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S U M M A R Y
We examine the magnetotelluric (MT) impedance tensor from the viewpoint of polarization
states of the electric and magnetic field. In the presence of a regional 2-D conductivity anomaly,
a linearly polarized homogeneous external magnetic field will generally produce secondary
electromagnetic fields, which are elliptically polarized. If and only if the primary magnetic field
vector oscillates parallel or perpendicular to the 2-D structure, will the horizontal components
of the secondary fields at any point of the surface also be linearly polarized. When small-
scale inhomogeneities galvanically distort the electric field at the surface, only field rotations
and amplifications are observed, while the ellipticity remains unchanged. Thus, the regional
strike direction can be identified from vanishing ellipticities of electric and magnetic fields
even in presence of distortion. In practice, the MT impedance tensor is analysed rather than
the fields themselves. It turns out, that a pair of linearly polarized magnetic and electric
fields produces linearly polarized columns of the impedance tensor. As the linearly polarized
electric field components generally do not constitute an orthogonal basis, the telluric vectors,
i.e. the columns of the impedance tensor, will be non-orthogonal. Their linear polarization,
however, is manifested in a common phase for the elements of each column of the tensor and
is a well-known indication of galvanic distortion. In order to solve the distortion problem,
the telluric vectors are fully parametrized in terms of ellipses and subsequently rotated to
the coordinate system in which their ellipticities are minimized. If the minimal ellipticities are
close to zero, the existence of a (locally distorted) regional 2-D conductivity anomaly may be
assumed. Otherwise, the tensor suggests the presence of a strong 3-D conductivity distribution.
In the latter case, a coordinate system is often found, in which three elements have a strong
amplitude, while the amplitude of the forth, which is one of the main-diagonal elements, is
small. In terms of our ellipse parametrization, this means, that one of the ellipticities of the two
telluric vectors approximately vanishes, while the other one may not be neglected as a result
of the 3-D response. The reason for this particular characteristic is found in an approximate
relation between the polarization state of the telluric vector with vanishing ellipticity and the
corresponding horizontal electric field vector in the presence of a shallow conductive structure,
across which the perpendicular and tangential components of the electric field obey different
boundary conditions.

Key words: 3-D effects, decomposition, galvanic distortion, magnetotelluric impedance ten-
sor, polarization state.

1 I N T RO D U C T I O N

In magnetotellurics, the impedance tensor Z, linking the horizontal
components of electric and magnetic fields E and B in the frequency
domain, reflects the conductivity distribution in some volume below
the measurement point. Prior to inverting for a conductivity model,
an analysis of the estimated impedance tensor is necessary in order
to understand the basic electrical properties of the earth in the area of
investigation. A successful analysis prevents misinterpretation of the
data with inadequate model assumptions, which underly every type

of inversion. The analysis is often trivial in the case of a 1-D and 2-D
earth, but when 3-D effects are evident in data, the interpreter must
decide whether a 2-D model assumption will be suitable to invert
such 3-D data. Such a decision may be based upon the number of
degrees of freedom inherent in the impedance tensor, reaching a
maximum of eight in the general 3-D case, five in the strict 2-D case
and two in the 1-D case.

Magnetotelluric (MT) impedance tensor analysis schemes may be
classified into mathematical decompositions and physical decom-
positions following Groom & Bahr (1992). Among the physical
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decompositions, the galvanic distortion model, assuming a (re-
gional) 2-D structure (five degrees of freedom) and a (local) distor-
tion introducing another one or two degrees of freedom, is widely
used. Such distortion models are based on the assumption, that
the measured electric field is affected by local small-scale inhomo-
geneities, giving rise to frequency-independent field amplifications
(which cannot be resolved) and rotations (one or two additional de-
grees of freedom, depending upon the geometry of the inhomogene-
ity) while leaving the magnetic field unchanged (see e.g. Bahr 1988;
Groom & Bailey 1989; Smith 1995). Therefore, the distortion model
is a quasi-static model, assuming the distorter produces no inductive
effects.

Alternatively to the galvanic distortion model, a mathematical
decomposition is often used by MT practitioners in order to resolve
characteristic properties of a 3-D impedance tensor: LaTorraca et al.
(1986), hereafter referred to as LaTo, introduced a modified sin-
gular value decomposition (SVD), which is reformulated in terms
of the canonical decomposition in Yee & Paulson (1987). These
mathematical decompositions are attractive, because the tensor is
fully parametrized with eight parameters and no a priori assump-
tions are required. Therefore, in contrast to the distortion analy-
sis, the SVD never fails (at least theoretically). On the other hand,
it may be considered a drawback of the method that it is not di-
rectly related to any simplifying model, such as a locally distorted
regional 2-D structure. In practice, the SVD cannot recover the
general distortion model with seven degrees of freedom. This is
a consequence of the orthogonality restriction, which is pairwise
imposed on the singular vectors, i.e. the principal components of
the local electric and magnetic field. In case of six degrees of free-
dom, however, the SVD yields the same results as the distortion
analysis.

We introduce an alternative physical parametrization, which com-
bines the SVD approach and the distortion analysis. In contrast to
the SVD, we permit a non-orthogonal basis for the electric polar-
ization states, which is required to adequately account for a general
type of galvanic distortion. When such a distortion model fits the
data, one or two of the parameters automatically vanish in the re-
gional coordinate system, while the other parameters are directly
related to the regional impedances and local distortion parameters.
It is shown, that the regional coordinate system is identified from
vanishing ellipticities of the columns of the impedance tensor, i.e.
the telluric vectors. Based upon our parametrization, an algorithm
for simultaneously analysing data at different stations and periods is
proposed. Its implementation is very simple and yields stable results.
In contrast to standard single site galvanic distortion analyses or the
multisite version of McNeice & Jones (2001), we search directly
for the regional coordinate system by minimizing the ellipticities of
the telluric vectors instead of fitting the distortion model to data. In
regional coordinates, the distortion parameters including their error
bars are then analytically determined.

If the impedance tensor represents a strong 3-D structure with
3-D inductive effects, our analysis does not fail, however the result
may no longer be interpreted in terms of galvanic distortion. In this
case, one or both of the telluric vectors are elliptically polarized in
any coordinate system. If one of the telluric vectors is found to be
linearly polarized at a broad range of periods for one rotation angle,
it may physically be connected to a linear polarization state of an
electric field. Depending on the position with respect to a shallow
conductor, this electric field is then either related to a magnetic
source field polarized tangential or perpendicular to the conductor.
We observe such cases in our synthetic model studies as well as in
our field data.

2 T H E O RY

We start our analysis by briefly revisiting the galvanic distortion
model and its relation to the SVD. The ellipticity parametrization of
the impedance tensor, which is the goal of this derivation, is then a
straightforward task.

2.1 Galvanic distortion

Following Smith (1995), we assume that the measured local electric
field El deviates from a regional electric Er field as a result of local
galvanic distortion according to the model El = DEr, where D is
a real and frequency-independent electric distortion matrix. In ab-
sence of distortion, D is the identity matrix. Bahr’s parametrization
(Bahr 1988)

D =
[

gx

(
cos βx

sin βx

)
gy

( − sin βy

cos βy

) ]
(1)

has a very intuitive meaning: here, the gain factors gx and gy are
the (static) shifts, amplifying the regional electric fields in the x and
the y directions, respectively. The real quantities β x and β y are the
clockwise rotation angles of the regional x- and y-field components.
The measured (distorted) electric fields give rise to a distorted MT
impedance estimate Zl, which is related to the undistorted regional
impedance Zr as

Zl = DZr. (2)

In general, none of the distortion parameters nor the elements of
the regional impedance tensor can be deduced from eq. (2) without
further assumptions. Therefore, assuming Zr represents the response
of a regional 2-D structure, eq. (2) reads in regional coordinates as

Zl =
[

cos βx − sin βy

sin βx cos βy

] [
0 gy Z r

xy

gx Z r
yx 0

]
. (3)

In measurement coordinates (rotated clockwise with respect to re-
gional coordinates), eq. (3) reads as

Zl′ = RDZrRT, (4)

where R is a clockwise rotation matrix, the superscript T denotes
matrix transpose and the prime denotes the rotated matrix. From
eq. (3), it is seen, that in and only in regional coordinates do the
elements of each column of Zl′ have a common phase. This criterion
is employed to detect the regional coordinate system, in which the
regional impedance tensor and the distortion matrix are uniquely
separated aside from the gain factors gx and gy.

Distortion analysis has become a standard tool of MT tensor anal-
ysis and is applied to determine an appropriate rotation angle for
2-D data analysis and occasionally to separate distortion from the
regional signature. Successful examples of galvanic distortion anal-
ysis have been reported by many authors, of which a list can be
found in McNeice & Jones (2001). Sometimes, however, distortion
analysis does not provide a consistent picture. This is the case in the
presence of strong 3-D inductive effects.

2.2 Singular value decomposition

The SVD (LaTo) of the 2 × 2–matrix Z yields two pairs of normal-
ized complex right- and left-singular vectors hi and ei, respectively,
where i = 1, 2. Each pair forms an orthonormal basis in the sense

h∗
i · h j = δi j ,

e∗
i · e j = δi j ,

(5)
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such that

Zhi = ri ei ,

Z̃ei = ri hi ,
(6)

where the superscript ∗ denotes complex conjugate, Z̃ is the hermi-
tian transpose of Z, r 1 ≥ r 2 ≥ 0 are the real singular values and
δ ij is the Kronecker delta. With the ellipse representation of a com-
plex two-component vector described in Appendix A, the singular
vectors can be uniquely rewritten in terms of ellipse parameters as

v = eiζ (aâ + i ĉc) , (7)

with real major and minor axes a and c pointing into the directions of
the unit vectors â and ĉ, respectively, where ĉ = ẑ× â, and an initial
phase ζ . Note, that our ellipse definition slightly deviates from that
of LaTo. As shown in Appendix B, using eq. (7) leads immediately
to the complex characteristic values µi, the modified singular values
suggested by LaTo, which may physically be interpreted in terms of
electromagnetic impedances.

The orthogonality (eq. 5) of the singular vectors (hi, hj) or (ei,
ej) is an important constraint on the analysis. It is given in terms of
the ellipse parametrization (eq. 7) by

ei(ζi −ζ j ) [ai âi − icî ci ] · [a j â j + ic ĵ c j ] = δi j , (8)

which states the normalization

a2
i + c2

i = 1 (9)

for i = j and the orthogonality

âi · â j = 0, ĉi · ĉ j = 0(i �= j) (10)

of the ellipse axes except for circular polarization. Because âi · ĉi =
0, it follows from the condition of eq. (10), that âi · ĉ j = ±1, which
can only be true from eq. (8) if the ellipticities |ε i | = |ci/ai| are the
same for i and j. Thus, non-orthogonal linear polarization states of
some principal electric and/or magnetic field vectors are represented
in orthogonal but elliptical polarization states. Therefore, the SVD
of LaTo is not suitable to describe the situation of galvanic distortion
of regional 2-D fields as defined in the expressions of eqs (3) and
(4), where the distorted electric field components constitute an non-
orthogonal basis.

The modified SVD parametrization of the impedance tensor reads
in matrix notation as

Z = UeMŨh, (11)

where the columns of the unitary matrices Ue and Uh are phase
modified singular vectors eie−iζe,i and hie−iζh,i , respectively, and
M = diag(µ1,µ2).

Theses characteristic impedances µi as well as the direction of
singular vectors are supposed to give a better insight into the 3-D
conductivity distribution than the impedance tensor itself (LaTo).
However, the method was not designed with the background of a
particular physical model as for instance the distortion model in
eq. (2) is. It is therefore not surprising that the modified SVD of a
galvanically distorted 2-D impedance of the form of eq. (3) generally
does not yield the regional impedances nor the distortion parameters,
nor the regional strike direction, as reported for instance in Groom
& Bailey (1991). The reason is given in terms of the orthogonal-
ity imposed on the singular vectors, while the distorted horizontal
components of the regional electric field are at most incidentally
orthogonal in the regional coordinate system. There are however
some indications deducible from the outcome of the SVD, which
point towards the existence of a (distorted) regional 2-D structure.

They have partly been reported in Groom & Bailey (1991) and are
summarized and proven in Appendix C.

In the following section, we will introduce an alternative ap-
proach, which is related to the modified SVD, because it relies on
principal vectors, but their orthogonality is removed. By doing so,
the general case of galvanic distortion is also covered.

2.3 The ellipticity of telluric vectors

Let us assume for simplicity that according to eq. (7) the local
horizontal magnetic field

B = eiζB aB âB (12)

is linearly polarized with phase ζ B, amplitude aB and direction âB .
The horizontal electric field E = ZB is in general elliptically polar-
ized and represented in the form

E = eiζE (aE âE + icE ĉE ) . (13)

Further assume a coordinate system, in which the magnetic field B1

is given with direction âB,1 = (1, 0)T and the corresponding elec-
tric field E1 = ZB1 with âE,1 = (cos αE,1, sin αE,1)T and ĉE,1 =
(− sin αE,1, cos αE,1)T . Combining eqs (12) and (13) with the
impedance relation yields, after rearrangement for the column
vector ex = (Zxx, Zyx)T ,

ex = eiζx (ax âE,1 + icx ĉE,1) , (14)

where ax = a E,1/a B,1, cx = c E,1/a B,1, ζ x = ζ E,1 − ζ B,1. The same
parametrization applies to ey = (Zxy, Zyy)T for the magnetic field B2

with direction âB,2 = (0, 1)T and the electric field E2 with âE,2 =
(cos αE,2, sin αE,2)T and ĉE,2 = (− sin αE,2, cos αE,2)T yielding

ey = eiζy (ay âE,2 + icŷcE,2), (15)

where ay = a E,2/a B,2, cy = c E,2/a B,2, ζ y = ζ E,2 − ζ B,2. Following
Bahr (1988), the columns of Z are referred to as telluric vectors. They
obey the same polarization state as the input electric fields E1 and
E2, i.e. they are orientated in the same direction and have the same
ellipticity. Thus, the ellipse representation of electric and magnetic
fields yields a parametrization of the impedance tensor in terms of
elliptically polarized telluric vectors ei. Observe, that the normalized
versions of B1 and B2 satisfy the orthogonality criterion (eq. 5),
while E1 and E2 are not orthogonal. Expanding the expressions of
eqs (14) and (15) for Z and substituting for notational simplicity
α x = α E,1 and α y = α E,2 yields

Z =
[

cos αy cos αx

sin αy sin αx

] [
0 ayeiζy

ax eiζx 0

]
+

[
−i sin αy −i sin αx

i cos αy i cos αx

] [
0 cyeiζy

cx eiζx 0

]
.

(16)

Introducing the ellipticity ε i = ci/ai, eq. (16) maybe rewritten as

Z = CZr, (17)

where

C =
[

cos αy cos αx

sin αy sin αx

]
+ i

[
−εy sin αy −εx sin αx

εy cos αy εx cos αx

]
and

Zr =
[

0 ayeiζy

ax eiζx 0

]
.
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Thus, the impedance tensor Z can be represented by an antidiago-
nal characteristic impedance tensor Zr and a complex-valued matrix
C, describing the polarization characteristics.

The decomposition (eq. 17) of the impedance tensor is a full
parametrization requiring eight degrees of freedom. Using ellipti-
cally polarized magnetic and electric fields at the same time yields
indistinguishable parametrizations but with the loss of their simple
interpretability in terms of field polarization ellipses. The parame-
ters in the expression of eq. (17) will rather be an algebraic mixture
of the fields of both polarizations, as will be shown in Section 2.3.2.

2.3.1 Galvanic distortion model

Because the parametrization of eq. (17) covers all possible degrees
of freedom in the given coordinate system, any rotation into an-
other coordinate system, where the rotation angle is an additional
parameter, introduces a dependency. Thus, two rotation angles δx

and δy must exist, where one of the ellipticities ε x and ε y vanishes.
If, in addition, δx = δy, the number of degrees of freedom of the
tensor drops to seven. In this case, the second addend of C in eq.
(17) vanishes and C becomes real. This states, with the review of
eqs (14) and (15), that the telluric vectors are linearly polarized
while no restrictions are imposed on αx and αy, i.e. the directions
of the (now linearly) polarized electric field.

Physically, vanishing ellipticities of both telluric vectors in the
same coordinate system may be interpreted in terms of linear po-
larization states of pairs of electric and magnetic fields, as can be
deduced from eq. (16) with cx,y = 0. Such polarization states, if
occurring independent of period, may only be observed in the pres-
ence of a 1-D earth or a 2-D conductivity distribution, where in the
latter case the fields must be oscillating in the principal directions
of the 2-D structure. Otherwise, or in the presence of a (strong) 3-D
distribution, the electromagnetic fields will generally be elliptically
polarized. Galvanic distortion of the electric fields as a result of small
inhomogeneities does not change their polarization states, but may
alter their directions of oscillation. Therefore, αx,y do only coincide
with the coordinate axes in the absence of galvanic distortion.

By comparison of the parametrizations of eqs (3) and (17) with
ε i = 0,

gx Z r
yx = ax eiζx , gy Z r

xy = ayeiζy (18)

are identified as the regional impedances and

αx = βy + π

2
, αy = βx (19)

are related to the distortion angles.
Therefore, we conclude, that if a coordinate system exists, in

which the ellipticities of the telluric vectors ex and ey vanish, i.e.
ε x = ε y = 0 for δ x = δ y , then the galvanic distortion model is
satisfied, the underlying magnetic states are linear and orthogonal,
and the electric states are linear but not necessarily orthogonal. This
opens a strategy for seeking the regional coordinate system, which
is formulated in Section 2.4 in terms of an optimization problem.

If no such coordinate system exists, the tensor represents a strong
3-D structure with eight degrees of freedom. Though the impedances
in the representation of eq. (17) can be considered as some type of
characteristic impedances following LaTo, we can not connect them
to a physical model simpler than a 3-D model. Occasionally, the el-
lipse parameters might give better insight into the nature of the
3-D problem than the pure impedance elements (apparent resistiv-
ities and phase) do. Such a case is discussed in Section 2.3.2 and
illustrated in Section 3.2.2.

2.3.2 3-D effects

As we mentioned in the previous section, there always exists one
rotation angle for each period, for which one of the ellipticities ε x

or ε y must vanish. This rotation angle has not necessarily a physical
relevance in terms of the polarization states of the horizontal elec-
tromagnetic field components, because it may be determined for any
combination of elliptically polarized electric and magnetic fields.

However, as a result of different boundary conditions for the per-
pendicular and tangential components of the electric field at lateral
contrasts, the polarization state of one of the telluric vectors will
often be dominated by the corresponding horizontal electric field.
This can be shown as follows. Assume two orthogonal normal mag-
netic fields B1,n = Bn x̂ and B2,n = Bn ŷ, oscillating collinear with
the coordinate axes. The total magnetic fields are then given by
B1,2 = B1,2,n + B1,2,a , where Ba denotes the anomalous fields, and
are connected to the electric fields via the local impedance Z as
E1,2 = ZB1,2. Following for example Zonge & Hughes (1991), the
first column of the impedance tensor, i.e. the telluric vector ex, is
given by

ex = E1cBy,2 − E2cBy,1, (20)

where c = B x1 B y2 − B x2 B y1 may be regarded as a complex con-
stant. Each of the electric field vectors may be rewritten in terms of
the ellipse parametrization of eq. (13) yielding

ex = caE,1 By,2̃eE,1 − cae,2 By,1̃eE,2, (21)

where ẽE,1,2 are the electric field ellipses normalized by their major
axes aE,1,2, i.e. by the amplitude of the electric field vector. A similar
parametrization applies to ey:

ey = −caE,1 Bx,2̃eE,1 + cae,2 Bx,1̃eE,2. (22)

Thus, the telluric vector ex(ey) is generally the superposition of the
normalized electric fields scaled by their amplitudes aE and the am-
plitude of the magnetic field components in y direction (x direction).
In the 2-D case (including galvanic distortion), eqs (21) and (22)
reduce to eqs (14) and (15) with cx,y = 0, respectively, because By,1

and Bx,2 vanish identically in a coordinate system aligned with the
strike direction.

Let us now consider a 3-D conductivity distribution with a con-
ductive surface anomaly and let the x-axis be tangential to the shal-
low conductivity contrast. Then, the fields B1, E1 may be consid-
ered as local B-polarization (i.e. the normal part of E1 is orientated
normal to the contrast), while B2, E2 are in local E-polarization
(normal part of E2 tangential to the contrast). In the vicinity of the
lateral contrast, but on the resistive side, the electric field in local
B-polarization (more precisely, the component normal to the con-
trast) is amplified as a result of the galvanic-like charge accumulation
at the discontinuity, while the electric field in local E-polarization is
attenuated. Hence, a E,1 > a E,2. Moreover, |B y,2| = |Bn + B a,y,2| >
|B y,1| = |B a,y,1|, because the anomalous magnetic field is usually
smaller than the normal magnetic field. Combining the two inequali-
ties yields for many cases a domination of the corresponding telluric
vector by the local B-polarization electric field on the resistive side
of the conductivity contrast (even in the presence of 3-D effects) as
a result of |a E,1 B y,2| � |a E,2 B y,1|, i.e.

ex � caE,1 By,2̃eE,1. (23)

On the other hand, |B x,1| = |Bn + B a,x,1| > |B x,2| = |B a,x,2|, which
means that in review of eq. (22) the contribution of the strong local
B-polarization electric field E1 to the telluric vector ey is scaled
down (but may not be neglected in the 3-D case), while the weaker
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local E-polarization electric field E2 becomes more important. Thus,
an approximate interpretation of ey in terms of the polarization of
the electric field is, in this coordinate system, not possible. It will
rather reflect the 3-D response.

On the conductive side of the contrast, the situation is different.
Here, the local B-polarization electric field is strongly attenuated as
a result of the charge accumulation. Thus, a E,1 < a E,2, which gives
in conjunction with the inequalities for the magnetic field that

ey � −caE,2 Bx,1ẽE,2. (24)

For ex no simplifying approximation applies.
Therefore, we conclude, that in the given coordinate system, one

of the telluric vectors (ex on the resistive side and ey on the conduc-
tive side) basically represents the polarization state of one electric
field vector (E1 and E2, respectively).

Assume now further, that for some reason these electric fields
are predominantly linearly polarized and aligned with the coordi-
nate axes, i.e. that E1 � En ŷ + Ey,1,a ŷ on the resistive side and
E2 � En x̂ + Ex,2,a ŷ on the conductive side, which is in agreement
with the previous approximations. This has the consequence that,
on the resistive side of the shallow anomaly, the amplitude of Zxx is
small and those of Zxy, Zyx and Zyy can be strong, while on the con-
ductive side, the amplitude of Zyy is small and those of Zxx, Zxy and
Zyx can be strong. Thus, an explanation could be given for the obser-
vation that in a particular coordinate system, i.e. the local coordinate
system, the tensor is often composed of three large elements and one
small element. If, additionally, galvanic distortion is present, all four
elements might be large, but the ellipticity of the linearly polarized
telluric vector remains unchanged, i.e. linear, as can be easily seen
from eq. (2) with either Z r

xx = 0 or Z r
yy = 0.

The validity of the approximations given here may not be gener-
alized, but depends on the particular conductivity model. However,
in the later discussed synthetic example 2, we recover the above
described properties of the impedance tensor and we are also aware
of many field data showing such a behaviour.

2.4 Minimization of ellipticities by rotation

We have shown in Section 2.3.1 that a solution to the galvanic dis-
tortion problem can be obtained in terms of vanishing ellipticities
of the telluric vectors. For a numerical treatment, the optimization
problem is formulated as follows. Find the coordinate system δ, in
which the ellipticities of the telluric vectors are minimal. Thus,

F(R(δ)ZR(δ)−1) = min!, (25)

where F(δ) is a function yielding the sum of squared ellipticities
ε2

i (ei) in the rotated coordinate system, e.g.

F(δ) =
2∑

i=1

ε2
i (ei ). (26)

The ellipticities are analytically calculated with formulae in eq. (A7)
(Appendix A) from rotated impedances. In the case of real data, the
derived ellipticities contain errors and a weighting is required when
simultaneously considering both vectors. Letting σ εi be the standard
deviation of ε i(ei), the optimization problem is weighted according
to

F(δ) =
2∑

i=1

(
ε2

i (ei )
/
σ 2

εi

)
. (27)

In order to stabilize the problem, one might want to include several
periods p = 1, . . . , P and sites k = 1, . . . , K as suggested by

McNeice & Jones (2001). This is easily accomplished by expanding
the expression of eq. (27) to

F(δ) =
K∑

k=1

P∑
p=1

2∑
i=1

(
ε2

i,k,p(ei,k,p)
/
σ 2

εi,k,p

)
. (28)

As F(δ) is a scalar function dependent on only one variable, mini-
mization is quite simple. Here we use a combination of golden sec-
tion search and parabolic interpolation, an algorithm, found in many
mathematical computer packages (e.g. MATLAB). Alternatively, fol-
lowing Zhang et al. (1987) one can rotate stepwise through the
interval 0 < δ ≤ π/2, determining the strike angle as the angle that
yields a minimum F(δ).

Having found an appropriate rotation angle δ, all parameters (ax,
ay, cx, cy, ζ x , ζ y , α x , α y) for each site and period may be derived
analytically from the rotated impedance tensor Zl. Moreover, the
associated error bars are calculated by linear error propagation using
the equations of Appendix A. For ideal regional 2-D data, all ci =
0, but in practice this will not hold true when a broad period band
and site range are simultaneously minimized.

The local strike direction, introduced in Section 2.3.2, may be
determined by minimizing the ellipticity of only one telluric vector,
say ey for a number of periods simultaneously. It does not make
sense to permit for a multiple site analysis, because the local strike
may change form site to site. Therefore, we define the solution δy of

F(δ) =
P∑

p=1

(
ε2

y,p

/
σ 2

εy,p

) = min!, (29)

as the local strike. Note, that in contrast to the regional strike direc-
tion, δy has an ambiguity of 180◦.

3 S Y N T H E T I C E X A M P L E S

3.1 Example 1: galvanic distortion analysis

To illustrate the performance of the optimization routine proposed
above, we consider a synthetic data example with defined statisti-
cal parameters. Here, we take a 2-D regional apparent resistivity
tensor with strike direction δ = 0◦ and off-diagonal apparent resis-
tivities and phases ρ xy = 300 	m, ρ yx = 150 	 m, φ xy = 30◦ and
φ xy = 41◦, respectively. From these data, 31 regional impedance
tensors have been constructed for the period range from 0.001–
100 s. Galvanic distortion of the impedances is generated using
eq. (3) with gx = gy = 1, β x = 23◦ and β y = −27◦. To produce
noisy realizations, gaussian noise with a standard deviation of 5 per
cent of the largest impedance magnitude and modified with a ran-
dom phase between 0◦ and 360◦ was added to the distorted tensor
at each period. These data, shown in Fig. 1(a), are comparable to
those from the first example of McNeice & Jones (2001), because
the ratio of apparent resistivities, the phases, distortion parameters
and noise level are similar. However, in contrast to McNeice & Jones
(2001), we take into account the period dependence inherent in the
impedances, which should cancel out in the ellipticties of the telluric
vectors.

Minimizing eq. (28) yields a regional strike direction δo = −0.3◦,
which is close to the true strike. Here, the superscript o denotes the
optimal estimates. In this coordinate system, ellipticities and distor-
tion angles have been calculated with the formulae in eqs (A8) and
(A10) and their associated standard deviations from the variances
given in Appendix A3 and A4. They are depicted in Fig. 1. Open
circles and triangles correspond to parameters derived from the first
(ex) and second column (ey) of the tensor, respectively. Dash-dotted
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Figure 1. Example 1. (a) Thirty-one noisy and distorted realizations of
apparent resistivities and phases for testing the performance of the mini-
mization routine. The distortion matrix is constructed with distortion an-
gles β x = 23◦ and β y = −27◦ and unity gain factors. (b) Ellipticities ε x

and ε x and related directions of major axes αx and αy determined from
joint optimization of 31 periods. Symbols indicate individual estimates in
the regional coordinate system, dash-dotted lines denote their weighted
means.

lines in Fig. 1 indicate the weighted means of the related parame-
ter distributions. A quality criterion of the optimization is given in
terms of weighted mean ellipticities and the standard deviation of
the individual estimates from their mean.

For this example, εo
x (ex ) = −0.01 ± 0.03 and εo

y(ey) = 0.00 ±
0.02, indicating a correct determination of the regional coordinate
system. Distortion angles are constant with respect to frequency and
recovered with mean values αo

x − 90◦ = −27.3 ± 1.7◦ and αo
y =

22.8±1.5◦, close to the true values ofβ y andβ x. Major axes ao
x and ao

y

of the telluric vectors are related to the regional apparent resistivities
ρo

yx and ρo
xy, and their phases φo

yx and φo
xy are given by the initial

phases ζ o
x and ζ o

y , respectively. Their mean values are recovered
to ρo

xy = 300.1 ± 13.6 	m, ρo
yx = 152.9 ± 9.3 	m and φ

o
xy =

29.9 ± 1.2◦, φ
o
yx = 42.0 ± 1.8◦, which is again close to the true

values. Note, that the standard deviation of the individual estimates
is of the order of the noise level added to the data previously. This
verifies that the propagation of errors does not introduce severe bias
in error levels.

Alternatively, the regional impedances may be obtained from in-
version of eq. (3), if the distortion parameters are determined. Here,
we used the mean of the distortion angles αo

x − 90◦ and αo
y in order

to construct the inverse of the distortion matrix D−1 and derived
an estimate of the regional impedance in rotated coordinates with
Zr = D−1 Z. This leads to regional apparent resistivities and phases
ρo

xy = 292.2±18.5 	m, ρo
yx = 154.7±15.6 	m, φ

o
xy = 30.3±1.9◦

and φ
o
yx = 41.6 ± 2.9◦, respectively. These results are slightly less

accurate than those obtained from the ellipse parameters. We do not
generalize this, because the generation of synthetic noise and error
bars might not meet real conditions exactly. Furthermore, real data
are never exactly 2-D such that the main-diagonal elements of the
impedance tensor vanish exactly as assumed when interpreting the
ellipse major axes as regional impedance magnitudes. Nevertheless,
this somewhat unrealistic example demonstrates that our algorithm
produces statistically reasonable and reproducible results with an
accuracy similar to that reported in McNeice & Jones (2001).

Ωm1
Ωm300

s01
s02 s03

s04 s05 s06
s07

z

y

x

14 km
1000 m

infinity

650 m

500 m

45 °

Ω5 m

Figure 2. Example 2: sketch of the 3-D model. Two elongated and elec-
trically coupled conductors with a relative orientation of 45◦ are embedded
in a resistive half-space. The model attempts to represent a combination of
2-D, strong 3-D and regional 2-D structure with local distortion for small,
medium and large skin depths, respectively. It serves to illustrate the elliptic-
ity analysis, which has been applied to synthetic impedance tensors, gener-
ated with a 3-D modelling programme. A profile with seven stations s01–s07
is indicated, for which a set of noise contaminated impedance tensors has
been created. They were subjected to the multisite multiperiod optimization
routine in order to determine the geoelectric strike direction.

3.2 Example 2: a 3-D model

A 3-D modelling programme (Mackie et al. 1994) has been used to
generate a realistic synthetic data set. Here, we use a model with a
comparatively large surface inhomogeneity deviating from a typical
galvanic distortion model. It has been designed not only to produce
distorted 2-D fields, but also to generate strong 3-D effects within
the modelled period range, because we want to demonstrate both
the distortion analysis and the parametrization of a 3-D impedance.

The model, sketched in Fig. 2, combines two elongated conduc-
tive anomalies embedded in a 300-	m half-space. The upper con-
ductor represents the 5-	 m sedimentary filling of a medium-scale,
NE-striking half graben. Being 500-m wide, it extends to the depth
of 650 m at its left boundary. The lower conductor is electrically
coupled with the graben sediments. It extends between the depth
interval from 650 m to 14 km, is 1-km wide and extends to infinity
in N/S directions. Its strike direction is 45◦ counter-clockwise with
respect to the surface conductor. Such a structure may, for example,
be attributed to a fault zone with fluid-filled fractures giving rise to
the conductivity of 1 	m.

The model core has been discretized with 70 × 70 × 30 cells
in the x, y and z direction, respectively. The smallest cell size is
50 × 50 × 25 m, progressively being increased to depth and, when
sufficiently far away from the boundaries of the surface conductor,
in horizontal directions. For this model, the MT impedance tensor
has been calculated for periods between 0.001–100 s.

The data at seven locations s01–s07 along a profile perpendic-
ular to the regional (lower) conductor and with a site separation
of 100 m (Fig. 2) are first considered in this model study. They
have been contaminated with 5 per cent gaussian noise, as in the
previous example. All sites exhibit 3-D effects between 0.1–100 s.
Upon inspection, the data can be classified into three subsets: the
short-period part (∼0.001–0.005 s for stations s01–s04, located out-
side of the surface conductor, and ∼0.001–0.025 s for stations s05–
s07, placed on the top of the surface anomaly) is predominantly
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sensitive to the shallow conductor. Between ∼0.01–1 s, depending
on the station, data are strongly 3-D, because the fields are sensitive
to both the shallow and the deep conductor. For periods longer than a
few seconds, the skin depth exceeds several kilometres and currents
are predominantly induced in the deeper, regional structure. How-
ever, the surface conductor continues to act on the regional electric
fields as a galvanic distorter even when the anomalous magnetic
fields induced within become negligible. Thus, 3-D effects should
be explained with a distortion model.

3.2.1 Strike detection and galvanic distortion analysis

The period subsets defined above span a range of periods, because
their sensitivities to the conductors vary between stations depending
on the distance to them. For the short-period part, we have grouped
and simultaneously analysed stations s01–s04 and s05–s07 in the
period ranges given above, respectively. In the long-period section,
all stations have been grouped together for the purpose of a multisite
and multiperiod regional strike detection. All sites in each group
are treated equally for simplicity. The period range, for which the
retrieved strike direction is actually valid, may be determined later
by inspecting the ellipticities at each site individually.

In Table 1, the results of a joint analysis are listed for all sites.
Within the short-period band, the first group recovers a strike di-
rection of δo = 46.3◦, while the second group yields δo = 46.9◦:
both close to the true direction of δ = 45.0◦. In both groups, mean
ellipticities (here, root mean square of εo

x and εo
y) and distortion an-

gles β
o
x and β

o
y nearly vanish, as can be seen in Table 1(a) and (b).

Thus, the 2-D surface structure is clearly expressed in the ellipse
parameters.

Table 1. Example 2: ellipse parameters from joint minimization.

εo = αo
x − 90◦ αo

y

Site
√

εo2
x + εo2

y = β
o
y = β

o
x

(a) 0.001–0.006 s δo = 46.3◦ s01–s04

s01 0.01 ± 0.04 0.9 ± 0.6 0.2 ± 2.4
s02 0.03 ± 0.04 0.0 ± 0.9 0.5 ± 2.5
s03 0.01 ± 0.04 0.6 ± 1.4 1.3 ± 2.0
s04 0.05 ± 0.05 1.3 ± 0.8 0.6 ± 3.7

(b) 0.001–0.025 s δo = 46.9◦ s05–s07

s05 0.01 ± 0.04 0.8 ± 3.3 −1.2 ± 0.7
s06 0.01 ± 0.05 −0.8 ± 2.0 0.4 ± 0.9
s07 0.02 ± 0.06 −0.2 ± 1.8 −0.4 ± 1.7

(c) 4–100 s δo = −0.6◦ s01–s07

s01 0.00 ± 0.04 10.5 ± 1.2 −18.5 ± 2.2
s02 0.01 ± 0.03 16.1 ± 1.4 −20.1 ± 1.9
s03 0.02 ± 0.03 23.5 ± 1.1 −19.6 ± 1.2
s04 0.03 ± 0.04 23.7 ± 1.5 −10.1 ± 2.4
s05 0.02 ± 0.02 −37.7 ± 1.2 41.6 ± 1.2
s06 0.03 ± 0.03 −35.3 ± 1.3 41.0 ± 1.5
s07 0.03 ± 0.04 −35.4 ± 1.6 41.0 ± 1.4

Notes:
Root mean square ellipticities εo and mean distortion angles β

o
x , β

o
y in the

optimal coordinate system δoestimated by multisite multiperiod analysis.
(a) Results for group s01–s04 and periods 0.001–0.006 s.
(b) Results for group s05–s07 and periods 0.001–0.025 s.
(c) Results for group s01–s07 and periods 1–100 s.
The given standard deviation of the parameters from their weighted mean
indicates the consistency of the parameters with respect to the frequency
band.
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Figure 3. Example 2: ellipses (normalized by the length of their major
axes), calculated for the period T = 100 s in the regional coordinate system
(0◦), representing the polarization state of telluric vectors. Dash-dotted and
solid lines indicate strike direction and boundaries of the regional and local
structure, respectively. The telluric vectors are linearly polarized and rotated
out off the regional coordinate system. Hence, they indicate a regional 2-D
structure with strong galvanic distortion effects.

In the long-period band (Table 1c), δo = −0.6◦ was found to be
the optimal regional strike angle. In this coordinate system, both
ellipticities again vanish, indicating the existence of a regional 2-D
structure at long periods. However, the orientation of ellipse axes
αo

x and αo
y deviate strongly from the regional coordinate system.

This effect is the result of local distortion caused by the surface
anomaly. According to the distortion angles β

o
x and β

o
y , the sites may

again be classified into two groups. Sites s01–s04, having positive
β

o
y and negative β

o
x , are located adjacent to the shallow conductor.

In contrast, the distortion angles at stations s05–s07 located above
the conductor have opposite sign. Effectively, the rotation of the
regional field components adjacent to the surface conductor is less
severe than above the conductor. In particular, at stations s05–s07,
the regional Er

x component (in the −0.6◦ rotated coordinate system)
is rotated clockwise into the strike direction of the surface structure,
while Er

y is rotated counter-clockwise as a result of distortion. Thus,
the surface electric field is strongly polarized in the direction of
the local structure. In real measurements, such a case will result in
poor correlation between the local magnetic and electric components
parallel and perpendicular to the local structure, respectively, as a
result of strong current channelling in the direction of the surface
anomaly.

The above stated results are illustrated as a top view map in Fig. 3
for the period T = 100 s using stations covering the whole model
area. Telluric vectors ex (grey) and ey (black) are plotted as ellipses
(normalized by their major axes) after rotation of the impedance
tensor into the regional coordinate system (which coincides in this
model study with the measurement coordinate system). The posi-
tion of the regional conductor is indicated by the dash-dotted lines,
the solid lines mark the boundary and strike direction of the local
structure. In the absence of distortion, the regional vector er

x = (0,
Z r

yx)
T would be linearly polarized and oriented perpendicular to the
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regional strike, i.e. to the dashed line, while er
y = (Z r

xy, 0)T would
be parallel. Rotation of the telluric vectors is observed as a result of
the presence of the surface anomaly, however they remain linearly
polarized. Thus, the case of galvanic distortion is met. Outside of
the surface anomaly, the Er

y component (er
x) is rotated clockwise

pointing towards the local conductor, while the Er
x component (er

y),
is slightly rotated counter-clockwise. Above the local conductor (in
between the solid lines), the rotation of the regional fields is more
dramatic. Because of distortion, both telluric vectors and thus both
regional electric field components are rotated into the direction of
the surface conductor, being almost parallel to each other.

Hence, the results given Table 1(c), where the regional strike and
galvanic distortion parameters were calculated from stations s01–
s07 in the period range 4–100 s, are representative for the whole
model area. We may therefore conclude that the 3-D effects ob-
served in the long-period band are consistently identified as galvanic
effects from the shallow distorter and the regional coordinate sys-
tem is determined with satisfying accuracy by multisite multiperiod
minimization of the ellipticities of the telluric vectors.

3.2.2 3-D effects

At medium skin depths, both subsurface anomalies contribute to the
observed response. The tensor is strongly 3-D and no coordinate sys-
tem is found, in which both telluric vectors are linearly polarized
for a range of periods. Thus, galvanic distortion models assuming a
regional 2-D structure cannot adequately represent the tensor. How-
ever, using the approximations of Section 2.3.2, we can understand
some of the information contained in the 3-D response.

In Figs 4(a) and (b), we have plotted the ellipticities and angles
of major axes versus period for the sites s03 adjacent to and s06
above the surface conductor (compare Fig. 2, where the location of
the stations is indicated) in a fixed 45◦ rotated frame, i.e. with the
x-axis in strike direction of the local structure. Ellipse parameters
of ex and ey are depicted in grey filled diamonds and black filled
circles, respectively. The ellipticity of the telluric vector ex at s03
is approximately zero for all periods (εx = −0.01 ± 0.04), while

(a) s03 (b) s06
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Figure 4. Example 2: ellipse parameters of telluric vectors in the local
coordinate system δ = 45◦. Ellipticities ε x,y and direction of major axes of
ellipses αx,y for (a) station s03 adjacent to and (b) station s06 above the
local conductor. Weighted means of parameters are indicated by dash-dotted
lines. One of the telluric vectors is approximately linearly polarized at all
periods and indicates local B-polarization (s03) and local E-polarization
(s06), respectively.

ε y = 0.00 ± 0.21 depends on period, which is expressed in a large
standard deviation. Above the conductor (site s06), ε y = 0.00±0.02
vanishes, while εx = 0.04 ± 0.26 is a function of period, respec-
tively. Note also that, in coincidence with the corresponding ellip-
ticity, the orientation of ellipses is either stable (αx = −1.0◦ ± 2.4◦

at site s03 and αy = 0.6◦ ± 1.2◦ at site s06) or a function of period
(αy = 11.5◦ ±12.0◦ at site s03 and αx = −0.6◦ ±0.26◦ at site s06),
respectively.

Suppose now, that the approximations of eqs (23) and (24) are
valid. Then, for the present example, the polarization state of ex at
site s03 and ey at site s06 approximately corresponds to the electric
field associated with a normal magnetic field tangential and nor-
mal to the local anomaly, respectively. Here, we observe, that these
telluric vectors and therefore the corresponding electric fields are
predominantly linearly polarized over the whole period range, which
was already anticipated previously. For an explanation, take into ac-
count that: (a) the electric field of local B-polarization adjacent to
the contact dips in the (y, z) plane as a result of vertical current flow,
but its projection into the horizontal plane is again dominated by
the charge accumulation at the shallow lateral interface even in the
presence of 3-D effects; and (b) within the surface anomaly, cur-
rents are strongly channelled, which in particular applies to those
currents with the normal part in strike direction of the channel. Thus,
the electric field in local B-polarization adjacent to the contact and
in local E-polarization above the conductor exhibit approximately a
linear polarization state, which is reflected in vanishing ellipticities
of the telluric vectors in Figs 4(a) and (b), respectively.

By using the optimization scheme given in the expression of
eq. (29), we may estimate for each site the coordinate system, in
which one of the telluric vectors (here, ey) has minimal ellipticity
for a range of periods. This coordinate system was referred to as
local strike. Because at sites s03 and s06 the same coordinate system
applies to the whole period range, we use all periods between 0.001–
100 s in order to determine the local strike.

The estimated local strike directions for the model shown in Fig. 2
are plotted as top view maps in Fig. 5(a), the corresponding telluric
vectors in Fig. 5(b) for the period T = 1 s, for which the coupling of
induction effects in the shallow and the deep conductor is evident. As
it can be deduced from Fig. 5(b), the ellipticities of ey vanish almost
exactly in the appropriate coordinate system, while ε x �= 0 for most
sites. This corresponds to the results for s06 (Fig. 4b), where ε y � 0,
and to s03 (Fig. 4a), but in a 180◦ rotated frame, because ε y had been
minimized. Thus, adjacent to the local conductor, the electric field
in local B-polarization and, on top of the surface anomaly, the local
E-polarization electric field are predominantly linearly polarized.

It is obvious from Fig. 5(a), that the local strike directions have a
distinct meaning above and in the vicinity of the shallow conductor.
Above the surface anomaly, they directly give the strike direction of
the local anomaly, while adjacent but close to the surface anomaly,
they point perpendicular to the local strike. Further away from the
distorting anomaly, the strike direction is a mixture of regional and
local strike or indicates the regional strike, if the influence of the
local anomaly is small.

4 A P P L I C AT I O N T O F I E L D DATA

The previously described model study has been motivated by audio-
magnetotelluric (AMT)/MT data in the period range 0.001–100 s,
which we measured in Gaxun Nur Basin, an intracontinental basin
structure in the Inner Mongolia province of China. This basin is of
key interest for geoscientists, because its sediments are presumed to
be a valuable archive for climatic and environmental signals from
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Figure 5. Example 2: local coordinate system. (a) Local strike direction
obtained from minimization of only one telluric vector (here, ey) for the
period range 0.001–100 s. Note, that the local coordinate system has an
ambiguity of 180◦. (b) Telluric vectors for the period T = 1.0 s plotted as
ellipses after rotation of the impedance tensor to the directions shown in (a).
The vector ey is approximately linearly polarized at all points, while ex has a
strong ellipticity in particular above the surface conductor and in the vicinity
of the crossover points of the shallow and deep conductor.

the past million years (Wuennemann & Hartmann 2002). Today, the
basin is partially covered by sand dunes as a result of the hyperarid
climate of the desert Gobi. Within a multidisciplinary investigation
of this basin, electromagnetic measurements (transient electromag-
netic, AMT/MT) were carried out across a 4-km wide northward
striking wadi, a potential drainage channel in which material is dis-
charged from the Gobi Altai mountain range into the Gaxun Nur
Basin.

Figure 6. Field data example: 2-D joint inversion of E- and B-polarization
apparent resitivities and phases for the period range (0.001–0.1 s) from 22
stations indicated by triangles at the surface. Strike direction is approximately
N. The highly conducting body is suspected to act as a distorter at long periods
by effectively channelling currents.

A 2-D joint inversion (Siripunvaraporn & Egbert 2000) of of
E- and B-polarization apparent resistivities and phases for the upper
period range of the AMT data (0.001–0.1 s) yields the resistivity
model shown in Fig. 6, many features of which have also been re-
covered by 1-D inversion of transient electromagnetic (TEM) data.
Thus, the model is well constrained. The section is divided into
two different resistive crystalline rock units (black and grey) and a
highly conducting body (white) corresponding to sediments in the
wadi. Crystalline rocks, exposed to the east and west of the wadi, are
clearly differentiable into an eastern and a western block both geo-
logically as well as from their different resistivities. The sediments
of the wadi reach a thickness of around 500 m in the western part and
a width of approximately 4 km along the section. The total length of
the structure is approximately 20 km, bounded to the north by meta-
morphic rocks and disappearing to the south under lake sediments
and dunes. The low resistivity (less than 1 	m) of the sedimentary
infill must be explained by a high concentration of dissolved salt
in the pores of the sediments, which is reasonable given the back-
ground of high evaporation rates exceeding the precipitation by the
order of several magnitudes.

A 500-m deep section of conducting sediments above more re-
sistive layers is considered as a large-scale structure with respect to
the shortest period of 0.001 s (skin depth ∼15 m), but it appears
as a small-scale inhomogeneity for periods of 100 s (skin depth
>10 km). Thus we may expect serious distortion effects for long
periods, caused by the structure well resolved at short periods.

In Fig. 7, data from MT site s09, indicated in Fig. 6, are shown
as an illustrating example. Rotated to the strike direction of the
wadi (−12◦, counter-clockwise), determined from the minimization
of ellipticities of both telluric vectors within the first two period
decades, apparent resistivities and phases (Fig. 7a) indicate a 1-D
increase in conductivity with depth at the shortest periods. With
increasing period, the sounding curves split, as the margins of the
graben become included in the inductive volume.

For periods longer than ∼0.1 s, the diagonal impedance elements
become increasingly important, approaching the amplitudes of the
off-diagonal elements between 1–100 s. Therefore the period range
for the 2-D inversion was restricted to the shortest periods.

The response characteristics are equivalently reflected in the el-
liptical parameters shown in Fig. 7(b): vanishing ellipticities with
weighted means εx = 0.00 ± 0.00 and ε y = 0.01 ± 0.01 of the
telluric vectors ex and ey within the first two decades indicate 1-D
or 2-D conditions, the latter in principal coordinates. Accordingly,
distortion angles in this period range are constant and, moreover,
vanish, indicating the absence of galvanic distortion. A sharp in-
crease of ε x at 0.1 s rising to a maximum at 1 s and slowly decaying
at longer periods coincides with non-vanishing main-diagonal el-
ements. Thus, 3-D effects are evident in the data, being either the
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Figure 7. Field data example: site s09. (a) Apparent resistivities and phases
rotated −12◦ (counter-clockwise) into the strike direction of the shallow
conductor depicted in Fig. 6. (b) Elliptical parameters of telluric vectors in the
same coordinate system. (c), (d) and (e), (f): same as (a), (b) but rotated 36.8◦
and 0.5◦ clockwise, where the first is interpreted as the regional coordinate
system and the latter is the estimated local coordinate system. (See text for
detailed discussion.)

result of strong 3-D structure, the distorted response of a 2-D re-
gional structure, or a combination of both.

Application of the minimization routine (eq. 29) to the lowest
decade from 10 to 100 s leads to the results shown in Figs 6(c) and (d).
Vanishing ellipticities with εx = 0.01 ± 0.07 and ε y = 0.01 ± 0.00
indicate linear polarization of the telluric vectors, which point to-

wards a deep 2-D conductivity distribution, striking at 36.8◦ clock-
wise. Distortion angles are constant over nearly two decades from 1–
100 s, approaching almost ±45◦. Note, that at long periods, phases
of the off-diagonal elements and the corresponding main-diagonal
elements are the same and related apparent resistivity curves are par-
allel in the double-logarithmic scale (Fig. 7c). Thus, strong distortion
effects the long-period data, where the distorter has previously been
postulated as the sedimentary filling of the graben shown in Fig. 6.

From these results, which are similarly observed at other stations,
the following interpretation is established to explain the data:

(i) The short-period band of the sounding curve reflects the 2-D
graben structure. Its strike direction is 12◦W.

(ii) A deep conductor/resistor, which is also 2-D, is resolved by
long periods. It is oriented 37◦E, thus deviating from the surface
strike by approximately 49◦. This is also supported by the high
distortion angles.

(iii) At intermediate periods currents are induced in both the shal-
low surface conductor and the deep anomaly, giving rise to strong
3-D effects.

The survey discussed above was designed for rather shallow in-
vestigations. Therefore, the distribution of stations is not suitable
for a 2-D inversion of undistorted long-period data nor for a 3-D
modelling in order to verify the outcome of the distortion analy-
sis. It should also be noted, that magnetic transfer functions, which
were also measured, do not strictly support the results stated above
for long periods. However, the orientation of real and imaginary in-
duction arrows in presence of 3-D structures is not well understood
and often deviates from directions suggested by impedance tensor
analysis.

Let us finally utilize this sounding curve to exemplarily study the
3-D characteristics of the MT impedance tensor. The measurement
point is located above a conductive channel, which is (comparable
to example 2) embedded in a more complicated 3-D structure. We
claimed, that in such a case, there often exists a coordinate system,
in which the telluric vector ey vanishes approximately, if rotated to
the local strike direction. The rotation angle was determined in this
case to be 0.5◦E by jointly minimizing ε y for all periods and is close
to but not exactly the strike direction used for the 2-D inversion
of the short-period band. In this coordinate system, the apparent
resistivities and phases are shown in Fig. 7(e), the related ellipse
parameters are depicted in Fig. 7(f). Note, that ε y = 0.02 ± 0.03
approximately vanishes for the whole period range, while ε x �= 0
and depends on period. Similarly, the orientation of ey is stable and
aligned with the local strike direction (αy = −2.7◦ ± 3.2◦), while
that of ex changes with period. It is therefore reasonable to assume,
that the polarization state of ey represents that of the linearly polar-
ized electric field in local E-polarization. The apparent resistivities
in this coordinate system are composed of three elements (ρ xx, ρ xy

and ρ yx) with large amplitudes and ρ yy, which has a small amplitude.
This is in coincidence with our assumptions about the impedance
tensor, measured above a shallow conductive anomaly.

Thus, we recover the 3-D effects inherent in the impedance tensor
as a result of the presence of a local conductor also on field data.

5 C O N C L U S I O N

We introduce an alternative parametrization of the impedance ten-
sor in terms of elliptical parameters, which is neither underlaid by
an a priori model assumption, as in the case of classical galvanic
distortion analysis, nor is purely based on mathematical properties,
as that of the SVD.
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This approach can rather be considered as a combination of the
SVD of the impedance tensor (LaTo; Yee & Paulson 1987) and
the galvanic distortion analysis (Bahr 1988; Groom & Bailey 1989;
Smith 1995). In contrast to the SVD, no orthogonal basis for the
characteristic electric field vectors is imposed. Thereby, the rotation
angles of the principal electric field vectors resulting from galvanic
distortion may be identified. On the other hand, on minimizing di-
mensionless ellipticities of telluric vectors in order to identify the
regional coordinate system, a natural formulation of the distortion
problem has been established, which might be superior to previous
formulations. Because ellipticities may only vary between zero and
one and are independent of the magnitude, i.e. the absolute value of
the impedances, data from different periods are directly comparable
despite the intrinsic period dependency of the impedance. Thus, joint
minimization of data from various periods and, moreover, stations
is feasible, easily formulated and retrieves stable results.

An advantage of using eight parameters instead of seven to de-
scribe the impedance tensor is that an occasionally inappropriate a
priori assumption is avoided. Instead, our parametrization simply
states, in such a case, that the parameters are not interpretable in
terms of a distortion model, but that they are still well determined.
In order to validate the existence of a regional model, it is nec-
essary to demand a strict period independency of the ellipticities
and rotation angles for a range of periods. This is easily accom-
plished in our analysis, because we determine the strike direction
and calculate the parametrization in rotated coordinates. Therefore,
we also do not introduce an additional quantitative measure such
as the phase-sensitive skew (Bahr 1988) to validate a regional 2-D
structure (though a measure could be the root mean square weighted
ellipticties). Instead, we suggest to closely inspect the range of pe-
riods in which both ellipticities vanish and in which the distortion
angles are frequency independent.

In addition to the galvanic distortion analysis, the parametrization
serves to explain the behaviour of a strong 3-D impedance tensor in
a particular environment: in the vicinity of a surface conductor, the
polarization state of one of the telluric vectors directly represents
one electric field polarization, which is found to be approximately
linear. Thereby, it is understood, that the impedance tensor is often
composed of three large elements and one small element.

It was beyond the scope of this work to provide a detailed cata-
logue of 3-D model studies. It has been demonstrated, however, that
the approach we suggest may serve to provide a better understanding
of 3-D effects in MT impedance data and we believe that it can be
helpful to adopt it to a wider class of conductivity models than the
one we used.
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A P P E N D I X A : R E P R E S E N TAT I O N O F
E L L I P T I C A L P O L A R I Z AT I O N S TAT E S

The following ellipse parametrization has been introduced
by Weichmann et al. (2000). It is briefly summarized in Sections
A1 and A2, and the derivation of linear error propagation is given
in Sections A3 and A4.

A1 Parametrization

A monochromatic vector field v oscillates with angular frequency
ω0 in time domain with

v(t) = A(ω0) cos(ω0t) + B(ω0) sin(ω0t)

= A(ω0)eiω0t + A
∗
(ω0)e−iω0t ,

(A1)

in which A(±ω0) = 1
2 [A(ω0) − iB(ω0)] = A

∗
(∓ω0) is the complex

field amplitude. In general, A and B are non-collinear, corresponding
to an elliptically polarized vector field.

Now, let v(t) = (v1, v2)T and consequently A(ω0) be a vector
lying in the z = 0 plane and decompose it in the form

A(ω0) = eiζ (ω0) [a(ω0)̂a(ω0) + ic(ω0)̂c(ω0)] , (A2)

where the phase ζ is chosen in such a way that a and c are real
and a ≥ |c| ≥ 0. The unit vectors are given by â = (cos α, sin α)T

and ĉ = ẑ × â. Because A(−ω0) = A
∗
(ω0), it follows that ζ (ω0)

= −ζ (−ω0) and c(ω0) = −c(−ω0) are odd functions of frequency
and a(ω0) = a(−ω0) and â(ω0) = â(−ω0) are even functions of
frequency.
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With this decomposition, we see that the total field may be written
in the form

v(t) = a cos (ω0t − ζ ) â + c sin (ω0t − ζ ) ĉ. (A3)

The first addend is denoted as the corotating part, the second as
the counter-rotating part of the elliptically polarized field. The real
amplitudes a and c are identified as major and minor axes of the
polarization ellipse, respectively, and the phase ζ determines the
vector at t = 0.

For notational simplicity, we rewrite eq. (A2) as

v = eiζ (aâ + i ĉc) , (A4)

where now v = v(ω0).

A2 Calculation of ellipse parameters

From the combinations

v · v = (a2 − c2)e2iζ ,

v · v∗ = a2 + c2,

v × v∗ = −2iaĉz,

(A5)

one obtains

eiζ =
[

v2∣∣v2
∣∣
] 1

2

(A6)

for the phase, and the major and minor axes are given by

a =
[

1

2
(|v|2 + |v2|)

] 1
2

,

c = sign(îz · v × v∗)

[
1

2
(|v|2 − |v2|)

] 1
2

,

(A7)

where a > 0 and the sign of c may be positive or negative indi-
cating the sense of rotation in time domain. The ellipticity is then
determined from

ε = c

a
. (A8)

Finally, the unit vector is

â = 1

a
�(e−iζ v), (A9)

from which the angle α with the x-axis can be derived:

tan α = 1

a

a2 cos ζ + b2 sin ζ

a1 cos ζ + b1 sin ζ
. (A10)

Here, we denote real and imaginary parts of vi by ai and bi, respec-
tively, i.e. vi = ai + ibi.

A3 Variance of a, c and ε

Let us denote the variance of v by σ 2
v = ( σ 2

v1
σ 2

v2
)T , where the

same standard deviation is applied to the real and imaginary part
of each component. Assuming linear error propagation, then the
variance of the major axis a is derived from

σ 2
a =

∑
k

(
∂a

∂pk

)2

σ 2
pi
, (A11)

where pk denotes the variables of a, i.e. a = a(pk).

Let vi = ai + ibi. Differentiating eq. (A7) with respect to one of
the parameters p

.= pkε {a1, b1, a2, b2} yields

∂a

∂p
= 1

2a

(
∂|v|2
∂p

+ ∂|v2|
∂p

)
, (A12)

where

∂ |v|2
∂p

= 2p

and

∂|v2|
∂p

= ±2p
(
a2

1 − b2
1 + a2

2 − b2
2

)
|v2|

+
4
(
1 + ∂

∂p

)
(a1b1 + a2b2)

|v2| ,

where the negative sign is chosen, if p ε {b1, b2}. The variance of
a is summed up to

σ 2
a =

[(
∂a

∂ax

)2

+
(

∂a

∂bx

)2
]

σ 2
v1

+
[(

∂a

∂ay

)2

+
(

∂a

∂by

)2
]

σ 2
v2

. (A13)

The variance of c differs from that of a only by a sign, as can easily
be deduced from eq. (A7). The sign function determines only the
sign of c and does not enter the squared partial derivative in the error
propagation law.

Having calculated the variances of major and minor axes, the
variance for the ellipticity of eq. (A8) is easily obtained by

σ 2
ε =

(
ε

a

)2

σ 2
a +

(
1

a

)2

σ 2
b . (A14)

A4 Variances of phase ζ and directional parameter α

The radical of eq. (A6) is a complex number |z|eiφ , where |z| = 1,

because eiζ = [|z|eiφ]
1
2 = ei φ

2 , and tan φ =  (v2)/� (v2), because
|v2| is real. Thus,

tan φ = 2 (a1b1 + a2b2)

a2
1 + b2

1 + a2
2 + b2

2

(A15)

and 2ζ = φ. The partial derivative with respect to one of the variable
p is given by

∂ζ

∂p
= 1

1 + tan2 2ζ

(
v · v∗ ∂

∂p − 2p
)

(a1b1 + a2b2)

(v · v∗)2 , (A16)

which can be used to estimate the variance of ζ .
Finally, from eq. (A10)

∂α

∂p
= 1

1 + tan2 α

∂

∂p

a2 cos ζ + b2 sin ζ

a1 cos ζ + b1 sin ζ
, (A17)

∂α

∂a
= − tan α

1 + tan2 α

1

a
(A18)

and

∂α

∂ζ
= 1

1 + tan2 α

a1b2 − a2b1

(a1 cos ζ + b1 sin ζ )2 , (A19)

which yields estimates for the variance of the angle α.
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A P P E N D I X B : M O D I F I E D S V D

We modify the singular vectors ei and hi, defined from the SVD of
an impedance tensor Z as

Z = [
e1 e2

]
Zr

[
h1 h2

]
, (B1)

using eq. (A4) as

e′
i = ei e

−iζe,i = (ae,i âe,i + ice,î ce,i ) (B2)

and

h′
i = hi e

−iζh,i = (ah,i âh,i + ich,î ch,i ) . (B3)

The modified SVD parametrization as suggested in LaTo reads as

Z = UeMŨh, (B4)

where the phase modified singular vectors e′
i and h′

i are used as
the columns of the matrices Ue and Uh, respectively, instead of the
singular vectors themselves. Expanding eq. (B4) yields directly for
the elements of M = diag(µ1,µ2)

µi = ri e
i(ζe,i −ζh,i ). (B5)

Thus, the appropriate phase factors as defined in appendix B of LaTo
are identified as the initial phases of the ellipse representation of
eq. (A4).

A P P E N D I X C : S V D O F A
G A LVA N I C A L LY D I S T O RT E D
2 - D I M P E DA N C E T E N S O R

In this section, we repeatedly take reference to formulae from LaTo.
The calculations are, for simplicity, performed in the regional

coordinate system. The results, however, apply to any coordinate
system.

As observed by Groom & Bailey (1991), the result of the modified
SVD for a galvanically distorted impedance tensor of the form of
eq. (3) with gx = gy = 1,

Z = DZr = UeMŨh =
[ − sin βy Z r

yx cos βx Z r
xy

cos βy Z r
yx sin βx Z r

xy,

]
(C1)

has the following properties.

(i) The ellipticities ε e of the modified left-singular vectors e′i
vanish exactly.

(ii) The ellipticities εh of the modified right-singular vectors h′
i

vanish, if the phases of the regional impedance elements are equal
(or if their difference is equal π ).

(iii) The orientations of modified singular vectors do not coincide
with any of the directions given by the distortion angles nor the
regional coordinate system.

Additionally, if β x = β y
.= β, we found the following.

(iv) β is the angle, the e′
i are rotated out of the regional coordinate

system.
(v) εh vanishes exactly.
(vi) h′

i are linearly polarized and span the regional coordinate
system.

These statements are easily proven using the formulae in LaTo (their
eqs 26, 27, 32 and 33). Consider first the hermitian matrix Ce,h

defined as

Ch = ZZ̃ (C2)

(eq. 26 of LaTo) and

Ce = ZZ̃ (C3)

(eq. 27 of LaTo), which are expanded to

Ch,xx = ∣∣Z r
yx

∣∣2
sin2 βy + ∣∣Z r

xy

∣∣2
cos2 βy,

Ch,xy = cos βy sin βx Z r
xy Zr∗

yx − cos βx sin βy Z r
xy Zr∗

yx ,

Ch,yx = cos βy sin βx Zr∗
xy Z r

yx − cos βx sin βy Zr∗
xy Z r

yx ,

Ch,yy = ∣∣Z r
yx

∣∣2
cos2 βy + ∣∣Z r

xy

∣∣2
sin2 βy

(C4)

and

Ce,xx = ∣∣Z r
yx

∣∣2
sin2 βy + ∣∣Z r

xy

∣∣2
cos2 βx ,

Ce,xy = ∣∣Z r
xy

∣∣2
sin βx cos βx − ∣∣Z r

yx

∣∣2
sin βy cos βy,

Ce,yx = ∣∣Z r
xy

∣∣2
sin βx cos βx − ∣∣Z r

yx

∣∣2
sin βy cos βy,

Ce,yy = ∣∣Z r
yx

∣∣2
cos2 βy + ∣∣Z r

xy

∣∣2
sin2 βx ,

(C5)

respectively.
The ellipticities ε e = tan ν e of the modified electric singular vec-

tors are derived from eq. (33) of LaTo,

sin 2νe = i
(
Ce,xy − Ce,yx

)
r 2

1 − r 2
2

, (C6)

where ri are the singular values of Z. Because C e,xy = C e,yx as seen
from eq. (C5), the nominator in eq. (C6) vanishes and thus ν e = 0
and ε e = 0 independent of the singular values. Thus, the left-singular
vectors are linearly polarized.

Denote now the angle γ e as the angle of the major axes of e1 with
the x-axis. It is calculated with eq. (32) of LaTo as

tan 2γe = Ce,xy + Ce,yx

Ce,xx − Ce,yy
. (C7)

Expanding as before leads to a mixture of the absolute values of the
regional impedances and sines and cosines of the distortion angles,
respectively. If, however, β x = β y = β, eq. (C7) simplifies to tan
2γ e = tan 2β, thus

γe = β, (C8)

i.e. the direction of the left-singular vectors is determined by the
distortion angle β.

Eq. (C4) shows that C h,xy = C∗
h,yx. If arg (Z xy) + π = arg (Z yx),

i.e. the regional impedances have the same phase, then C h,xy =
C∗

h,xy becomes real. Thus, applying formula in eq. (C6) to the right-
singular vectors hi, its nominator vanishes. Therefore, the ellipticity

εh = tan 2νh (C9)

vanishes, if the impedance elements have the same phase. If β x =
β y = β again, C h,xy = C h,yx = 0 independent of the impedance
phases and thus ε h = 0 as well.

Only in the latter case it can be shown using eq. (C7) that

γh = 0, (C10)

i.e. the direction of right-singular vectors coincides with the regional
frame. Otherwise, the direction of hi is an algebraic mixture of the
regional impedances and the distortion angles.
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These results state that the SVD indicates the existence of
a regional 2-D structure, if the left-singular vectors are linearly
polarized. If the right-singular vectors are also linearly polarized,
and the phases of the regional impedances are not equal, then the
right-singular vectors indicate the regional coordinate system. This
is however only the case, if β x = β y . Then, the deviation of the
left-singular vectors from the regional frame yields the distortion
angle. The equality of regional phases may be deduced from equal
phases of the characteristic values µi.

In a rotated coordinate system, e.g. Z = RDZr RT , the SVD
yields the same polarization states, but the directions of singular
vectors are altered. In analogy to the previous results, it is now a
straightforward calculation to show for the case β x = β y = β that

R = Uh

[
0 1

1 0

]
,

D =
[

0 1

1 0

]
UT

h Ue,

Zr =
[

−1 0

0 1

]
M

[
0 1

1 0

]
,

(C11)

where Uh and Ue are real. More precisely, Uh is the mirrored rotation
matrix and Ue is a function of the distortion angle β, i.e. performs
an additional rotation of the regional electric field components out
of the regional coordinate system.
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