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AN EM ALGORITHM FOR PATH DELAY AND COMPLEX GAIN ESTIMATION OF SLOWLY

VARYING FADING CHANNEL FOR CPM SIGNALS

H. Abeida, J.-M. Brossier, L. Ros and J. Vilà Valls

GIPSA-lab/DIS - BP 46 - 38402 Saint-Martin-d’Hères - France

ABSTRACT

This paper addresses the joint path delay and time-varying

complex gain estimation for continuous phase modulation (C-

PM) over a time-selective slowly varying flat Rayleigh fad-

ing channel. We propose an expectation-maximization (EM)

algorithm for path delay estimation in a Kalman smoother

framework. The time-varying complex gain is modeled by

a first order autoregressive (AR) process. Such a modeling

yields to the representation of the problem by a dynamic baye-

sian system in a state-space form that allows the application

of EM algorithm in the context of unobserved data for obtain-

ing an estimate of the path delay. This is used with Kalman

smoother for state estimation. We derive analytically a closed-

form expression of the modified hybrid Cramér-Rao bound

(MHCRB) for path delay and complex gain parameters. Fi-

nally, some numerical examples are presented to illustrate the

performance of the proposed algorithm compared to the con-

ventional generalized correlation method and to the MHCRB.

Index Terms— CPM signal, EM algorithm, hybrid Cram-

ér Rao bound, path delay estimation, maximum-likelihood

(ML) estimation, Kalman smoother filter, Kalman filter, fad-

ing channels.

1. INTRODUCTION

Continuous phase modulation (CPM) is preferred in numer-

ous wireless communications and mobile applications for its

constant envelope property and high spectral efficiency [1].

Binary CPM systems, such as minimum-shift keying (MSK)

and Gaussian MSK (GMSK), containing non-circular (or im-

proper) process [2, 3], have been widely employed in many

applications.

Due to the importance of CPM signals, many frequency

and timing synchronization algorithms have been developed

for such signals [4, 5]. These algorithms, typically catego-

rized in Data-Aided (DA) (see, e.g. [6]) and Non-Data-Aided

(NDA) (see, e.g. [7, 8, 9]) methods, have been designed un-

der the assumption of additive white Gaussian noise channel

(AWGN). However, few research works address CPM time

synchronization over a time-varying channel. We can cite

the recent works proposed in [13, 18] for flat-fading chan-

nels. A maximum likelihood (ML) approach was employed in

[13] for estimating time delay for CPM signals in the special

case of MSK signal. However, [13, 18] do not consider the

bayesian approach to take into account the prior distribution

of the unknown time-varying complex gains of the channel,

which need to be estimated in practice.

Assuming that the time-varying complex gains can be mod-

eled by a first order autoregressive (AR1) process (e.g. [22]),

the problem of time synchronization over Rayleigh flat-fading

channels can be formulated as a dynamic state-space bayesian

system with unknown (hidden) complex gains. So, we are

facing a problem of state estimation in a nonlinear dynami-

cal system with unknown parameters, which is a problem of

practical interest in numerous applications. In many cases,

the parameters of the dynamic model for a real system are not

known exactly and need to be estimated. In reference [14], an

EM algorithm [12] combined with a Kalman smoother [23]

was proposed to compute the ML estimates of the speech

recognition system parameters while also providing the state

estimates. Recently, the EM algorithm has been applied to

a lot of problems for parameter estimation and learning (see

e.g. [15, 17, 16]).

In order to evaluate the estimator performance, lower bou-

nds on the Mean Square Error (MSE) are needed. One of the

most used is the Cramér-Rao Bound (CRB) [29]. Depend-

ing on the prior knowledge available on parameters, the CRB

has different expressions. Among which, the Hybrid CRB

(HCRB) is considered in the case of hybrid vector that con-

tains deterministic and random parameters (see e.g., [26, 27]).

We note that the HCRB generalizes the classical CRB (see

e.g., [29, 28]) and the bayesian CRB (BCRB) [24]. How-

ever, the true expression of CRB is sometimes difficult to de-

rive analytically. To overcome this difficulty, other CRB’s

have been considered in the literature such as the Modified

CRB (MCRB) (see, e.g., [4]), which is in general looser (i.e.,

lower) than the CRB.

In this paper, we describe the EM algorithm for jointly es-

timating path delay and complex gains over a slow Rayleigh

flat-fading channel in the general case of a CPM signal. We

first model the time-varying complex gains with a state space

model. Then, we estimate the path delay with an EM algo-

rithm. Once we have the estimate of the path delay, complex

gains estimates are computed with Kalman smoother. We also

derive an analytical closed-form expression of the modified

HCRB (MHCRB) for path delay and complex gains. This



bound is used to evaluate the performance of the proposed

EM algorithm.

The paper is organized as follows. Section 2 describes the

CPM signal model, the AR model and the state-space repre-

sentation of the problem. The EM algorithm is presented in

section 3. The MHCRB is derived in section 4 and finally

some simulations are presented in section 5.

The following notations are used throughout the paper.

Matrices and vectors are represented by bold upper case and

bold lower case characters, respectively. I is the identity ma-

trix. Vectors are by default in column orientation, while T , H
and ∗ stand for transpose, conjugate transpose and conjugate,

respectively. E(.), Tr(.) and ‖.‖ are the expectation, trace and

norm operators respectively.

2. PROBLEM STATEMENT AND ESTIMATION

OBJECTIVES

Following [1], the complex envelope s(t,a) of a CPM signal

can be written as s(t,a) = eiφ(t,a) where the phase φ(t,a) of

s(t,a) is given by

φ(t,a) = 2πh
∑

j∈Z

ajq(t − jT ), (1)

where T is the symbol period and a
def
= (. . . , a−2, a−1, a0, a1-

, a2, . . .) is the independent identically distributed (i.i.d.) bi-

nary data sequence, with each element taking on values {±1}.

q(t) =
∫ t

0
g(u)du corresponds to the phase pulse shaping

function that describes how the underlying phase change ±πh
evolves with time where g(t), the frequency shaping filter, is

positive and non-zero on the interval [0, LT ], L is the cor-

relation length. The modulation index h determines the rate

of change of frequency in the signalling interval. Finally, we

note that if nT ≤ t ≤ (n+1)T the phase φ(t,a) given by (1)

can be written as

φ(t,a) = πh
n−L
∑

j=−∞

aj +2πh
L−1
∑

j=0

an−jq(t− (n− j)T ). (2)

Transmitting s(t,a) over a frequency-flat, slow fading Ra-

yleigh channel results in the following received waveform

y(t) = α(t)s(t − τ,a) + b(t), (3)

where α(t) is a zero-mean Gaussian complex circular mul-

tiplicative gain of variance σ2
α, introduced by the flat fading

channel with autocorrelation function Rα(∆t)
def
= σ2

αE(α(t)
α∗(t−∆t)), τ is the fixed unknown path delay, and b(t) is an

additive white Gaussian complex circular noise with bilateral

spectral power density N0.

The equivalent discrete-time signal model observed dur-

ing N signaling intervals, after low-pass filtering and sam-

pling at rate Ts = T/M is given by

y(kTs) = α(kTs)sk(τ,a) + b(kTs), k = 0, . . . ,MN − 1
(4)

where sk(τ,a)
def
= s(kTs − τ,a) = eiφk(τ,a) and φk(τ,a)

def
=

φ(kTs − τ,a). Note that, after antialiasing filtering (with cut-

off frequency M/T ) and sampling, the noise term b(k) is as-

sumed white with a known variance σ2 = N0

Ts

.

From (2), we obtain after some easy manipulations of in-

dices that the phase term φk(τ,a) can be expressed as

φnM+m(τ,a)
def
= φ((nM + m)Ts − τ,a)

= πh
n−L
∑

j=−∞

aj + 2πh
L−1
∑

j=0

an−jqj,m(τ),(5)

for each n ≥ 0 and for each m such as 0 ≤ m ≤ M − 1, the

τ -dependent coefficients qj,m(τ) are defined by qj,m(τ)
def
=

q(mTs + jT − τ). The complex gain of the channel α(.)
does not change during symbol period but varies from sym-

bol to symbol because the gain is assumed to be slowly time-

varying. This implies that the coefficients α((nM + m)Ts)
for m = 0, . . . ,M − 1, all equal to the same value denoted

by αn. Then the discrete-time version of (4) can be written as

follows:

y((nM +m)Ts) = αnsnM+m(τ,a)+b((nM +m)Ts). (6)

Collecting the samples of the received signal within one

slot to form a vector yn
def
= (y((nM)Ts), . . . , y((nM +M −

1)Ts))
T yields the following model

yn = αngn(τ,a) + bn, (7)

where gn(τ,a)
def
=

(

eiφnM (τ,a), . . . , eiφnM+M−1(τ,a)
)T

, and

bn
def
= (b((nM)Ts), . . . , b((nM + M − 1)Ts))

T
is a M × 1

noise vector with covariance matrix σ2I.

Among various channel models, the information theoretic

results in [10] show that the first-order AR model provides a

sufficiently accurate model for time-selective fading channels

and therefore, will be adapted henceforth. Specifically, αn

varies according to

αn = γαn−1 + en (8)

where the noise en is zero-mean Gaussian complex circular

with a known variance σ2
e and is statistically independent of

αn−1. Using (8), simple manipulations lead to

σ2
e = σ2

α(1 − γ2) and γ = E(αnα∗
n−1) (9)

According to Jakes’ model [21], we have γ = J0(2πfdT ),
where J0(.) is the first kind 0th-order Bessel function and fd

denotes the maximum Doppler shift.

Having the model for the variation of the channel, and

from eq. (7), we can obtain the following state space repre-

sentation of the problem

{

αn = γαn−1 + en

yn = αngn(τ,a) + bn.
(10)



The initial state α0 is assumed to be Gaussian complex circu-

lar with a known variance σ2
0 .

In general, the objective is to jointly estimate the path de-

lay parameter τ and the state α
def
= (α1, . . . , αN−1) using the

set of received signals y
def
= (yT

0 , . . . ,yT
N−1)

T . In this paper,

however, we will assume, except in section 4, that the trans-

mit symbol sequence a is known at the receiver, and in order

to simplify notation we use gn(τ)
def
= gn(τ,a) .

Note that if τ is known, the state parameters αn can be

inferred using a Kalman smoother [11]. We note that, due

to the presence of unobserved data α, the maximum likeli-

hood (ML) method can not be used because the computation

of the likelihood function f(y|a; τ) = E(f(y|α,a; τ)) in a

closed-form and its maximization w.r.t. τ seems to be an in-

tractable problem. In the following section, we describe the

Expectation-Maximization (EM) algorithm to find the ML es-

timates.

3. THE EM ALGORITHM

The EM algorithm [12] is an iterative method to find the ML

estimates of parameters in the presence of unobserved data.

The idea behind the algorithm is to augment the observed data

with latent data, which can be either missing data or parame-

ter values. The algorithm can be broken down into two steps:

the E-step and the M-step. We now describe an EM algorithm

for our model. Following the procedure given in [14, Sec. B],

we consider the received data y as incomplete data, and de-

fine the complete data as z
def
= (yT ,αT )T . Since the state is

Markov, the likelihood function of the complete data is given

by

P (z|a; τ)=P (α0)

N−1
∏

n=1

P (αn|αn−1)

N−1
∏

n=0

P (yn|αn,a; τ) (11)

Due to the Gaussian noise assumption, we have

ln(P (z; τ)) = C −
1

σ2

N−1
∑

n=0

‖yn − αngn(τ)‖2 (12)

−
1

σ2
e

N−1
∑

n=1

|αn − γαn−1|
2 −

1

σ2
0

‖α0‖
2,

where C is a constant that only depends on the state noise

variances. Each iterative process p = 0, 1, 2, . . ., in the EM

algorithm for estimating τ from y consists of the following

two steps:

E-step. Given the measurements y and an estimate of the

model parameter from the previous iteration τ (p), we

calculate:

Q(τ, τ (p))
def
= E(lnP (z; τ)|y,a; τ (p)),

where the expectation is taken with respect to α condi-

tioned on y and the latest estimate of τ , τ (p).

M-step. This step finds τ
(p+1), the value of τ that maximizes

Q(τ, τ (p)) over all possible values of τ :

τ
(p+1) = argmaxτQ(τ, τ (p))

This procedure is repeated until the sequences τ (0), τ (1),

. . . converges.

The E-step uses a Kalman smoother to estimate the state

αn for which the function Q can be expressed as (see Ap-

pendix A) :

Q(τ, τ (p)) = −
1

σ2

N
∑

n=1

(

Tr
(

S
(p)
n|Ngn(τ)gH

n (τ) (13)

+
(

yn − α̂
(p)
n|Ngn(τ)

) (

yn − α̂
(p)
n|Ngn(τ)

)H
))

where α̂
(p)
n|N

def
= E(αn|y,a; τ (p)) and S

(p)
n|N

def
= E((αn −

α̂
(p)
n|N ) (αn − α̂

(p)
n|N )H |y,a; τ (p)) can be computed for all n =

0, . . . , N − 1 from the fixed interval Kalman smoother [14,

23], using the parameter estimates obtained at iteration p. The

smoother consists of a Backward pass that follows the stan-

dard Kalman filter Forward recursions given as:

Forward recursion:

α̂
(p)
n+1|n = γα̂(p)

n

S
(p)
n+1|n = γ2S(p)

n + σ2
e

Kn+1 = S
(p)
n+1|ngH

n (τ (p))(σ2I + S
(p)
n+1|ngn(τ (p))gH

n (τ (p)))

α̂
(p)
n+1 = α̂

(p)
n+1|n + Kn+1(yn − gn(τ (p))α̂

(p)
n+1|n)

S
(p)
n+1 = S

(p)
n+1|n − S

(p)
n+1|nKn+1gn(τ (p)) (14)

Backward recursion:

Jn−1 = γS
(p)
n−1S

(p)−1
n|n−1 (15)

α̂
(p)
n−1|N = α̂

(p)
n−1Jn−1(α̂

(p)
n|N − γα̂

(p)
n−1)

S
(p)
n−1|N = S

(p)
n−1 + Jn−1(S

(p)
n|N − S

(p)
n|n−1)J

∗
n−1

S
(p)
n,n−1|N = S(p)

n JH
n−1 + Jn(S

(p)
n+1,n|N − γS(p)

n )J∗
n−1

Remark 1 We note that the steps of the EM algorithm can

be extended in the case where the parameters (σ2, σ2
e , σ2

0 , γ)
are assumed unknown. By adapting the same steps of the ap-

proach proposed in [15], the estimates of these parameters

can be obtained in E-step by maximizing the function Q given

by (18).

4. HYBRID CRAMÉR RAO BOUND

The CRB is an important criterion to evaluate how good any

unbiased estimator can be since it provides the MSE bound

among all unbiased estimators. In this section we assume that



the symbol {an} are i.i.d. and equiprobable with each ele-

ment taking on values {±1}. Since the parameters of interest

are the deterministic parameter τ and the random parameter

state α, we have derived in [25] an analytical expression of

the MHCRB using well known properties of the gaussian dis-

tribution and Markov state evolution of AR parameters. In

Section 5, we will show the performance of the proposed EM

algorithm and compare it to the MHCRB.

Result 1 The state and delay parameters are decoupled in

the modified hybrid Fisher information matrix (MHFIM) in

the case of CPM signals as follows:

I =

(

I(τ,τ) 0

0 I(α,α) + B

)

where I(τ,τ) = 8π2h2Nρξ(τ), I(α,α) = M
σ2 I and the matrix

B has the following non-zeros elements B(1, 1) = 1+γ2

σ2
e

−

Eα0

(

∂2 ln P (α0)
∂α0∂α∗

0

)

, B(k, k) = 1+γ2

σ2
e

and B(k, k−1) = B(k−

1, k) = − γ
σ2

e

, for k = 2, . . . , N , and where ρ
def
=

σ2
α

σ2 is the

SNR and ξ(τ)
def
=

∑M−1
m=0

∑L−1
j=0 g2(mTe + jT − τ).

Consequently

MHCRB(τ) =
1

8π2h2Nξ(τ)

1

ρ
(16)

MHCRB(α) =

(

M

σ2
+ B

)−1

(17)

We assume a classical non-informative prior on α0 (see, e.g.,

[19]). As a consequence, Eα0

(

∂2 ln P (α0)
∂α0∂α∗

0

)

= 0.

We remark that the MHCRB(τ) is inversely proportional

to ρ and depends on the modulation index h, the shaping filter

g and the correlation length. (16) remains valid for all CPM

signal. This expression also is similar to the MCRB derived

in [4, rel. (2.4.54)]. Finally, we remark that the MHCRB(α)
does not depend on the parameter τ .

5. SIMULATION RESULTS

In this section, we present numerical examples to illustrate

the performance of the proposed algorithm to estimate jointly

the path delay and complex gains in the special case of binary

GMSK signal with a bandwidth-bit time product BT = 0.3, a

modulation index h = 1
2 and a 4T -wide approximation of the

Gaussian shaping filter, i.e. L = 4 (see e.g. [4, rel. (4.2.8)]).

These parameters are those of GSM systems. The channel is

simulated according to the Jakes model [21, 22] with doppler-

time product of fdT = 0.000738, corresponding to a carrier

frequency of 1.8 GHz, a mobile speed of 120 km/h, and a

transmission rate of 270 kb/s. First order AR process, with

a known coefficient γ = 0.99999 (which corresponds to a

slow fading channel) is chosen to model the time variation

of the complex gains of the channel. The symbols {an} are

assumed known at the receiver, the number N of signaling

intervals is set to N = 200, the oversampling ratio is equal to

M = 8, and a fixed value (τ = 0.4) is used as the normalized

unknown delay τ/T . In the simulations, each value of the

MSE is obtained by averaging over 1000 independent runs.

The initial estimate of the unknown parameter τ is given

by the correlation method or chosen in the vicinity of 0.4T ,

and the channel is initialized to the known state α0 assumed

to be a trial of a complex Gaussian random variable with a

known variance σ2
0 = 1.

Fig. 1 shows one realization of the recursive estimates of

the normalized path delay obtained with the EM algorithm

versus the number of iterations for a SNR of 30 dB. This

figure shows the estimated normalized path delay parameter

converges to the true value fairly quickly in the case of slow

flat-fading channel. We note that the EM algorithm still gives

a valid estimate of τ when fdT > 0.001; however, in this

case, the EM algorithm converges after about 30 iterations as

shown in this figure with fdT = 0.02.
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Fig.1 An EM trajectory for two values of fdT with SNR = 30 dB.
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Fig.2 Normalized MHCRB(τ)/T 2, and estimated MSE E(τ̂ − τ)2/T 2

given by the EM algorithm (ten iterations) and by the correlation method for

fdT = 0.000738, versus SNR.

Fig. 2 compares the MHCRB(τ) normalized to T 2 (given

by (16)) to the MSE of the normalized path delay (i.e. E(τ̂ −
τ)2/T 2) given by the EM algorithm initialized by the esti-

mate given by the correlation method (see, e.g. [20]), and the



correlation method, as a function of the SNR. For compari-

son purpose, we have computed the MSE associated to the

ML method with a perfect knowledge of the complex gains.

As seen from the shown simulation results, performance of

the EM algorithm is very close to the ML method in the case

of perfect knowledge of the complex gains. We observe also

that the EM algorithm significantly outperforms the correla-

tion method based on the maximum of the delay-Doppler am-

biguity function. On the other hand, the performance of the

EM algorithm is close to the MHCRB contrarily to those of

the correlation method.

Fig. 3 compares the MSE for the complex gains E(‖α̂ −
α‖2) given by the EM algorithm, the Kalman smoother with

a perfect knowledge of the delay path to the MHCRB(α)
given by (17), as a function of SNR. We see that the per-

formance of the EM algorithm and the Kalman smoother are

very close, and the associated estimates reach the MHCRB

when the SNR increases. At low SNR, We recall that the

Modified CRB is, in general, looser than the true CRB.
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Fig.4 The normalized MSE E(τ̂ −τ)2/T 2 given by the EM algorithm (ten

iterations) and by the correlation method for SNR = 30 dB, versus fdT .

Fig 4 compares the normalized MSE E(τ̂ − τ)2/T 2 given

by the EM algorithm and the correlation method (see, e.g.

[20]), as a function of fdT with SNR = 30 dB. We observe

from this figure that as fdT increases, the MSE of the delay

given by the EM algorithm remains almost constant contrarily

to the MSE given by the correlation method which increases

when fdT increases.

6. CONCLUSION

We have presented an EM algorithm for joint path delay and

time-varying complex gains estimation for CPM signals over

a time-selective slowly varying flat Rayleigh fading channel.

We have modeled the flat fading channel as a first order au-

toregressive process. The EM algorithm has been combined

with Kalman smoother to yield time-varying complex gains

estimation and ML estimate of the path delay. The proposed

algorithm was reduced to a single-parameter search over the

path delay only. We have also derived a closed-form expres-

sion of the MHCRB for path delay and time-varying complex

gains parameters. The performance of the proposed algorithm

have been evaluated in terms of the MSE and the MHCRB.

Finally, the simulation results have shown that the proposed

algorithm provides better estimation of the delay and com-

plex gains parameters compared to the conventional corre-

lation method. Moreover, the performance of the proposed

algorithm in term of delay estimation is very close to the per-

formance of the ML method in the case of perfect knowledge

of complex gains.
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A. APPENDIX: PROOF OF REL. (13)

Taking the expectation with respect to α conditioned on y,

given the current parameter estimate τ (p), we obtain from (12)

the expectation of the log-likelihood function of the complete

data which can be expressed as

Q(τ, τ (p)) = E(ln(P (z; τ)|y,a; τ (p)) (18)

= c(σ2, σ2
e , σ2

0) −
1

σ2

N−1
∑

n=0

Tr
(

ynyH
n

+ P
(p)
n|Ngn(τ)gH

n (τ) − α̂
(p)∗
n|NyngH

n (τ) − α̂
(p)
n|Ngn(τ)yH

n

)

−
1

σ2
e

N−1
∑

n=0

(

P
(p)
n|N +γ2P

(p)
n−1|N−γ(P

(p)
n,n−1|N+ P

(p)
n−1,n|N )

)

(19)

−
1

σ2
0

|P
(p)
0|N |2, (20)

with P
(p)
n|N

def
= E(αnα∗

n|y,a; τ (p)), P
(p)
n,n−1|N

def
= E(αnα∗

n−1|y,

a; τ (p)), P
(p)
n−1,n|N

def
= E(αn−1α

∗
n|y,a; τ (p)) and α̂

(p)
n|N

def
=



E(αn| y,a; τ (p)). We remark that the terms given by (20),

(19) and the variance-dependent constant C do not depend on

τ , then these terms can be removed from (18).

Since

S
(p)
n|N

def
= E

(

|α(n) − α̂
(p)
n|N |2|y,a; τ (p)

)

= P
(p)
n|N − α̂

(p)
n|N α̂

(p)∗
n|N (21)

By deducing the value of P̂
(p)
n|N from the relation (21) and

replacing it into (18), we obtain (13).
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