⊤V −1 y
)1/2

}

, (2)

where Cd = 1/(2π)(d−1)/2 and, for real α,

Md−1(α) =
∫ ∞

u=0

ud−1 1

(2π)1/2
exp

{

−(u − α)2/2
}

du. (3)

Direct calculations show that

M0(α) = �(α), M1(α) = α�(α) + φ(α)

M2(α) = (1 + α2)�(α) + αφ(α), (4)

where φ(·) and �(·) are the standard normal probability den-

sity function and cumulative density function, respectively;

more details about the Md(α) are given in Sect. A.1.

2.2 An elliptically symmetric subfamily

The subfamily of (2) that we shall call the elliptically sym-

metric angular Gaussian distribution (ESAG) is defined by

the two conditions

V μ = μ, (5)

|V | = 1, (6)

under which the angular Gaussian density (2) simplifies to

fESAG(y) =
Cd

(y⊤V −1 y)d/2
exp

[

1

2

{

(

y⊤μ
)2

y⊤V −1 y
− μ⊤μ

}]

Md−1

{

y⊤μ
(

y⊤V −1 y
)1/2

}

. (7)

From (5), the positive definite matrix V has a unit eigenvalue.

If the other eigenvalues are

0 < ρ1 ≤ · · · ≤ ρd−1, (8)

then the inverse of V can be written

V −1 = ξdξ⊤
d +

d−1
∑

j=1

ξ jξ
⊤
j /ρ j , (9)

where ξ1, …, ξd−1 and ξd = μ/‖μ‖ is a set of mutually

orthogonal unit vectors. Moreover, constraint (6) means that

d−1
∏

j=1

ρ j = 1. (10)

Once the d parameters in μ are fixed, then from (5) and

(6) there are d − 2 remaining degrees of freedom for the

eigenvalues of V , and d(d−1)/2−(d−1) degrees of freedom

for its unit eigenvectors. The total number of free parameters
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is thus (d − 1)(d + 2)/2, the same as for the multivariate

normal in a tangent space R
d−1 to the sphere.

Condition (5) imposes symmetry about the eigenvectors of

V . Without loss of generality, suppose that the eigenvectors

are parallel to the coordinates axes; that is, each element of

the vector ξ j equals 0 except the j th which equals 1. Then if

y = (y1, . . . , yd)⊤,

y⊤ξd = yd , y⊤V −1 y = y2
d +

d−1
∑

j=1

y2
j /ρ j .

In this case, the density (7) depends only on y j through y2
j

for j = 1, . . . , d − 1. Consequently, the density is invariant

with respect to sign changes of the y1, . . . , yd−1, that is,

fESAG(±y1, . . . ,±yd−1, yd) = fESAG(y1, . . . , yd−1, yd),

which implies reflective symmetry about 0 along the axes

defined by ξ1, …, ξd−1. This type of symmetry is implied

by ellipse-like contours of constant density inscribed on the

sphere, and such contours arise when the density (7) is uni-

modal. Whether the density is unimodal depends on the

nature of the stationary point at y = μ/‖μ‖, which is char-

acterised by the following proposition.

Proposition 1 Write α = ‖μ‖ and assume without loss of

generality that (8) holds. Then (i) the ESAG always has a

stationary point at y = ξd = μ/α, and (ii) the stationary

point at y = ξd is a local maximum if ρd−1 ≤ Hd(α) and a

local minimum if ρd−1 > Hd(α), where

Hd(α) =1+
{

α2 + (d − 1)αMd−2(α)/Md−1(α)
}

/d. (11)

The proof of Proposition 1 is given in Appendix A. 2.

We conjecture that if the stationary point at y = ξd is

a local maximum, then it is also a global maximum, and

that in this case the distribution is unimodal; and in the

case that the stationary point is a local minimum, then the

distribution is bimodal. A rigorous proof appears difficult,

but the conjecture is strongly supported by some exten-

sive numerical investigations that we have performed and

describe as follows. For each of a wide variety of combi-

nations of ESAG parameters with d = 3 — in particular,

choosing for (α, γ1, γ2)
⊤ values on a 9 × 9 × 9 rectangu-

lar lattice on [0.2, 20] × [−5, 5] × [−5, 5] — we performed

numerical maximisation to find

ymax = argmaxy fESAG(y).

Using the Manopt implementation (Boumal et al., 2014)

of the trust region approach of Absil et al. (2007), for

each (α, γ1, γ2)
⊤, we performed the optimisation multiple

times from distinct starting points with the rationale that

if the distribution is indeed multimodal, then optimisations

from different starting points will converge to different local

optima. We chose to use 42 different starting points since

this enabled the points to be exactly equi-spaced on S
2 using

the method of Teanby (2006). For each (α, γ1, γ2)
⊤, we

hence computed ymax
1 , . . . , ymax

42 . Instances that converged

to the same mode had values of ymax that were not quite

identical, owing to the finite tolerance of the numerical opti-

misation. To account for this, we identified the number of

modes according to clustering of the {ymax
i }, designating the

distribution unimodal if and only if ‖ymax
i − ȳmax‖ < 10−6

for all i , where ȳmax = (1/42)
∑

i ymax
i . In cases identified

as non-unimodal by this criterion, we used k-means clus-

tering to identify k = 2 clusters; in each such case, every

ymax
i was within a distance 10−6 of its cluster centre indicat-

ing bimodality. In agreement with the conjecture, amongst

the 93 = 729 parameter cases we considered, in every 553

cases with ρd−1 ≤ Hd(α), the foregoing procedure identified

the distribution to be unimodal, and in every 176 cases with

ρd−1 > Hd(α), it identified the distribution to be bimodal.

The next proposition concerns the limiting distribution of

a sequence of unimodal ESAG distributions as the sequence

becomes more highly concentrated. Without loss of general-

ity, we fix ξd = (0, . . . , 0, 1)⊤, take ξ1, . . . , ξd−1 to be the

other coordinate axes and define

y =
{

y1, . . . , yd−1, (1 − y2
1 − · · · − y2

d−1)
1/2

}

. (12)

Neglecting the hemisphere defined by yd negative is no draw-

back when considering α = ‖μ‖ → ∞ as follows, because

in this limit the distribution becomes increasingly concen-

trated about y = ξd .

Proposition 2 Assume the conditions (5) and (6), and there-

fore (10), hold, where the ρ j are assumed to be fixed, and

suppose that α = ‖μ‖ → ∞. Then

α ỹ −→d Nd−1(0d−1,	), (13)

where ỹ = (y1, . . . , yd−1)
T and

	 = diag{ρ−1
1 , . . . , ρ−1

d−1} =
∑d−1

j=1 ρ−1
j ξ jξ

T
j .

Remark 1 In the general case, we replace the coordinate vec-

tors ξ1, . . . , ξd by an arbitrary orthonormal basis, and then

the limit distribution lies in the vector subspace spanned by

ξ1, . . . , ξd−1.

Remark 2 Proposition 2 is noteworthy because it is atypical

for high-concentration limits within the angular Gaussian

family to be Gaussian.
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2.3 A parameterisation of ESAG for d = 3

An important practical question is how to specify a conve-

nient parameterisation for the matrix V so that it satisfies the

constraints (5) and (6). With d = 3, such a V has two free

parameters.

We first define a pair of unit vectors ξ̃1 and ξ̃2 which are

orthogonal to each other and to the mean direction ξ3 =

μ/‖μ‖:

ξ̃1 =
(

−μ2
0, μ1μ2, μ1μ3

)⊤
/(μ0‖μ‖) and

ξ̃2 = (0,−μ3, μ2)
⊤ /μ0, (14)

where μ = (μ1, μ2, μ3)
⊤ and μ0 = (μ2

2 + μ2
3)

1/2; then

ξ̃1 and ξ̃2 in (14) are smooth functions of μ except at μ2 =

μ3 = 0, where there is indeterminacy. To enable the axes of

symmetry, ξ1 and ξ2, to be an arbitrary rotation of ξ̃1 and ξ̃2,

we define

ξ1 = cos ψ ξ̃1 + sin ψ ξ̃2 and

ξ2 = − sin ψ ξ̃1 + cos ψ ξ̃2, (15)

where ψ ∈ (0, π ] is the angle of rotation. Substituting ξ1

and ξ2 from (15) into (9), and putting ρ1 = ρ and ρ2 = 1/ρ

where ρ ∈ (0, 1], gives the parameterisation

V −1 =
(

ρ−1 cos2 ψ + ρ sin2 ψ
)

ξ̃1ξ̃
⊤
1

+
(

ρ−1 sin2 ψ + ρ cos2 ψ
)

ξ̃2ξ̃
⊤
2

+ 1
2
(ρ−1 − ρ) sin 2ψ

(

ξ̃1ξ̃
⊤
2 + ξ̃2ξ̃

⊤
1

)

+ ξ3ξ
⊤
3 . (16)

The disadvantage that ρ and ψ are restricted can be resolved

by writing (16) in terms of unrestricted parameters γ1 and γ2

as follows.

Lemma 1 Define γ = (γ1, γ2)
⊤ by

γ1 = 2−1(ρ−1 − ρ) cos 2ψ and

γ2 = 2−1(ρ−1 − ρ) sin 2ψ, (17)

then V −1 in (16) is

V −1 = I3 + γ1

(

ξ̃1ξ̃
⊤
1 − ξ̃2ξ̃

⊤
2

)

+ γ2

(

ξ̃1ξ̃
⊤
2 + ξ̃2ξ̃

⊤
1

)

+
{

(γ 2
1 + γ 2

2 + 1)1/2 − 1
} (

ξ̃1ξ̃
⊤
1 + ξ̃2ξ̃

⊤
2

)

. (18)

Henceforth, we will use this parameterisation. For a ran-

dom variable y with ESAG distribution, we will write y ∼

Fig. 1 Samples of 100 observations from some example ESAG

distributions with parameters (clock-wise from top left): μ =

(−1,−2, 2)⊤, γ = (−1, 1)⊤; μ = (−2,−4, 4)⊤, γ = (−1, 1)⊤;

μ = (−2,−4, 4)⊤, γ = (0, 0)⊤; μ = (−2,−4, 4)⊤, γ = (−3, 1)⊤

ESAG(μ, γ ). The rotationally symmetric isotropic angular

Gaussian corresponds to

V = I3 ⇔ γ = (0, 0)⊤ = 0

hence we will write ESAG(μ, 0) ≡ IAG(μ).

Remark 3 (Simulation.) To simulate y ∼ ESAG(μ, γ ), sim-

ulate z ∼ N (μ, V ) where V = V (μ, γ ) is defined in (18)

then set y = z/‖z‖.

Figure 1 shows some examples of samples from the ESAG

distribution for various values of the parameters μ and γ .

Remark 4 (A test for rotational symmetry.) For a sample

of observations y1, . . . , yn assumed independent and iden-

tically distributed, a standard large-sample likelihood ratio

test can be used to test H0 : yi ∼ IAG(μ) vs H1 : yi ∼

ESAG(μ, γ ). Let l̂0 and l̂1 be the values of the maximised

log-likelihoods under H0 and H1, respectively. The mod-

els are nested and differ by two degrees of freedom, and by

Wilks’ theorem, when n is large the statistic T = 2(l̂1 − l̂0)

has approximately a χ2
2 distribution if H0 is true, and H0

is rejected for large values of T . The null distribution can

alternatively be approximated using simulation by the para-

metric bootstrap, that is, by simulating a sample of size n

from the null model H0 at the maximum likelihood estimate

of the parameters, computing the test statistic, T , and then

repeating this a large number, say B, times. The empirical dis-

tribution of the resulting bootstrapped statistics T ∗
1 , . . . , T ∗

B

approximates the null distribution of T .
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Fig. 2 Estimates of the Earth’s historic magnetic pole position; see

Sect. 2.5 for a description of the data. (Left) shows contours of con-

stant probability density for fitted models corresponding to 99, 95 and

50% coverage and (Right) shows 95% confidence regions for the mean

direction calculated as described in Sect. 2.4. ESAG is shown with solid

blue lines and the IAG with black dotted lines

Remark 5 (Parameter orthogonality.) The parameter vectors

μ and γ are orthogonal, in the sense that

Iμ,γ = I⊤
γ,μ = 03,2,

where Iμ,γ = −Eμ,γ

[

∂2 log f1/∂μ∂γ ⊤
]

. Moreover, the

directional and magnitudinal components μ and γ , that is,

‖μ‖, μ/‖μ‖, ‖γ ‖ and γ /‖γ ‖, are all mutually orthogonal.

The proofs follow easily from the symmetries of fESAG and

are omitted.

Often in applications, there is particular interest in the

directional mean, m = μ/‖μ‖. A parametric bootstrap pro-

cedure to construct confidence regions for m, which exploits

both the ease of simulation and the parameter orthogonality,

is as follows.

2.4 Parametric bootstrap confidence regions for

m = µ/‖µ‖

Let l(μ, γ ) denote the log-likelihood for a sample y1, . . . , yn

each of which is assumed to be an independent ESAG(μ, γ )

random variable and define


(μ, γ ) =

(

−
∂2l(μ, γ )

∂μ∂μ⊤

)−1

.

Denote the maximum likelihood estimate of (μ, γ ) by

(μ̂, γ̂ ), let m̂ = μ̂/||μ̂||, 
̂ = 
(μ̂, γ̂ ) and let ξ̂1 and ξ̂2

denote the maximum likelihood estimates of the axes of sym-

metry (15), such that m̂, ξ̂1 and ξ̂2 are mutually orthogonal

unit vectors. Define the matrix ξ̂ = (ξ̂1, ξ̂2)
⊤, then test statis-

tic

T (m) = m⊤ξ̂⊤

(

1

||μ̂||2
ξ̂ 
̂ξ̂⊤

)−1

ξ̂m, (19)

ν
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Fig. 3 A comparison of ESAG and Kent densities with parameters

matched by fitting each distribution to the same dataset; see Sect. 3

for details. (Top) shows a tangent plane projection, in terms of tangent

plane coordinates ν1 and ν2, of contours of constant probability density

for coverage levels 95, 90, 50, 25, 10, 5%. (Centre) and (Bottom) show

transects of the two probability density functions with ν2 = 0 and

ν1 = 0, respectively

is suitable for defining confidence regions for m as
{

m ∈ S
2 : T (m) ≤ c

}

; see Fisher et al. (1996) for discussion

of test statistics of this form in the context of non-parametric

bootstrap procedures. For a given significance level, α, the

constant c can be determined as follows: simulate B boot-

strap samples each of size n from ESAG(μ̂, γ̂ ), and hence

with m = m̂, and for each sample compute the test statis-

123



694 Stat Comput (2018) 28:689–697

tic (19), with ξ̂ , μ̂, 
̂ replaced by corresponding quantities

calculated from the bootstrap sample; then c is the (1 − α)

quantile of the resulting statistics T ∗
1 (m̂), . . . , T ∗

B (m̂). Exam-

ples of confidence regions calculated by this algorithm are

shown in Fig. 2 (right).

2.5 An example: estimates of the historic position of

Earth’s magnetic pole

This dataset contains estimates of the position of the Earth’s

historic magnetic pole calculated from 33 different sites in

Tasmania (Schmidt 1976). The data are shown in Fig. 2 with

contours of fitted IAG and ESAG distributions. The maxi-

mum likelihood estimates of the parameters are respectively

μ̂⊤ = (−2.18, 0.94, 3.06),

and

(μ̂⊤, γ̂ ⊤) = (−2.33, 1.11, 3.34, 0.17,−0.78).

Twice the difference in maximised log-likelihoods equals

14.12, which when referred to a χ2
2 distribution (see Remark

4) corresponds to a p-value of less than 10−3, indicating

strong evidence in favour of ESAG over the IAG.

3 A comparison of ESAG with the Kent

distribution

Figure 3 shows contours and transects of the densities of

ESAG and Kent distributions. The parameter values for each

are computed by fitting the two models to a large sam-

ple of independent and identically distributed data from

ESAG(μ,γ ), with μ = (0, 0, 2.5)⊤ and γ = (0.75, 0)⊤.

For the inner contours ESAG is more anisotropic than the

matched Kent distribution and appears slightly more peaked

at the mean. Besides these small differences, the figure shows

that ESAG and Kent distributions are very similar distribu-

tions in this example, as we have found them to be more

generally. Indeed, preliminary results, not presented here,

suggest that for typical sample sizes it is usually very difficult

to distinguish between them using a statistical criterion. This

warrants making the modelling choice between using the

Kent distribution or the ESAG on grounds of practical conve-

nience. The Kent distribution is a member of the exponential

family, but its density involves a non-closed-form normalis-

ing constant, and simulation requires a rejection algorithm

(Kent et al. 2013). The ESAG distribution has a density that

is less tidy than the Kent density, hence less suited to com-

puting moment estimators, etc., but this is not much of a

drawback given that its density can be computed exactly so

that the exact likelihood can be easily maximised. Moreover,

Table 1 Results of simulation study for fitting the ESAG and Kent

distributions to both ESAG and Kent simulated data

Data: ESAG Data: Kent

μ = (0, 0, 1.18)⊤ Ŵ = I3,

γ = (0.29, 0) κ = 2.16, β = 0.5.

Sim. time (s) 2.1799 28.456

Fit: ESAG

Fit time (s) 1431.8 1493.2

Error (m̂) 0.1127 0.1290

Error (ξ̂1) 0.0988 0.3017

Error (ξ̂2) 0.1248 0.3051

Fit: Kent

Fit time (s) 13896.7 13860.2

Error (m̂) 0.1302 0.1289

Error (ξ̂1) 0.0992 0.2901

Error (ξ̂2) 0.1248 0.2938

Data: ESAG Data: Kent

μ = (0, 0, 2.6)⊤ Ŵ = I3,

γ = (0.53, 0) κ = 7.38, β = 1.34.

Sim. time (s) 3.2818 37.618

Fit: ESAG

Fit time (s) 1867.4 1834.3

Error(m̂) 0.0584 0.0563

Error(ξ̂1) 0.116 0.1487

Error(ξ̂2) 0.122 0.1522

Fit Kent

Fit time (s) 23922.1 24191.5

Error(m̂) 0.0587 0.0562

Error(ξ̂1) 0.1248 0.1339

Error(ξ̂2) 0.1261 0.1379

Data: ESAG Data: Kent

μ = (0, 0, 3.8)⊤ Ŵ = I3,

γ = (1.3, 0) κ = 20.61, β = 8.9.

Sim. time (s) 1.6446 39.4057

Fit: ESAG

Fit time (s) 2222.3 2203.4

Error(m̂) 0.0428 0.0405

Error(ξ̂1) 0.0453 0.0534

Error(ξ̂2) 0.0581 0.0625

Fit: Kent

Fit time (s) 32038.5 31541.3

Error(m̂) 0.0403 0.0415

Error(ξ̂1) 0.0462 0.0522

Error(ξ̂2) 0.0592 0.0624

The results are for three different cases, involving pairs of ESAG and

Kent distributions with parameters “matched” in the sense that the were

fitted to an initial common set of data. For each combination of model

and parameter set, we simulated b = 500 Monte Carlo samples of

n = 100 observations. The measures of error of m̂, ξ̂1 and ξ̂2 are defined

in the text. Simulation times, given in seconds, are cumulative over the

b = 500 Monte Carlo runs
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simulating from ESAG is particularly quick and easy (see

Remark 3).

Table 1 shows the results of a simulation study, including

computational timings, for fitting ESAG and Kent densities

to ESAG and Kent simulated data. To approximate the Kent

normalising constant when fitting the Kent distribution, we

use a saddlepoint approximation method (see Kume et al.

2013), and for simulating from the Kent distribution, we use

the rejection method of Kent et al. (2013). A notion of accu-

racy of the fitted model is how well the mean direction of

the fitted model, m̂, corresponds with the population mean

direction, m. A measure we use for this is

√

2{(1 − E(m̂⊤m)}, (20)

with the expectation approximated by Monte Carlo; hence in

the tables, we report

Error(m̂) =

√

√

√

√2

{

1 − b−1

b
∑

i=1

(

m̂⊤
(i)m

)

}

where m̂(i) is the mean direction of the fitted model for the

i th run out of b Monte Carlo runs. We also consider accuracy

of the major and minor axes of the fitted model. Since the

signs of ξ̂1 and ξ̂2 are arbitrary, in this case we define

Error(ξ̂1) =

√

√

√

√2

{

1 − b−1

b
∑

i=1

∣

∣

∣
ξ̂⊤

1(i)
ξ1

∣

∣

∣

}

,

and similar for ξ̂2.

Note that in interpreting the results in Table 1, the differ-

ent simulation times of ESAG and Kent should be compared

across columns, whereas the fitting times and accuracies

should be compared across rows.

The results show, as expected, that the accuracy of m̂, ξ̂1,

and ξ̂2 is typically better when the data-generating model is

fitted. However, the accuracy is not dramatically worse when

the non-data-generating model is fitted, i.e., when ESAG is

fitted to Kent data, or the Kent distribution is fitted to ESAG

data. There is a very notable difference in computation times

between ESAG and Kent: for both simulation and fitting,

ESAG is typically more than an order of magnitude faster

than Kent.

4 Conclusion

In the pre-computer days of statistical modelling, the Fisher–

Bingham family was perhaps favoured over the angular

Gaussian family on account of having a simpler density,

which makes it more amenable to constructing classical esti-

mators such as moment estimators. However, in the era of

computational statistics, the less simple form of the angu-

lar Gaussian density is hardly a barrier and is more than

compensated by having a normalising constant that is trivial

to evaluate. The likelihood can consequently be computed

quickly and exactly, and maximised directly. Wang and

Gelfand (2013) have recently argued in favour of the gen-

eral angular Gaussian distribution as a model for Bayesian

analysis of circular data. For spherical data, a major obstacle

to using the general angular Gaussian distribution is that its

parameters are poorly identified by the data. The ESAG sub-

family overcomes this problem, and is a direct analogy of the

Kent subfamily of the general Fisher–Bingham distribution.

Besides having a tractable likelihood, the ease and speed with

which ESAG can be simulated makes it especially well suited

to methods of simulation-based inference. Natural wider

applications of ESAG include using it as an error distribution

for spherical regression models with anisotropic errors; for

classification on the sphere (as a model for class-conditional

densities); and for clustering spherical data (based on ESAG

mixture models). Code written in MATLAB for performing

calculations in this paper is available at the second author’s

web page.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

A Proofs

A.1 Properties of the function Md(α)

Integrating (3) by parts, we obtain

Md−1(α) =
[

d−1udφ(u − α)
]∞

u=0

+ d−1

∫ ∞

0

ud(u − α)φ(u − α)du

= d−1Md+1(α) − d−1αMd(α),

which implies that

Md+1(α) = αMd(α) + dMd−1(α). (21)

Moreover, differentiating (3) with respect to α, and exchang-

ing the order of differentiation and integration on the RHS,

we obtain

M′
d(α) = Md+1 − αMd(α), (22)
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where a prime denotes differentiation; and, using (21) and

(22) together, it is found that

M′
d(α) = dMd−1(α). (23)

Further points to note, which are easily established by induc-

tion, are that we can write

Md(α) = Pd(α)�(d)(α) + Qd(α)φ(α),

where Pd(α) is a polynomial of order d and Qd is a polyno-

mial of order d − 1; and Pd(α) inherits the properties (21)

and (23) of Md(α), while Qd(α) inherits (21) but not (23);

instead of (23), we have Q′
d(α) = Qd+1(α) − Pd(α). One

relevant property of Pd(α) is that the coefficient of its lead-

ing term αd is 1; this follows from either (21) or (23) applied

repeatedly to Pd(α). As an easy consequence, we obtain a

result that is used below: for any fixed integer d ≥ 0,

Md(α) ∼ αd as α → ∞. (24)

A.2 Proof of Proposition 1

From (8) it follows that 1/ρd−1 ≤ 1/ρ j for j = 1, . . . , d−2.

As a consequence, we can restrict attention to y of the form

y = (0, . . . , u, (1 − u2)1/2) where u is in a neighbourhood

of 0. Substituting this form of y into (7) and differentiating,

it is seen that

∂ log f1

∂u
(u)

∣

∣

∣

∣

u=0

= 0,

and, using (22), it is found that

∂2 log f1

∂u2
(u)

∣

∣

∣

∣

u=0

= δd − α2 + α2δ

+ (d − 1)(δ − 1)αMd−2(α)/Md−1(α),

(25)

where δ = (ρd−1 − 1)/ρd−1. The point u = 0, which cor-

responds to y = ξd , is a maximum or minimum depending

on whether (25) is negative or positive and, using this fact,

Proposition 2.1 follows after some elementary further manip-

ulations. ⊓⊔

A.3 Proof of Proposition 2

First, consider the exponent in (7). Using (9) it follows after

some elementary calculations that

1

2

[

(

y⊤μ
)2

yV −1 y
− μ⊤μ

]

= −
1

2
α2

∑d−1
j=1 y2

j /ρ j

1 +
∑d−1

j=1 y2
j /ρ j

. (26)

Now define u j = αy j , j = 1, . . . , d − 1 and suppose

that α → ∞ while the u j remain fixed. Then, since
∑d

j=1

(

y⊤ξ j

)2
= 1, it follows that as α → ∞, y → 1.

Consequently as the ρ j are remaining fixed, it is easy to see

that

y⊤V −1 y → 1. (27)

Moreover, from (12) it follows that y⊤μ ∼ α and therefore,

from (24),

Md−1

{

y⊤μ/
(

y⊤V −1 y
)1/2

}

∼ αd−1. (28)

Letting α → ∞ and substituting (26), (27) and (28) into (7)

we obtain pointwise convergence to the (d −1)-dimensional

multivariate Gaussian density φd−1(u|0d−1,	) multiplied

by a factor αd−1; this factor is the Jacobian of the transfor-

mation from (y1, . . . , yd−1)
⊤ to (u1, . . . , ud−1)

⊤. ⊓⊔

A.4 Proof of Lemma 1

Using the standard trigonometric results cos2 ψ = (1 +

cos 2ψ)/2 and sin2 ψ = (1 − cos 2ψ)/2, and making use

of the fact that ξ̃1ξ̃
⊤
1 + ξ̃2ξ̃

⊤
2 + ξ3ξ

⊤
3 = I3 because ξ̃1, ξ̃2 and

ξ3 are mutually orthogonal unit vectors, (16) becomes

V −1 = I3 + 1
2
(ρ−1 − ρ) cos 2ψ

(

ξ̃1ξ̃
⊤
1 − ξ̃2ξ̃

⊤
2

)

+ 1
2
(ρ−1 − ρ) sin 2ψ

(

ξ̃1ξ̃
⊤
2 + ξ̃2ξ̃

⊤
1

)

+ 1
2
(ρ−1 + ρ − 2)

(

ξ̃1ξ̃
⊤
1 + ξ̃2ξ̃

⊤
2

)

(29)

From (17), (γ 2
1 + γ 2

2 )1/2 = (ρ−1 − ρ)/2, and we may solve

for ρ to obtain ρ = (1 + γ 2
1 + γ 2

2 )1/2 − (γ 2
1 + γ 2

2 )1/2, and

with some elementary further calculation we see that

(ρ−1 + ρ − 2)/2 = (1 + γ 2
1 + γ 2

2 )1/2 − 1. (30)

Finally, substituting (17) and (30) into (29), we obtain (18).
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