
906 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

An EM Algorithm for
Wavelet-Based Image Restoration
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Abstract—This paper introduces anexpectation–maximization
(EM) algorithm for image restoration (deconvolution) based on a
penalized likelihood formulated in the wavelet domain. Regular-
ization is achieved by promoting a reconstruction with low-com-
plexity, expressed in the wavelet coefficients, taking advantage of
the well known sparsity of wavelet representations. Previous works
have investigated wavelet-based restoration but, except for certain
special cases, the resulting criteria are solved approximately or re-
quire demanding optimization methods. The EM algorithm herein
proposed combines the efficient image representation offered by
the discrete wavelet transform (DWT) with the diagonalization of
the convolution operator obtained in the Fourier domain. Thus,
it is a general-purpose approach to wavelet-based image restora-
tion with computational complexity comparable to that of standard
wavelet denoising schemes or of frequency domain deconvolution
methods. The algorithm alternates between an E-step based on the
fast Fourier transform (FFT) and a DWT-based M-step, resulting
in an efficient iterative process requiring ( log ) operations
per iteration. The convergence behavior of the algorithm is inves-
tigated, and it is shown that under mild conditions the algorithm
converges to a globally optimal restoration. Moreover, our new ap-
proach performs competitively with, in some cases better than, the
best existing methods in benchmark tests.

Index Terms—Bayesian estimation, expectation–maximization
algorithm, image deconvolution, image restoration, penalized
maximum likelihood, wavelets.

I. INTRODUCTION

WAVELET-BASED methods had a strong impact on the
field of image processing, especially in coding and de-

noising. Their success is due the fact that the wavelet transforms
of images tend to be sparse (i.e., many coefficients are close
to zero). This implies that image approximations based on a
small subset of wavelets are typically very accurate, which is
a key to wavelet-based compression. The good performance of
wavelet-based denoising is also intimately related to the approx-
imation capabilities of wavelets. Thus, the conventional wisdom
is that wavelet representations that provide good approxima-
tions will also perform well in estimation problems [23].

Manuscript received June 27, 2002; revised February 21, 2003. This work was
supported in part by the Science and Technology Foundation, Portugal, under
Grant POSI/33143/SRI/2000, the National Science Foundation under Grant
MIP-9701692, the Army Research Office under Grant DAAD19-99-1-0349,
and the Office of Naval Research under Grant N00014-00-1-0390. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Thierry Blu.

M. A. T. Figueiredo is with the Institute of Telecommunications and the De-
partment of Electrical and Computer Engineering, Instituto Superior Técnico,
1049-001 Lisboa, Portugal (e-mail: mtf@lx.it.pt).

R. D. Nowak is with the Department of Electrical and Computer Engineering,
Rice University, Houston, TX 77001 USA (e-mail: nowak@rice.edu).

Digital Object Identifier 10.1109/TIP.2003.814255

Image deconvolution is more challenging than denoising.
This is a classic, well-studied image processing task [1], but
applying wavelets has proved to be a nontrivial problem.
Deconvolution is most easily dealt with (at least computa-
tionally) in the Fourier domain. However, image modeling
(thus denoising) is best handled in the wavelet domain; here
lies the problem. Convolution operators are generally quite
difficult to represent in the wavelet domain, unlike the simple
diagonalization obtained in the Fourier domain. This suggests
the possibility of combining Fourier-based deconvolution
with wavelet-based denoising, and several ad hoc proposals
exploiting this combination have appeared in the literature.

In this paper we formally develop an image deconvolution
algorithm based on amaximum penalized likelihood estimator
(MPLE). The MPLE cannot be obtained in closed-form, and
so we propose anexpectation-maximization(EM) algorithm to
numerically compute it. The result is an iterative deconvolu-
tion algorithm which alternates between the Fourier and wavelet
domains. We compare our method with the state-of-the-art in
benchmark problems, showing that it performs competitively,
sometimes better, in terms of SNR improvement.

II. PROBLEM FORMULATION

Image restorationaims at recovering anoriginal image
from a degradedobserved version [1]. In this paper, and

will denote vectors containing all the image pixel values,
after some (e.g., lexicographic) ordering. Let and be
the dimensionality of and , respectively. The class of
observations/degradations herein considered is described by
the standard “linear observation plus Gaussian noise” model

(1)

In (1), denotes the (linear) observation operator (i.e., a
matrix), and is a sample of zero-mean white Gaussian

noise with variance ; that is, , where
denotes a multivariate Gaussian density with mean

and covariance , evaluated at , and is an identity matrix.
Examples of observation mechanisms which are adequately ap-
proximated by (1) include: optical and/or motion blur, tomo-
graphic projections, electronic noise, photoelectric noise.

In this paper we are specifically interested in problems where
models space-invariant periodic convolutions in the original

image domain. This class of problems are usually termedimage
deconvolutionor image restoration. Matrix is then square
(with ) block-circulant and can be diagonalized
by the two-dimensional (2-D) discrete Fourier transform (DFT)

(2)
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In the above equation, is the matrix that represents the
2-D discrete Fourier transform, is its inverse (
is an orthogonal matrix, that is, , where

denotes conjugate transpose), andis a diagonal matrix
containing the DFT coefficients of the convolution operator
represented by . This means that multiplication by can
be performed in the discrete Fourier domain with a simple
point-wise multiplication (recall that is diagonal)

where denotes the DFT of .
If matrix is block-Toeplitz, but not block-circulant, it is

possible to embed the nonperiodic convolution that it represents
in a larger periodic convolution and still work in the DFT do-
main [16]. Accordingly, all the results and statements made in
this paper concerning circulant observation matrices (periodic
convolutions) can be extended to the Toeplitz case.

III. REVIEW OF FFT-BASED RECOVERY AND WIENER

FILTERING

If is invertible (i.e., there are no zeros in the diagonal of
, thus exists) we can write . Then,

ignoring the noise, we can obtain an estimate ofas

(3)

where denotes the DFT of the observation. Of
course, in practice, the DFT and its inverse are computed via
the fast Fourier transform(FFT) algorithm, which requires

operations (where is the number of pixels), not
using matrix multiplications. Consequently, implementing (3)
also requires operations.

In most cases of interest, is noninvertible (there are zeros in
the diagonal of ) or at least very ill-conditioned (there are very
small values in the diagonal of), with direct inversion leading
to a severe amplification of the observation noise. Therefore,
some regularization procedure is required. A common choice is
to adopt amaximum penalized likelihood estimator(MPLE)

(4)

where is the likelihood function cor-
responding to the observation model in (1), and is a
penalty function. From a Bayesian perspective, this is amax-
imum a posteriori(MAP) criterion under the prior , such
that .

If the prior is Gaussian, with mean(usually zero) and
covariance matrix , it is well-known (see, for example, [31])
that the MPLE/MAP estimate can be written as

(5)

When the covariance of the prior,, is also (as the observation
matrix ) block-circulant (meaning that the original image is
considered a sample of stationary Gaussian field with periodic

boundary conditions), it is also diagonalized by the DFT and we
can write , where is diagonal. In this case, (5)
can be implemented in the DFT domain as

(6)

Since the matrix being inverted in (6) is diagonal, the leading
computational cost is the corresponding to the
FFTs and and to the inverse FFT expressed by the left
multiplication by . Equation (6) is a Wiener filter in the
DFT domain [1].

Unfortunately, this FFT-based procedure only discriminates
between signal and noise in the frequency domain. It is
well-known that real-world images are not well modeled by
stationary Gaussian fields. A typical imagewill not admit
a sparse Fourier representation; the signal energy may not be
concentrated in a small subspace, making it difficult to remove
noise and preserve signal simultaneously.

IV. WAVELET-BASED IMAGE RESTORATION

A. Introduction

In wavelet-based estimation, the imageis re-expressed in
terms of an orthogonal wavelet expansion, which typically pro-
vides a very sparse representation (a few large coefficients and
many very small ones) [23]. Let denote the (inverse) discrete
wavelet transform (DWT) and let us write , where is
the vector of wavelet coefficients [23]. As above, let us consider
an MPLE/MAP criterion, expressed in terms of, the wavelet
coefficients of the original image, that is, taking the likelihood
function to be . Considering some penalty empha-
sizing sparsity of the DWT coefficients, the MPLE/MAP esti-
mate is given by

(7)

(8)

The penalty function can be interpreted as minus the logarithm
of some (non-Gaussian, sparseness-inducing) prior [26],

, as a complexity-based penalty [27], or as
a regularization term [2].

When , that is, for direct denoising problems, wavelet-
based methods are extremely efficient, thanks to the fast imple-
mentations of the DWT and to the orthogonality of (that is,

) which allows solving (8) using a co-
efficient-wise denoising rule; moreover, these methods achieve
state-of-the-art performance (see [14], [23], [25], [26] and ref-
erences therein). The very good performance of wavelet-based
denoising can be traced back to the adequacy of the underlying
priors/models of real world images.

Although wavelets have also been shown to be effective in
image restoration problems (see [3], [4], [8], [9], [17], [18], [22],
[28], [29], [33], and [34]), major difficulties arise

• unlike alone, is not block-circulant, thus it is not
diagonalized by the DFT;

• unlike alone, is not orthogonal, thus precluding
efficient coefficient-wise rules.
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B. Previous Work

In [4], [22], and [33], general frameworks aimed at restoration
approaches of the form of (8) has been proposed. The results are
promising, but the proposed algorithms are very numerically
intensive. The iterative method of [28] is also similar in spirit,
employing an ad hoc thresholding step within an iterative
restoration algorithm. In certain exceptional cases in which the
operator is scale-homogeneous, and hence (approximately)
diagonalized by , the so-calledwavelet-vagueletteapproach
leads to very efficient threshold restoration procedures [9].
However, most convolutions are not scale-invariant and thus
the wavelet-vagueletteis inapplicable.

An adaptation of thewavelet-vagueletteapproach, based on
wavelet-packets designed to match the frequency behavior of
certain convolutions, was proposed in [18]. This method was
extended to a complex wavelethidden Markov tree(see [6])
scheme in [17]. Although these methods are computationally
fast, they are not applicable to most convolutions and, more-
over, choosing the (image) basis to conform to the operator is
exactly what wavelet methods set out to avoid in the first place.
The wavelet packets matched to the frequency behavior of the
convolution operator may not match image structure as well as
a conventional wavelet basis.

Other methods for more general deconvolution problems
have been proposed. In [3], the approach is to adapt the linear
filtering spatially, based on an edge detection test. The algo-
rithm presented in [29] combines Fourier domain regularization
with wavelet domain thresholding, in a noniterative fashion,
with very good results. Recently, an iterative method using
preconditioned conjugate gradient was proposed in [8]; the
method achieves very good results, but it requires complex
wavelet transforms and a complicated initialization procedure
based on another wavelet-based restoration method (namely
the one proposed in [29]).

Finally, we mention that EM and EM-type algorithms have
been previously used in image restoration and reconstruction,
with nonwavelet-based formulations (e.g., [11], [12], [19]).

V. BEST OFBOTH WORLDS

The approach proposed in this paper is able to use the best
of the wavelet and Fourier worlds in image deconvolution
problems. The speed and convenience of the FFT-based Wiener
filter, which is well matched to the observation model, and the
adequacy of wavelet-based image models.

A. Equivalent Model and the EM Algorithm

Let us write the observation model in (1) with respect to the
DWT coefficients (recall that ):

(9)

As mentioned above, this equation clearly shows where the dif-
ficulties come from: although is diagonalized by the DFT,

is not, and so FFT-based methods are not directly appli-
cable. To overcome this problem, we propose decomposing the

Fig. 1. Soft-threshold function (dashed) and modified soft-threshold function
(solid) with threshold level set at 1 and� = 1. If � = 0:1, then the difference
between the soft-threshold function and the modified soft-threshold function are
indistinguishable to the naked eye at this scale.

TABLE I
SNR IMPROVEMENTS(SNRI) OBTAINED BY SEVERAL VARIANTS OF THE

PROPOSEDALGORITHM ON THE BLURRED IMAGE SHOWN IN FIG. 2

white Gaussian noise into the sum of two different Gaussian
noises (one of which is nonwhite), i.e.,

(10)

where is a positive parameter, and and are independent
noises such that

Notice that the covariance of is
, as required. For to be semi-

positive definite (thus a valid covariance matrix), we must have
, where is the largest eigenvalue of .

With a normalized (total mass equal to one) and periodic (cor-
responding to a block-circulant1 ) blur, we have , and

1If H is not block-circulant, but block-Toeplitz, as long as the blur satisfies
some very mild conditions, the eigenvalues are, asymptotically (in the size of
the matrix) the same (see [15] and references therein); with blurs that are much
smaller than the image, the eigenvalues of the corresponding Toeplitz or circu-
lant matrices are then roughly the same.
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the condition simplifies to . The idea behind the pro-
posed noise decomposition is that it allows the introduction of
a hidden image which decouples the denoising from the de-
convolution, as next described. Notice that usingand , we
can decompose the observation model as

(11)

Clearly, if we had , we would have a pure denoising
problem with white noise (the first equation in (11)). This
observation is the key to our approach, since it suggests treating

as missing data and estimatingvia the EM algorithm (see,
e.g., [7], [24]). Recall that the EM algorithm is a means of ob-
taining MAP/MPLE estimates (of which maximum likelihood
is a particular case) of a parameter (see (7)) in cases where
the penalized log-likelihood is hard to
maximize, but the so-calledcomplete penalized log-likelihood

would be easy to maximize if we
had . The EM algorithm produces a sequence of estimates

by alternating two steps (until some
stopping criterion is met).

• E-step: Computes the conditional expectation of the
complete log-likelihood, given the observed data and

the current estimate . The result is the so-called
-function:

(12)

• M-step: Updates the estimate according to

(13)

It is well known (e.g., [7], [24]) that each iteration of EM is
guaranteed to increase the penalized log-likelihood, that is

Next, we derive the specific formulas for the E and M steps, for
our deconvolution problem.

B. E-Step: FFT-Based Estimation

The complete likelihood is
, because, conditioned on, is independent of

(see (11)). Since , where is zero-mean with
covariance , we simply have

where and are constants that do not depend on. This
shows that the complete-data log-likelihood is linear with re-
spect to the missing data. Consequently, all that is required in

the E-step is to compute the conditional expectation of, given

the observed data and current parameter estimate

(14)

and plug it into the complete-data log-likelihood to obtain

(15)

Since and

, then is also
Gaussian, with mean given by (see, e.g., [31])

(16)

which can be efficiently implemented by FFT (recall that
and ). Notice that since

can be seen as the current estimate of the true
image , we can write the E-step as

(17)

revealing its similarity with a Landweber iteration for solving
[20], [32]. Of course this is just the E-step; the com-

plete EM algorithm is not a Landweber algorithm.

C. M-Step: Wavelet-Based Denoising

In the M-step, the parameter estimate is updated as in (13),

where is given by (15) with computed according
to (16)

(18)

This is simply a MPLE/MAP estimate of, under the prior
, for a denoising problem: we observe
. Because is orthogonal we have

, where denotes
the DWT transform of . Thus, the M-Step can be computed
by applying the corresponding denoising rule to

(19)

For example, under an penalty

(20)
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Fig. 2. (a) Original image, (b) blurred image, and (c) restored image using the
UDWT version of our algorithm with rule (22).

Fig. 3. SNR improvement along the iterations of the (top) UDWT-based
method and (bottom) the random shifts method, for the example of Fig. 2.

TABLE II
SNR IMPROVEMENTSOBTAINED BY SEVERAL VARIANTS OF THE PROPOSED

ALGORITHM ON THE IMAGES SHOWN IN FIG. 4

Fig. 4. Blurred and noisy images with (a)� = 2 and (b)� = 8, and
corresponding restored images (c and d).

is obtained by applying asoft-thresholdfunction to ,
the wavelet coefficients of [26]. More specifically, each

component of is obtained separately according to

(21)

where denotes thepositive part operator, defined as
, and is thesign function, defined as

, if , and , if . Other priors
or complexity penalties will lead to different wavelet denoising
rules in the M-Step [14], [23], [26], [27].
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Fig. 5. SNR improvement along the iterations of EM for the example of Fig. 4
(left, � = 2; right, � = 8).

TABLE III
SNR IMPROVEMENTSOBTAINED BY SEVERAL VARIANTS OF THE PROPOSED

ALGORITHM ON THE BLURRED IMAGE SHOWN IN FIG. 6

D. Computational Complexity

The computational complexity of the M-Step is dominated
by the DWT, usually for an orthogonal DWT. The com-
putational load of the E-step is dominated by the
cost of the FFT. The cost of each iteration of the complete EM
algorithm is thus .

Fig. 6. (a) Original image, (b) blurred image, and (c) restored image using rule
(22) and the UDWT-based method.

E. Some Comments

An important feature of this EM algorithm is that any wavelet
denoising procedure that can be interpreted as an MPLE/MAP
rule can be employed in the M-Step. For example, could
correspond to a hidden Markov tree model [6] or to a locally
adaptive model [25]; of course, in those cases, the M-step would
no longer be a simple fixed nonlinear thresholding rule. We can
also use the denoising rule that we have proposed in [13], [14]

(22)

although it was originally derived from an empirical-Bayes ap-
proach, we have shown that it corresponds to an MPLE/MAP
estimate under a prior of a particular form [14].

Let denote whichever denoising operation is applied to the
wavelet coefficients (e.g., (21) or (22)), andthe resulting de-
noising procedure applied to some image, that is,

(23)

With this notation, we can write compact a expression for each
iteration of the EM algorithm

(24)

which can be interpreted as a Landweber iteration followed by
a wavelet-based denoising step.

Of course the choice of affects the rate of convergence of
the algorithm. The standard theory of the rate of convergence
of EM, based on the information matrices (see [24]), suggests
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that should be made as large as possible. Since we must have
to have a meaningful EM algorithm (see Section V-A),

a reasonable choice is . Although the analysis of the
rate of convergence based on the information matrices can only
be performed ignoring the penalty terms, since these may be
nondifferentiable, we found experimentally that is
indeed a good choice.

Finally, let us summarize the several attractive features of this
approach:

• the computational complexity of each iteration is
;

• we can employanyorthogonal wavelet basis;
• we can employanywavelet-based penalization.

VI. EXTENSION TO UNKNOWN NOISE VARIANCE

Up to this point, we have assumed that the noise variance
is known in advance. We now present an extension of the pro-
posed algorithm which also estimates. This is simply done
by inserting an additional step in which the noise variance esti-
mate is updated based on the current estimate of the true image

. The complete algorithm is now defined by two
steps:

• EM step: (24);
• Noise variance update:

(25)

This algorithm is not an EM algorithm, but it is also guaran-
teed to increase the penalized likelihood function. To this, let us
denote the penalized log-likelihood being maximized (which is
now also a function of ) as

(26)

For the EM step, we have , due
to its monotonicity property [24]. The noise variance updating
step is simply a maximum likelihood estimate of, with the

estimate of fixed at

since does not depend on . Accordingly, we have

. In conclusion, since
both steps are guaranteed not to decrease the penalized log-like-
lihood function, so is their combination.

VII. CONVERGENCEANALYSIS OF THEEM ALGORITHM

A general, basic property of an EM algorithm is that it gener-
ates a sequence of nondecreasing (penalized) likelihood values
[24]. EM iterations produce a sequence of images, each of which
has a penalized likelihood value greater than or equal to that
of the preceding image. This is a desirable property, but sev-
eral questions remain. 1) Does the sequence (of penalized like-
lihood values) converge to the maximum penalized likelihood?

2) Does the corresponding sequence of images converge to a
fixed image and is this limit (assuming it exists) unique? This
section explores these issues. First, we consider the conditions
under which the EM algorithm converges to a stationary point
of the penalized likelihood function. Second, we investigate the
convexity of the penalized negative log-likelihood function and
establish conditions under which the EM algorithm converges
to a unique solution.

A. Convergence to a Stationary Point

The results in [35] guarantee that the EM algorithm converges
to a stationary point (local maximum or saddle-point) of the pe-
nalized likelihood function under fairly mild conditions. The-
orem 2 of [35] shows that all limit points of the EM algorithm are
stationary points of the penalized likelihood function, provided

that and are continuous in both and . This
condition is clearly met by the expected complete-data log-like-

lihood . The penalty function also needs to
be continuous in order to guarantee convergence to a stationary
point. This precludes the use of the conventional hard-threshold
function, but both the soft-threshold rule (21) and our rule in
(22) correspond to continuous penalty functions (log-priors).
To summarize, if the penalty function underlying the nonlinear
shrinkage/threshold function employed in the M-Step is con-
tinuous in , then the EM algorithm converges to a stationary
point of the penalized log-likelihood. The limit points may be
local maxima or saddle-points; it is difficult to guarantee con-
vergence to a local maximum without further assumptions. Such
conditions are investigated next.

B. Convergence to a Global Maximum

Let us begin by considering the case in whichis invert-
ible. Under this assumption, the log-likelihood term of (8) is
strictly concave in . Now if the penalty function is also con-
cave (not necessarily strictly so), then the penalized negative
log-likelihood function is strictly concave in. For example, the

penalty function, , leading to the soft-threshold rule, is
convex, thus is concave, though not strictly. Strict con-
cavity of the penalized log-likelihood function implies that there
is only one stationary point, the global maximum. Thus, under
the continuity conditions discussed above, the EM algorithm is
guaranteed to converge to the global maximum. Note that the
uniqueness of the maximum point guarantees that the sequence
of images produced by the EM algorithm converges to the global
MPLE.

Next consider situations when is not invertible. For
example, is not invertible if the DFT of the underlying
point spread response is zero at some point(s). In such cases,
the log-likelihood term of (8) is concave, but not strictly,
in . If is also concave (but not strictly so), then
the sequences of penalized log-likelihood values produced by
the EM algorithms will converge to their respective global
maximum penalized log-likelihood values. This follows from
the EM convergence results of Wu [35], since all stationary
points of a convex function are global maxima. However, since
there may be many global maxima, the EM algorithms may
not converge to fixed images (they are only guaranteed to
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converge to their respective sets of images corresponding to
global maxima). If it does converge to a fixed image (this
limit could depend on the initialization of the algorithm), then
that image maximizes the penalized likelihood criterion.

If is strictly concave, then the EM algorithm is
guaranteed to converge to the unique MPLE and a unique op-
timal image. This also follows from the EM convergence results
[35]; the unique stationary point of a strictly concave function is
the global maximum. So far, the only case we have considered
where is concave is the penalty; but this function
is not strictly concave. The following modification leads to a
strictly convex (thus a strictly concave ), and a
threshold rule nearly the same as the soft-threshold, except that
it is differentiable at all points. Instead of thepenalty, which
has the form , consider

(27)

for some small number . Notice that as ,
approaches . However, for every , this penalty is
strictly convex, since . The differ-
ence between the threshold rule induced by the penalty (27) and
the soft-threshold is that the former makes a smooth transition
across the threshold level, as shown in Fig. 1.

C. Summary of Convergence Results

The following four points summarize the convergence prop-
erties of our EM algorithm.

1) If the penalty is a continuous function of, then
each iteration of the EM algorithm produces an image
with a penalized likelihood value greater than or equal to
the previous image.

2) If is convex (but not strictly so), then the se-
quence of penalized log likelihood values converges to
the global maximum. However, since there may be many
global maxima, the EM algorithm may not converge to a
fixed image; if it does, then that image maximizes the pe-
nalized likelihood criterion.

3) The EM algorithm converges to the unique, globally
optimal solution of the penalized likelihood criterion
if either of the following two conditions are met: is
invertible and the penalty function is convex (it e.g.,
soft-threshold); is strictly convex (e.g., the modi-
fied soft-threshold penalty (27)).

4) Recall the that the EM algorithm coupled with the
adaptive updates of the noise variance, given by (25),
produce nondecreasing sequences of penalized likelihood
values (with the noise variance treated as an unknown
parameter to be inferred jointly with). However, the
corresponding penalized log likelihood function is not
concave and convergence can no longer be guaranteed
in this case.

VIII. E XTENSION TOTRANSLATION-INVARIANT RESTORATION

It is well known that the dyadic image partitioning underlying
the orthogonal DWT can cause blocky artifacts in the processed
images. In denoising problems, translation-invariant approaches
have been shown to significantly reduce these artifacts and are

routinely used instead of the orthogonal DWT [5], [14], [21].
The standard way to achieve translation invariance in denoising
is to use a redundant transform, called the translation-invariant
DWT (TI-DWT), which corresponds to computing the inner
products between the image and all (circularly) translated ver-
sions of the wavelet basis functions. Denoising is accomplished
by thresholding as usual and then averaging the results. Working
with all possible shifts of the discrete wavelet basis functions,
rather than the dyadic shifts underlying the orthogonal DWT
basis functions, helps to reduce blocky artifacts and achieves
better denoising performance [5], [14], [21].

In this paper, we consider three ways to achieve translation in-
variance in our iterative image deconvolution algorithm, which
we describe in the following three subsections.

A. Translation Invariance via Undecimated DWT

The TI-DWT is an over-complete transform based onor-
thogonal DWTs. Each of the DWTs is comprised of circularly
shifted versions of the discrete DWT basis functions. Let
be an orthogonal DWT matrix. Let index
all possible circular image shifts; let denote a DWT matrix
with the -th shift applied to all the basis functions in . With
this notation, the TI-DWT matrix is written as

(28)

Since the TI-DWT is not invertible, the pseudo-inverse

(29)

is standardly used to transform the redundant set of coefficients
back to the image space. Notice that ifis any image,

...

because , thus . However,
and thus is not orthogonal.

When corresponds to a TI-DWT, the M-Step of our EM
algorithm can not be simplified as in (19).2 However, as is
common in denoising [5], [14], [21], we can ignore this fact and
still use (19) as if were orthogonal. The resulting method is
no longer and EM algorithm but, as will be shown below, it leads
to excellent image restoration results.

Recall that the coefficients of the TI-DWT can be efficiently
computed using the so-called undecimated DWT (UDWT),
which simply eliminates the down-sampling process in the
filter-bank implementation of a wavelet transform [21]. The
TI-DWT produces coefficients in total, but only
values are unique because certain shifts generate the same
inner products between the image and basis functions. The
filter-bank implementation of the UDWT produces only the

2A similar complication arises if the orthogonal DWT is replaced by a
biorthogonal DWT, but we will not investigate that problem here.
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unique coefficients, and requires op-
erations. Thus, the computational complexity of each partial
optimization in the M-Step is .

Summarizing, our first approach to TI restoration consists
simply in keeping the same E-step and M-step, but letting
in (19) be the UDWT of , rather than its orthogonal DWT.

B. Translation Invariance via Random Shifts

Another possible way to achieve some level of translation
invariance consists in choosing a randomly shifted DWT at
each iteration. Formally, at each M-step, we letbe a randomly
chosen circular shift. Then, we compute an-shifted orthogonal
DWT of , that is and apply the original
denoising step (19). With respect to the UDWT-based approach
described in the previous subsection, this method has the
advantage of employing an orthogonal DWT, which has
computational cost, rather than the cost associated
with the UDWT.

This method is of course not an EM algorithm. Although the
M-step is exact, it corresponds to using a different penalty/prior
at each iteration; accordingly, the resulting algorithm can not
be interpreted as maximizing some penalized likelihood (or a
posteriori probability function).

As shown by the experiments reported below, this method
almost always leads to results very close to those obtained by
the UDWT-based method.

C. Translation Invariance via a Generalized EM Algorithm

Although both TI restoration methods described above per-
form well, none of the two is a true EM algorithm, thus they
don’t have any monotonicity or convergence guarantee. Our
third approach to TI restoration consists in using the UDWT but,
rather than keeping the original form of the M-step, we change it
to recover the monotonicity properties of the algorithm. Specif-
ically, we derive a so-calledgeneralized EM(GEM) algorithm,
in which the exact maximization performed in the M-step is re-
placed by a weaker condition:

(30)

where

(31)

is the function to be maximized in the M-Step (see (18)), and
is the vector of unique coefficients associated with the
UDWT. GEM algorithms possess the same monotonicity and
convergence properties as standard EM [24], [35].

As above, denotes the orthogonal inverse DWT matrix at
an arbitrary shift , and denotes the corresponding set of
coefficients. Writing , where are the
coefficients not associated with the basis functions in, we
have

(32)

where is composed of the basis functions not in .

The generalized M-step is obtained by maximizing
with respect to alone, keeping fixed. To this end, notice that
we can write (31) as

where , and where we are assuming a sep-
arable penalty function. Then, the generalized M-step is per-
formed by choosing some , either randomly
or following some predefined schedule, and letting

(33)

(34)

finally, we set . This does verify
the GEM condition (30), because

Moreover, the computation of the update is simple. To obtain

we apply the inverse UDWT to to obtain

. This can be computed in operations.
Finally, notice that (34) is simply a standard DWT denoising
operation (with the threshold/shrinkage function associated
with ) applied to , which can be computed in
operations.

Being a GEM algorithm, this method has all the monotonicity
guarantees of EM and is thus of theoretical interest. However, it
turns out that, in all the experiments carried out, this approach
performs worse than the two previous methods; for this reason,
we will not further consider it in this paper.

IX. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results
illustrating the performance of the proposed approach and
comparing it with some state-of-the-art methods recently de-
scribed in [17], [22], and [29]. We consider only the TI versions
of the algorithm: the UDWT-based method (using the UDWT
filterbank of [21]) and the method based on random shifts;
the reason for this choice is that the TI versions clearly and
consistently outperform those that use the orthogonal DWT.
Moreover, we do not consider the noise-adaptive version de-
scribed in Section VI; this is because we always achieve better
performance using a fixed noise variance, which can be easily
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estimated directly from the observed image using the MAD
scheme proposed in [10].

In all the experiments, we employ Daubechies-2 (Haar)
wavelets; other wavelets always lead to very similar results.
The algorithm is initialized with a Wiener estimate (see (5)),
with and , and the convergence criterion is

where is a threshold, typically set to . As discussed in
Section V-E, we set ; we found experimentally that this
is a good general-purpose choice.

In the first set of tests, we consider the setup of [29] and
[3]: uniform blur of size 9 9, and the noise variance such
that the SNR of the noisy image, with respect to the blurred
image without noise (BSNR), is 40 (this corresponds to

). We have restored this image using six variants of
the algorithm: the denoising rule (22), the rule corresponding to
the modified Laplacian prior (with and , see
(27)), and the soft-threshold rule, each with the UDWT-based
method and the random shifts scheme. The SNR improvements
obtained by the several algorithms are summarized in Table I,
showing that our methods perform competitively (some versions
better, others slightly worse) than the one in [29]. Fig. 2 shows
the original, blurred/noisy, and restored images, using rule (22)
and the UDWT-based method. The other restored images are vi-
sually indistinguishable from this one, so we do not show them
here. Finally, in Fig. 3, we plot the evolution of the SNR im-
provement along the EM algorithm, for the UDWT-based and
the random shifts algorithm, both with rule (22) (the other ver-
sions of the algorithm evolve similarly). We can observe that, in
this case, convergence is obtained after 200300 iterations.

In the second set of tests, we replicate the experimental con-
dition of [17]. The point spread function of the blur operator is
given by , for , . Noise
variances considered are and . The SNR im-
provements obtained are summarized in Table II, together with
the results reported in [17]. Fig. 4 shows the original image,
the two blurred/noisy images, and the corresponding restora-
tions, obtained with rule (22) and the UDWT-based method. The
SNR improvements obtained by our method are very similar to
those reported in [17]; notice that [17] uses a more sophisticated
wavelet transform and prior model. Finally, in Fig. 5, we plot the
evolution of the SNR improvement along the EM iterations, for
the UDWT-based algorithm with rule (22) (the other versions
of the algorithm evolve similarly). we see that convergence is
achieved after approximately 40 and 810 iterations, respec-
tively, for and .

In the final set of tests we have used the blur filter and noise
variance considered in [22]. Specifically, the original image was
blurred by a 5 5 separable filter with weights [1, 4, 6, 4, 1]/16
(in both horizontal and vertical directions) and then contami-
nated with white Gaussian noise of standard deviation .
The SNR improvements obtained by the six instances of our
algorithm are reported in Table III. The original, blurred, and
restored images are shown in Fig. 6. In this case, convergence
is obtained after 5 7 iterations.

We can observe a clear trend in the behavior of the algorithm:
for larger noise variance, convergence is achieved in fewer iter-
ations (recall from the results above: 200300 iterations for

; 40 iterations for ; 8 10 iterations for
; and 5 7 iterations for ). As the number

of iterations decreases, the performance of the random-shifts-
based method degrades, since it does not cover enough shifts to
achieve approximate shift-invariance.

X. CONCLUSIONS

This paper proposed a wavelet-based MPLE/MAP criterion
for image deconvolution. The estimate must be computed
numerically, and we derived an EM algorithm for this purpose,
leading to a simple procedure that alternate between Fourier
domain filtering and wavelet domain denoising. We have also
proposed extensions of the algorithm which perform shift-
invariance restoration. Experimentally, our approach performs
competitively with two of the best existing methods.
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