
HAL Id: hal-00766686
https://hal.archives-ouvertes.fr/hal-00766686v3

Submitted on 6 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

An EM Approach for Time-Variant Poisson-Gaussian
Model Parameter Estimation

Anna Jezierska, Caroline Chaux, Jean-Christophe Pesquet, Hugues Talbot,
Gilbert Engler

To cite this version:
Anna Jezierska, Caroline Chaux, Jean-Christophe Pesquet, Hugues Talbot, Gilbert Engler. An
EM Approach for Time-Variant Poisson-Gaussian Model Parameter Estimation. IEEE Transac-
tions on Signal Processing, Institute of Electrical and Electronics Engineers, 2014, 62 (1), pp.17-30.
�10.1109/TSP.2013.2283839�. �hal-00766686v3�

https://hal.archives-ouvertes.fr/hal-00766686v3
https://hal.archives-ouvertes.fr


An EM Approach for Time-Variant Poisson-Gaussian Model

Parameter Estimation ∗

Anna Jezierska †, Caroline Chaux,

Jean-Christophe Pesquet, Hugues Talbot and Gilbert Engler

June 6, 2014

Abstract

The problem of estimating the parameters of a Poisson-Gaussian model from experimental data has
recently raised much interest in various applications, for instance in confocal fluorescence microscopy. In
this context, a field of independent random variables is observed, which is varying both in time and space.
Each variable is a sum of two components, one following a Poisson and the other a Gaussian distribution.
In this paper, a general formulation is considered where the associated Poisson process is nonstationary
in space and also exhibits an exponential decay in time, whereas the Gaussian component corresponds to
a stationary white noise with arbitrary mean. To solve the considered parametric estimation problem, we
follow an iterative Expectation-Maximization (EM) approach. The parameter update equations involve
deriving finite approximation of infinite sums. Expressions for the maximum error incurred in the
process are also given. Since the problem is non-convex, we pay attention to the EM initialization, using
a moment-based method where recent optimization tools come into play. We carry out a performance
analysis by computing the Cramer-Rao bounds on the estimated variables. The practical performance of
the proposed estimation procedure is illustrated on both synthetic data and real fluorescence macroscopy
image sequences. The algorithm is shown to provide reliable estimates of the mean/variance of the
Gaussian noise and of the scale parameter of the Poisson component, as well as of its exponential decay
rate. In particular, the mean estimate of the Poisson component can be interpreted as a good-quality
denoised version of the data.

∗Part of this work appeared in the conference proceedings of EUSIPCO 2011 [1] and ISBI 2012 [2]. This work was supported
by the Agence Nationale de la Recherche under grant ANR-09-EMER-004-03.

†A. Jezierska (Corresponding Author), C. Chaux, J.-C. Pesquet and H. Talbot are with the Université Paris-Est, Laboratoire
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1 Introduction

Estimating the parameters of a probability distribution constitutes a fundamental task in many statistical
signal processing problems. This estimation problem becomes more challenging when the observed data
are distributed according to some mixture of given probability laws [3]. Most existing works are focused on
Gaussian mixture models [4]. However, due to their importance in signal/image recovery problems, there has
been recently a growing interest in Poisson-Gaussian probabilistic models. Application areas include among
others astronomy [18], microscopy [?], medical engineering [?], energy science [?]. The Poisson-Gaussian
model was also investigated in other specific signal processing applications, e.g. in [?, ?]. In imaging,
the Poisson component is often related to the quantum nature of light and accounts for photon-counting
principles in signal registration, whereas the Gaussian component is typically related to thermal noise present
in the electronic part of the imaging system. Despite constant improvements in data acquisition devices,
electronic noise usually cannot be neglected. Among existing works dealing with Poisson-Gaussian noise, a
number of methods have addressed noise identification problems [5–11], as well as denoising [9, 12–16] and
reconstruction [17–21]. The developed algorithms are useful in various areas such as digital photography [8],
medicine [22], biology [23] and astronomy [18].

A brief overview of published works primarily directed towards the problem of parameter estimation of
Poisson-Gaussian densities is useful. It reveals that most existing methods assume a zero-mean Gaussian
noise component. Furthermore, they are usually grounded on some approximations based on variance
stabilization techniques [8–11]. Only a few publications differ. Zhang, in [7], proposes a cumulant-based
approach. A method estimating solely the Gaussian component was also proposed in [6]. Although methods
based on maximum likelihood are very popular in parametric estimation [24,25], [?], [?], they have not been
extensively investigated in the context of Poisson-Gaussian distribution yet.

In the following, we propose a new framework dealing with Poisson-Gaussian noise parameter estimation
from multidimensional time series. We first discuss the properties of the observation model. The versatility
of the considered non-stationary model allows us to take into account an exponential decay of the intensity
of the Poisson component. Analysis of time series including such an exponential decay covers a broad range
of application areas, e.g. nuclear magnetic resonance (NMR) spectroscopy [26], magnetic resonance imaging
(MRI) [27] and fluorescence imaging systems [28].

For mixed probability distributions, one must usually resort to some iterative estimation procedure. In
the Poisson-Gaussian case, we propose to employ an Expectation-Maximization (EM) [29], [?] approach.
Although the EM method has been at the origin of numerous works [?,?,?,?], the use of this method for
parameter estimation of a Poisson-Gaussian discrete-continuous mixture model raises a number of technical
issues that are carefully addressed in this work. In particular, we need to correctly approximate infinite
sums in the expectation step of EM algorithm. Also a sufficiently accurate initialization procedure is
required. In this work, the initialization is performed through a Douglas-Rachford [30–32] method which
aims at optimizing a moment-based estimate of the unknown parameters.

The paper is organized as follows. We provide a description of the the Poisson-Gaussian statistical model
and considered parameter estimation problem in Section C. Then, we interpret it as an incomplete data
problem and derive the associated EM algorithm in Section E. The parameter update equation involves
the computation of infinite sums, which depend on the current estimate of the parameters. It is necessary
to approximate these by finite sums. However, the sum limits cannot be simply fixed, as we show they
depend on the current estimate of the parameters and so change with each EM recursion. Expressions for
the maximum error incurred in the process are derived. The EM update equation for one of the parameters
is shown to be the unique positive root of a high degree polynomial. We develop a practical approach
for finding this unique root. These numerical issues raised by the implementation of the algorithm are
investigated in Section F as well as the proposed moment-based initialization. In addition, in Section G,
we derive the Fisher Information matrix (FIM) and the Cramer-Rao bounds for the estimation problem.
The FIM in its final form is intractable and it is computed using Monte Carlo simulation as the sample
covariance matrix of the score function. Section H illustrates the algorithm performance on both synthetic
data and real confocal image sequences. Finally, Section I concludes the paper.

2 Problem

Of interest here is a parametric model arising in the case of random variables modeled as a weighted
sum of Poisson and Gaussian components. The problem is to estimate the vector of parameters θ char-
acterizing the associated mixed continuous-discrete probability distribution from available observations
r = (rs,t)1≤s≤S,1≤t≤T , which are realizations of a random field R = (Rs,t)1≤s≤S,1≤t≤T . Here, s corre-
sponds to a location index (e.g. locating pixel (x, y) in 2D or voxel (x, y, z) in 3D) and t is the time
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Variable Definition

s location index, 1 ≤ s ≤ S
t time index, 1 ≤ t ≤ T
r = (rs,t)1≤s≤S,1≤t≤T observed signal in R

ST

Rs,t random variable following a Poisson-Gaussian distrib.
q = (qs,t)1≤s≤S,1≤t≤T the numbers of occurrences in N

ST

Qs,t random variable following a Poisson distrib.
α > 0 scaling parameter
v = (vs,t)1≤s≤S,1≤t≤T mean values in (R+)

ST of the Poisson distrib.
u = (us)1≤s≤S ∈ (R∗

+)
S initial values of the exponential change rate

k = (ks)1≤s≤S ∈ (R∗
+)

S Poisson distrib. decay rates
x = (xs)1≤s≤S ∈ (R∗

+)
S Poisson distrib. exponential decays xs = e−ks

a = (as)1≤s≤S ∈ (R∗
+)

S mean values of Poisson distrib. for t = 1, as = usxs
Ws,t normally distributed random noise variable
c ∈ R mean value of the Gaussian distribution
σ > 0 standard-deviation of the Gaussian distribution
θ = [u⊤, k⊤, α, c, σ2]⊤ vector of unknown parameters

Table 1: Notations.

index.
More precisely, the considered stochastic model reads :

∀(s, t) ∈ S Rs,t = αQs,t +Ws,t (1)

where S = {1, . . . , S} × {1, . . . , T}, α ∈ (0,+∞) is a scaling parameter, and, for every (s, t) ∈ S, Qs,t is a
random variable following a Poisson distribution, and Ws,t is a normally distributed random variable, which
are expressed as

Qs,t ∼ P
(
vs,t
)
, Ws,t ∼ N (c, σ2) (2)

where v = (vs,t)1≤s≤S,1≤t≤T ∈ [0,+∞)
ST

is the vector of intensities of the Poisson distribution and c ∈ R

(resp. σ > 0) is the mean value (resp. standard-deviation) of the Gaussian distribution.
Our goal is to estimate the vector of unknown parameters (v, α, c, σ2) under the following assumptions:

• Q = (Qs,t)1≤s≤S,1≤t≤T and W = (Ws,t)1≤s≤S,1≤t≤T are mutually statistically independent;

• the components of Q (resp. W ) are independent.

Note that some special instances of this model have been studied in the literature, in the case when, for
example, vs,t is no longer depending on t, thus reducing to

∀(s, t) ∈ S vs,t = us. (3)

Most existing works [8,10,33] assume that c = 0, whereas in [1] we considered a Gaussian noise with non-zero
mean. The motivation of these works was to identify noise parameters, the knowledge of which is required in
many algorithms used for denoising [15] or restoration [19, 20]. These parameters are usually not known in
advance and their values may depend on experimental conditions, for instance in the case of imaging systems
on camera settings, temperature, vibrations, . . . Gaussian approximations [8,10] of the Poisson distribution
are sometimes performed in the identification process, which often rely on the use of variance stabilization
methods like the Anscombe transform [34] in the subsequent data recovery tasks [12].

In this paper, we consider a more challenging case than (93), when

∀(s, t) ∈ S vs,t = use
−kst (4)

with u = (us)1≤s≤S ∈ (0,+∞)S and k = (ks)1≤s≤S ∈ (0,+∞)S . In this case, the 2S+3-dimensional vector
of unknown noise parameters becomes θ = [u⊤, k⊤, α, c, σ2]⊤ where (·)⊤ denotes the transpose operator
and ST > 2S + 3. Some results concerning time series data decaying exponentially in time in the presence
of additive noise can be found in [35, 36] but they cannot deal with the considered Poisson model. The
notations used in the paper are summarized in Table 4.
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3 EM approach

Under the considered statistical assumptions, for every s ∈ {1, . . . , S} and t ∈ {1, . . . , T}, the mixed
continuous-discrete distribution of (Rs,t, Qs,t) is obtained by applying Bayes rule:

(∀rs,t ∈ R)(∀qs,t ∈ N) pRs,t,Qs,t
(rs,t, qs,t | θ)

=fRs,t|Qs,t=qs,t(rs,t | α, c, σ)P(Qs,t = qs,t | us, ks)
=fWs,t

(rs,t − αqs,t | c, σ)P(Qs,t = qs,t | us, ks)

=
exp

(
− (rs,t−αqs,t−c)2

2σ2

)

√
2πσ

(use
−kst)qs,t

qs,t!
exp(−use−kst), (5)

where fRs,t|Qs,t=qs,t(· | α, c, σ) is the conditional probability density function (pdf) of Rs,t knowing that
Qs,t = qs,t and fWs,t

(· | c, σ) is the pdf of Ws,t. Using the spatial and time independence properties, the
associated likelihood takes the following intricate form:

(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
)
fR(r | θ) =

S∏

s=1

T∏

t=1

+∞∑

qs,t=1

pRs,t,Qs,t
(rs,t, qs,t | θ). (6)

Deriving the maximum likelihood estimate of the unknown parameter vector θ from this expression appears
to be analytically intractable. To circumvent this difficulty, we propose to resort to an EM approach. Then,
R is viewed as an incomplete random vector and the chosen completed vector is [R⊤, Q⊤]⊤. This formulation
allows us to estimate θ by using the following EM iterations:

(∀n ∈ N) θ(n+1) = argmax
θ

J(θ | θ(n)) (7)

where
J(θ | θ(n)) = EQ|R=r,θ(n) [ln pR,Q(R,Q | θ)] (8)

and

(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
)

(
∀q = (qs,t)1≤s≤S,1≤t≤T ∈ N

ST
)

pR,Q(r, q | θ) =
S∏

s=1

T∏

t=1

pRs,t,Qs,t
(rs,t, qs,t | θ) (9)

is the mixed continuous-discrete probability distribution of (R,Q). The complete data log-likelihood can
now be rewritten as:

ln pR,Q(R,Q | θ) = − 1

2σ2

S∑

s=1

T∑

t=1

(Rs,t − αQs,t − c)2

− ST

2
ln(2πσ2)−

S∑

s=1

use
−ks

1− e−Tks

1− e−ks

+

S∑

s=1

lnus

T∑

t=1

Qs,t −
S∑

s=1

ks

T∑

t=1

tQs,t −
S∑

s=1

T∑

t=1

ln(Qs,t!). (10)

By dropping the terms that are independent of θ and via a change of sign, we see that the EM algorithm
reduces to:

(∀n ∈ N) θ(n+1) = argmin
θ

J̃(θ | θ(n)) (11)

where

J̃(θ | θ(n)) = 1

2σ2

S∑

s=1

T∑

t=1

EQ|R=r,θ(n) [(rs,t − αQs,t − c)2]

+

S∑

s=1

ks

T∑

t=1

tEQ|R=r,θ(n) [Qs,t] +

S∑

s=1

use
−ks

1− e−Tks

1− e−ks

−
S∑

s=1

lnus

T∑

t=1

EQ|R=r,θ(n) [Qs,t] + ST lnσ. (12)
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The EM algorithm alternates between expectation and maximization steps, guaranteeing that the likelihood
is increased at each iteration [29], [37].

The update rules are found by differentiating (102). The obtained relations lead us to the following
operations to be performed at iteration n:

1. For every s ∈ {1, . . . , S}, find k(n+1)
s satisfying:

1 + Te−(T+1)k(n+1)
s − (T + 1)e−Tk(n+1)

s

(1− e−k
(n+1)
s T )(1− e−k

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t] =

T∑

t=1

tEQ|R=r,θ(n) [Qs,t]. (13)

2. For every s ∈ {1, . . . , S} compute

u(n+1)
s =

1− e−k(n+1)
s

e−k
(n+1)
s (1− e−Tk

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t]. (14)

3. Determine c(n+1) and α(n+1) by solving the following system of linear equations:




ST
∑

(s,t)∈S

EQ|R=r,θ(n) [Qs,t]

∑

(s,t)∈S

EQ|R=r,θ(n) [Qs,t]
∑

(s,t)∈S

EQ|R=r,θ(n [Q2
s,t]



[
c(n+1)

α(n+1)

]
=




∑

(s,t)∈S

rs,t

∑

(s,t)∈S

rs,tEQ|R=r,θ(n) [Qs,t]


 . (15)

4. Set (σ2)(n+1) to

1

ST

∑

(s,t)∈S

EQ|R=r,θ(n) [(rs,t − α(n+1)Qs,t − c(n+1))2] =

1

ST

∑

(s,t)∈S

rs,t

(
rs,t − α(n+1)

EQ|R=r,θ(n) [Qs,t]− c(n+1)
)
. (16)

As discussed in the next section, the procedure however raises a number of numerical issues which need to
be carefully addressed.

4 Implementation issues of the EM algorithm

4.1 Computation of the required conditional means

According to (102), the expectation step requires to compute the conditional expectations EQs,t|Rs,t=rs,t,θ[Qs,t]
and EQs,t|Rs,t=rs,t,θ[Q

2
s,t], for every (s, t) ∈ S. These are expressed as follows

EQs,t|Rs,t=rs,t,θ[Qs,t] =

+∞∑

qs,t=1

qs,tP(Qs,t = qs,t | R = r, θ(n)) (17)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

+∞∑

qs,t=1

q2s,tP(Qs,t = qs,t | R = r, θ(n)) (18)

where, for every qs,t ∈ N,

P(Qs,t = qs,t | R = r, θ) =
pRs,t,Qs,t

(rs,t, qs,t | θ)
fRs,t

(rs,t | θ)
, (19)

pRs,t,Qs,t
(·, · | θ) is given by (95) and

(∀rs,t ∈ R) fRs,t
(rs,t | θ) =

+∞∑

qs,t=0

pRs,t,Qs,t
(rs,t, qs,t | θ). (20)
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Hence, one can reexpress (107) and (108) as

EQs,t|Rs,t=rs,t,θ[Qs,t] =
ζs,t(θ)

ηs,t(θ)
(21)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

ξs,t(θ)

ηs,t(θ)
(22)

where

ζs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) (23)

ηs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 0, qs,t) (24)

ξs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) +

+∞∑

qs,t=0

Πs,t(θ, 2, qs,t) (25)

and, for every (d, qs,t) ∈ N
2,

Πs,t(θ, d, qs,t) = exp

(
− (rs,t − α(qs,t + d)− c)2

2σ2

)
(use

−kst)qs,t+d

qs,t!
. (26)

The computation of a ratio of two infinite sums is not always an easy task when these sums do not have
closed form expressions. A method allowing us to get a reliable approximation of the series given by (113),
(114) and (115) while simultaneously limiting the required computational time is described in Appendix A.
More precisely, it is shown that it is possible to determine the most significant terms in the summations by
studying properties of function Πs,t. This result is established using the Lambert W function.

Fig. 9 indicates that the bounds proposed in Proposition A.2 given by q−st = max(0,
⌊
q∗s,t −∆σ

α

⌋
) and

q+st =
⌈
q∗s,t +∆σ

α

⌉
,1 where ∆ > 0 and q∗s,t = σ2

α2W

(
α2

σ2 use
α

σ2 (rs,t−c−dα)−tks

)
, are sufficiently precise in

practice. We compare them with the summation bounds proposed in [18, 19] given by q−st = 0 and q+st =
rs,t +4σ. Those bounds are not guaranteed to include all the significant coefficients (see Fig. 9(a)) or to be
very effective (see Fig. 9(b)), unlike the ones we propose.

(a) (b)

Figure 1: Πs,t(θ, 0, qs,t) as a function of qs,t (green) for rs,t = 50 and the following settings: (a) α = 1,
c = 0, σ2 = 50, (b) α = 9, c = 0, σ2 = 300. The mean of Poisson noise is us = 100 and us = 30 in (a) and
(b) respectively. The proposed summation bounds for ∆ = 5 are marked in blue. The summation bounds
proposed in [19] are marked in red. The black dotted line indicates rs,t while the pink dotted one indicates
us.

1⌊·⌋ (resp. ⌈·⌉) denotes the lower (resp. upper) rounding operation.
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4.2 Estimation of the exponential decay rates

In the previous developments, a difficulty also arises in solving the update equation (103). A useful result
is the following one:

Proposition 4.1 For every n ∈ N, s ∈ {1, . . . , S} and x ∈ R, let

gn,s(x) =
T−1∑

β=0

xβ

(
(β + 1)

T∑

t=1

EQ|R=r,θ(n) [Qs,t] −
T∑

t=1

tEQ|R=r,θ(n) [Qs,t]

)
. (27)

Then, e−k(n+1)
s is the unique positive real root x∗n,s of polynomial gn,s.

Proof. Simplifying the double root at 1 in the numerator of (103), we see that e−k(n+1)
s is a root x∗n,s in

(0, 1) of polynomial gn,s. We now show that x∗n,s is the unique positive root of this polynomial.

For every β ∈ {0, . . . , T − 1}, let b(β)n,s denote the coefficient of the term of degree β in gn,s. According to
(117) we have:

• b
(0)
n,s =

∑T
t=1(1− t)EQ|R=r,θ(n)[Qs,t] < 0 (Due to (111), (113) and (116), for every (s, t) ∈ S, us > 0 ⇒

EQ|R=r,θ(n)[Qs,t] > 0.)

• ∀β ∈ {1, . . . , T − 2}, b(β)n,s = b
(β−1)
n,s +

∑T
t=1 EQ|R=r,θ(n) [Qs,t]

• b
(T−1)
n,s =

∑T
t=1(T − t)EQ|R=r,θ(n) [Qs,t] > 0.

Since the sequence (b
(β)
n,s)0≤β≤T−1 is an increasing arithmetic sequence, the number of sign differences be-

tween consecutive nonzero coefficients is at most 1. Moreover, since b
(T−1)
n,s > 0, we can conclude using

Descartes’ rule of signs that the maximum number of positive roots of gn,s is equal to 1. As g
(0)
n,s < 0 and

limx→+∞ gn,s(x) = +∞, it can be deduced that there exists a unique positive root of gn,s.

In practice, we propose to compute k
(n+1)
s by using Halley’s iterative procedure [38] with M = 20 iterations

in typical cases. The iterations are given by Algorithm 3, where g′n,s (resp. g′′n,s) denotes the first (resp.
second) derivative of gn,s.

Algorithm 1 Halley’s algorithm for computing k
(n+1)
s

Init : x
(0)
n,s = e−k(n)

s

For m = 0, . . . ,M − 1⌊
x
(m+1)
n,s = x

(m)
n,s − 2gn,s(x

(m)
n,s )g′n,s(x

(m)
n,s )

2(g′n,s(x
(m)
n,s ))2 − gn,s(x

(m)
n,s )g′′n,s(x

(m)
n,s )

k
(n+1)
s = − log x

(M)
n,s

4.3 Moment-based initialization

Since the EM algorithm is not guaranteed to converge to a global maximizer of the likelihood, its behavior
can be improved by a judicious initialization. Usually, the choice of a good starting value is discussed in
the context of specific applications [1]. For the considered problem, we propose a moment-based approach.
Although methods of moments are often outperformed by other estimators, their simplicity makes them
popular statistical tools [7].

Due to the independence assumptions made in Section C, the first and second order statistics of the
observations can be expressed as

• mean value: E[Rs,t] = αe−kstus + c (28)

• variance: Var[Rs,t] = α2e−kstus + σ2. (29)

Note that (118) can be re-expressed as

Rs,t = ase
−kst + c+ Es,t (30)

7



where as = αus and (Es,t)1≤s≤S,1≤t≤T are independent zero-mean random variables. This suggests adopting

a nonlinear least squares approach to compute estimates â = (âs)1≤s≤S , k̂ = (k̂s)1≤s≤S and ĉ of the
parameters:

(â, k̂, ĉ) ∈ Argmin
a,k,c

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (31)

The traditional approach to address such a problem is to rewrite it as

minimize
k∈(0,+∞)S

ψ(k) (32)

where, for every k = (ks)1≤s≤S ∈ (0,+∞)S ,

ψ(k) = min
a∈RS ,c∈R

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (33)

Finding the expression of ψ reduces to a linear least squares problem the solution of which can be expressed
in a closed form. However, for large-size problems where S takes a high value, the minimization of ψ requires
solving a large dimensional non-convex minimization problem. Alternatively, by setting xs = e−ks for every
s ∈ {1, . . . , S}, (121) can be reexpressed as the problem of finding a minimizer of a real-valued multivariate
polynomial on a set defined by polynomial inequalities. Global optimization methods for such problems
were introduced in [42,43]. Nevertheless, these methods do not scale well with the size of the problem.

In order to circumvent these difficulties, we propose to adopt a splitting strategy. More specifically, we
reformulate the problem in the product space R

S × R
S as follows:

minimize
(c1,...,cS)∈R

S

(x1,...,xS)∈R
S

S∑

s=1

ϕs(cs, xs) + ιD(c1, . . . , cS) (34)

where, for every (cs, xs) ∈ R
2,

ϕs(cs, xs) =




min
as∈R

∑T
t=1

(
rs,t − cs − asx

t
s

)2
if xs ∈ [ε, 1− ε]

+∞ otherwise,
(35)

ε ∈ (0, 1/2) is a tolerance parameter, D is the vector space {(c1, . . . , cS) ∈ R
S | c1 = · · · = cS}, and ιD is

the indicator function of D defined as

(∀c = (c1, . . . , cS) ∈ R
S)ιD(c1, . . . , cS) =

{
0 if c ∈ D

+∞ otherwise.
(36)

Guidelines for addressing such split optimization problems is provided in [44] by employing proximal tools,
namely algorithms involving computations of proximity operators. However, there is a limited number of
results concerning the convergence of proximal splitting algorithms in the non-convex case. Among these al-
gorithms, we propose to use the Douglas-Rachford algorithm which was observed to behave satisfactorily [45]
in a number of non-convex optimization problems.

For many functions the proximity operator has an explicit form [46]. For instance, the proximal operator
proxιD of ιD reduces to the projection onto D, i.e.

(∀(cs)1≤s≤S ∈ R
S) proxιD (c1, . . . , cS) =

c1 + · · ·+ cS
S

(1, . . . , 1). (37)

For every s ∈ {1, . . . , S}, the expression of the proximity operator of γϕs with γ ∈ ]0,+∞[ is provided in
Appendix B. This allows us to apply the Douglas-Rachford method summarized in Algorithm 4. It is worth
noticing that the computation of the proximity operators proxγϕs

for different values of s ∈ {1, . . . , S} can
be implemented in a parallel manner.

Once estimates ĉ and (x̂s)1≤s≤S have been obtained in this fashion, the following estimates of the
amplitude values can be derived from (125):

(∀s ∈ {1, . . . , S}) âs =
1

χ(x̂2s)

T∑

t=1

(rs,t − ĉ)x̂ts (38)
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Algorithm 2 Douglas-Rachford iterations for computing moment-based estimates of k and c.

Initialization:

Initialize ĉ(0).
Set c

(0)
s = ĉ(0), for every s ∈ {1, . . . , S}.

Set initial values in [ε, 1− ε] for (x̂
(0)
s )1≤s≤S .

Main loop:

For m = 0 . . .M − 1

For s = 1 . . . S⌊
(ĉ

(m)
s , x̂

(m+1)
s ) = proxγϕs

(c
(m)
s , x̂

(m)
s )

ĉ(m+1) = 1
S

∑S
s=1 ĉ

(m)
s

For s = 1 . . . S⌊
c
(m+1)
s = c

(m)
s + 2ĉ(m+1) − ĉ(m) − ĉ

(m)
s

Outputs:

ĉ = ĉ(M)

For s = 1 . . . S⌊
k̂s = − ln

(
x̂(M)
s

)

where

∀υ ∈ [0,+∞), χ(υ) = υ
1− υT

1− υ
. (39)

Note that an alternative approach relying upon an alternating minimization approach was proposed in [2].
However, it was observed to exhibit slower convergence.

It remains now to deduce estimates of α, u and σ. The proposed estimators are described in Appendix
C.

The final proposed noise modeling procedure is summarized in Fig. 10.

Initialization

EM algorithm

1. Init k̂ and ĉ using Algo. 4

2. Init â using (128)

3. Init α̂ using (182)

4. Init û using (185)

5. Init σ̂2 using (186)

For n = 1, . . .

E - Step

M - Step

Update EQs,t|Rs,t=rs,t,θ[Qs,t] using (111)

Update EQs,t|Rs,t=rs,t,θ[Q
2
s,t] using (112)

∀s ∈ {1, . . . , S} update k
(n+1)
s using Algo. 3

∀s ∈ {1, . . . , S} update u
(n+1)
s using (104)

Update c(n+1) and α(n+1) using (105)

Update (σ2)(n+1) using (106)

r

θ0

θ∗

∀(s, t) ∈ S

Figure 2: Flowchart of the proposed parametric estimation method.
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5 Performance bounds

This section aims at deriving lower bounds on the best achievable performance in estimating the parameters
of Model (91). These bounds will allow us to evaluate the performance of the estimator proposed in
Section E. A well-known lower bound on the variance of an unbiased estimator is provided by the Cramer-
Rao inequality, which involves the inverse of the Fisher Information Matrix (FIM) [47]. The problem of
computing the required FIM is addressed in Section G.1, whereas the inversion of the FIM is discussed in
Section G.2.

5.1 Form of the Fisher information matrix

Recall that the FIM is expressed from the log-likelihood as follows

I(θ) = ER|θ

[
∂ln(fR(R | θ))

∂θ

(
∂ln(fR(R | θ))

∂θ

)⊤]

=
S∑

s=1

T∑

t=1

ER|θ[Us,tU
⊤
s,t] (40)

where, for every (s, t) ∈ S, Us,t is the score function defined as

Us,t =
∂ln(fRs,t

(Rs,t | θ))
∂θ

(41)

and the marginal pdf of Rs,t is given by (110). This yields

∂fRs,t
(rs,t | θ)
∂θ

=

+∞∑

qs,t=0

∂pRs,t,Qs,t
(rs,t, qs,t | θ)
∂θ

(42)

which allows us to deduce that Us,t is equal to

∑+∞
qs,t=0

{
∂ln(pRs,t,Qs,t

(rs,t,qs,t|θ))
∂θ

pRs,t,Qs,t
(rs,t, qs,t | θ)

}

∑+∞
qs,t=0 pRs,t,Qs,t

(rs,t, qs,t | θ)

= EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂θ

]
. (43)

The components of vector Us,t can then be expressed from the conditional means of Qs,t and Q
2
s,t. Indeed,

according to (95), we have: for every s′ ∈ {1, . . . , S},

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂us′

]
=

(
1

us
EQs,t|Rs,t=rs,t,θ[Qs,t]− e−kst

)
δs′−s (44)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂ks′

]
= t

(
use

−kst − EQs,t|Rs,t=rs,t,θ[Qs,t]
)
δs′−s (45)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂c

]
=

1

σ2

(
rs,t − αEQs,t|Rs,t=rs,t,θ[Qs,t]− c

)
(46)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂α

]
=

1

σ2

(
(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t]

−αEQs,t|Rs,t=rs,t,θ[Q
2
s,t]
)

(47)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂σ

]
=

1

σ3

(
(rs,t − c)2 − σ2 + α2

EQs,t|Rs,t=rs,t,θ[Q
2
s,t]

−2α(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t]
)

(48)

where δs′−s = 1 if s′ = s and 0 otherwise. So, provided that EQs,t|Rs,t=rs,t,θ[Qs,t] and EQs,t|Rs,t=rs,t,θ[Q
2
s,t] are

known, the above equations allow us to deduce the expression of Us,t. We still need to calculate the expecta-
tion with respect to R in (130), which is unfortunately intractable. To circumvent this difficulty, we propose
to proceed similarly to the Monte Carlo approach in [48], by drawing L≫ 1 realizations of R and calculat-

ing, for each realization r(ℓ) with ℓ ∈ {1, . . . , L}, the associated correlation matrix
∑S

s=1

∑T
t=1 U

(ℓ)
s,t (U

(ℓ)
s,t )

⊤.
Then, the FIM is approximated by the following consistent sample estimate

ÎL(θ) =
1

L

L∑

ℓ=1

S∑

s=1

T∑

t=1

U
(ℓ)
s,t (U

(ℓ)
s,t )

⊤. (49)
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5.2 Inversion of the Fisher information matrix

Let θ̂i : R
ST → R with i ∈ {1, . . . , 2S +3} be an unbiased estimator of the i-th component θi of vector θ. A

lower bound of the mean square error E[(θ̂i(R)− θi)2] is given by the i-th diagonal term of the inverse of the
FIM. It is thus of main interest to compute the diagonal terms of the inverse of matrix I(θ) ∈ R

(2S+3)×(2S+3).
Although S may take large values, the inversion can be efficiently performed due to the sparse structure of
the FIM.

More precisely, the FIM can be expressed as the following block matrix:

I(θ) =

[
A B
B⊤ C

]
(50)

where
• the matrix A ∈ R

2S×2S takes the following form

A =

[
A1,1 A1,2

A⊤
1,2 A2,2

]
(51)

with

A1,1 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

S×S (52)

A1,2 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S (53)

A2,2 = ER|θ

[
∂ln(fR(R | θ))

∂k

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S ; (54)

• the matrix B is given by
B⊤ = [B1 | B2] (55)

where

B1 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

3×S (56)

B2 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

3×S (57)

with θ̃ = [c, α, σ]⊤;

• C = ER|θ

[
∂ln(fR(R|θ))

∂θ̃

(
∂ln(fR(R|θ))

∂θ̃

)⊤]
∈ R

3×3.

From the standard Frobenius-Schur formula for the inverse of a block matrix [49], the i-th diagonal terms
of I(θ)−1 is given by

[I(θ)−1]i,i = (58)
{
[A−1 +A−1B(C −B⊤A−1B)−1B⊤A−1]i,i if i ≤ 2S

[(C −B⊤A−1B)−1]i,i otherwise.

Hence, both C − B⊤A−1B ∈ R
3×3 and A need to be inverted. The former inversion is easy due to the

small size of the matrix, but a more challenging task is to invert the latter, which is typically of large
dimension. However, a closer look at (134) and (135) allows us to observe that matrices A1,1, A1,2 and A2,2

in (142)-(144) are diagonal. Thus, using again the block matrix inversion formula, we get

A−1 = [A−1
1 | A−1

2 ] (59)

with A−1
1 =

[
(A1,1 −A1,2A

−1
2,2A1,2)

−1

−A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

]
and A−1

2 =

[ −A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

(A2,2 −A1,2A
−1
1,1A1,2)

−1

]
,

where all the required inversions are straightforward due to the diagonal structure of all the involved ma-
trices.

In summary, the mean square error E[(θ̂i(R) − θi)
2] is lower bounded by [I(θ)−1]i,i which is given by

(148).
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6 Experimental results

This section illustrates the good performance of the proposed approach and shows its usefulness in a real
microscopy application. The algorithm performance is measured by computing the mean square error
(MSE) between the original and reconstructed noise parameters and by inspecting the difference between
the variance of our estimator and the Cramer-Rao bounds (CRB). Results of a series of synthetic data
simulation are provided in Section H.1, while Section H.2 is devoted to practical considerations, necessary
details about the application and presentation of the results on a real data set.

6.1 Validation of the proposed approach on synthetic data

Firstly we evaluate the performance of the proposed algorithm under different working conditions. In
particular the influence of the values of parameters ∆, S, T , c, α, σ2, us and ks is studied. Realizations of
the observed signal Rs,t are generated according to (91) for different set of parameter values for θ, S and T .
Randomly chosen values of us and ks are uniformly distributed over [u, u] and

[
k, k
]
, respectively. Poisson

and Gaussian noise realizations are drawn using the random number generators proposed in Park et al. [50].

The bias on the estimate of the i-th component of the parameter vector is computed as 1
L

∑L
ℓ=1(θi−θ̂

(ℓ)
i ) over

L = 100 different noise realizations. As expected, Table 5 illustrates that our estimator is asymptotically

unbiased when T → +∞. Average values of the MSE are computed by 1
L

∑L
ℓ=1(θi − θ̂

(ℓ)
i )2. Similarly, the

SNR values provided in Table 5 correspond to averages computed over the L realizations, e.g. SNR(û) =
1
L

∑L
ℓ=1

(∑S
s=1 u

2
s/
∑S

ℓ=s(us − ûs)
2
)
. The good performance of the proposed estimator is confirmed by the

small difference between the MSE and the associated CRB (usually less than 50%). Note that, for finite
T , our estimator is biased, so that the CRB constitutes only a quality measure which is not theoretically
guaranteed to provide an achievable lower bound for the MSE. Firstly, the influence of the approximation of
the infinite summations proposed in Appendix A is investigated. The inspection of the MSE, bias and CRB
values in the provided example illustrates that 5 is an adequate choice for ∆ (as defined in Section F.1) and
that any higher value does not improve the estimation results. Note that the CRB computation procedure
appears to be less sensitive to the choice of ∆ than the EM algorithm. Additionally, the influence of
the choice of T and S on the estimation quality is assessed. As expected, the estimation performance is
improved by increasing T and S, but the influence of T is more important. Note that one would expect the
Cramer-Rao bound to depend on T . However, since the FIM (139) is evaluated by Monte Carlo simulation,
this dependency is not explicit but only appears through our numerical results. Finally, we provide some
numerical results related to the behaviour of our algorithm for different choices of θ. The following points
have been highlighted through our study:

• the accuracy of u and k estimation increases with α, while the accuracy of α, c and σ estimation
decreases with α ;

• the estimation performance of our algorithm does not depend on the value of c ;

• the accuracy of c, u and k estimation decreases with σ2, while the estimation of σ is improved ;

• σ is better estimated when low values of us are present in signal u ;

• the considered estimation problem becomes more difficult when the decay rate ks is small.

One can observe that our EM estimates can be quite precise for some good choices of S, T and ∆ as the
estimation error can fall under 5%.

We now illustrate the performance of the initialization method proposed in Section F.3. As shown in
Table 6, the moment based initialization results are further improved with the second step of the algo-
rithm, i.e. the EM step. This is in agreement with the general claim that the method of moments is often
outperformed by other estimators e.g. maximum likelihood when applicable. Results presented in Fig. 11
concern the alternating minimization approach proposed in [2] and the Douglas-Rachford approach corre-
sponding to Algorithm 4. Fig. 11 illustrates the convergence characteristics of these algorithms in terms
of energy (see (121)) and of the estimated values of α, σ2 and c. At each iteration, parameters α and
σ2 were computed using (182) and (186), respectively, where all positive weights (νs)1≤s≤S were set to 1.
The results were averaged over L = 10 different noise realizations. The parameter γ was set to 0.01. One
can observe in Fig. 11 (a) that the initialization proposed in the paper leads to faster convergence, while
retaining estimation quality as illustrated by Fig. 11 (b-d). The EM algorithm is computationally more
intensive, which results in a slower convergence. Note that its computational efficiency can be improved by
resorting to various acceleration techniques, e.g. [?].
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(a) Energy (121) (b) α̂− α

(c) ĉ− c (d) σ̂
2 − σ

2

Figure 3: Comparison of initialization proposed in [2] (blue) and initialization provided by Algorithm 4
(green). (a,b,c,d) illustrate convergence profiles of the energy, α, c and σ2 in terms of algorithm iterations
(α = 5, c = 150, σ2 = 1000, when u = 5, u = 150, k = 0.0001, k = 0.01, T = 200, S = 200). The results are
averaged over L = 10 different noise realizations. The maximum iteration number is set to 600.

6.2 Application to fluorescence imaging system - macroscopy case

Confocal macroscopy (i.e. large field of view confocal microscopy) is a recently-developed imaging modality.
We use a few images from a confocal macroscope as real data examples. We have applied our algorithm
to time series of real fluorescence images, acquired using a macro confocal laser scanning microscope (Leica
TCS-LSI) from a cross-section through the rhizome of Convallaria majalis (Lily of the Valley). The reported
signal intensities at each location within the biological sample result from natural occurring auto-fluorescence
caused by different compounds like lignin and other phenolics. In microscopy practice, the intensity decay
modeled in (94) is due to the photobleaching effect [51]. The acquired data is corrupted with noise. Thus
our noise identification problem arises naturally [7, 9, 12, 52, 53]. We evaluated our algorithm using cross
validation techniques, i.e. we applied our algorithm to two subsets coming from one dataset. We can then
assume that the two sequences are corrupted with the same noise model and parameters. The processed
time lapse sequences consists of 300 images with 12-bit resolution of size 190 × 190, which translates into
T = 300 and S = 36100. Fig. 14 (a,c) and Fig. 14 (b,d) illustrate the first and last images of the considered
sequences 1 and 2, respectively. The visual results are presented in Fig. 14 (e,f). The identified models are

given by 168 × P
(
ûse

−k̂st
)
+ N (114, 64.12) and 174 × P

(
ûse

−k̂st
)
+ N (114, 62.992) for sequence 1 and 2,

respectively. One can observe that these parameter values are indeed quite close, which shows the validity
of our hypotheses. The plots in Fig. 15 illustrate the variation of the measured and reconstructed signals
along t, while s is fixed. One can observe that the bleaching curves are a good fit for the series of measured
data points. The estimated ûs values lie in [0, 13]. The relatively small data value range can be explained
by the fact that the sampling time is only 1.2 µs.

7 Conclusions

In this paper, we have proposed a new EM-based approach for dealing with Poisson-Gaussian noise parameter
estimation problems. We have presented a practical procedure for computing the corresponding Cramer-Rao
bounds. We have shown that the proposed method can lead to accurate results given sufficient measurements.
The numerical issues related to the computation of our estimator have been addressed. In particular, we
have proposed a fast and reliable way to approximate the infinite sums arising in our estimator with a
high degree of accuracy. We have proposed an improved moment based estimation method, which we used
to initialize the EM algorithm. As a side result, the proposed algorithm can deliver a good estimation
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Param.
α̂ ĉ σ̂ û k̂

bias MSE CRB bias MSE CRB bias MSE CRB SNR SNR

∆ Identified noise parameters versus ∆ (α = 5, c = 150, σ2 = 200, u = 5, u = 100, k = 0.0001, k = 0.01, S = 200, T = 200)

3 -0.29 9.31×10−2 4.44×10−3 2.60 6.76×102 3.80×100 8.27 6.84×101 1.59×10−1 27.1 12.0

4 0.06 8.01×10−3 4.44×10−3 0.63 4.21×100 1.68×100 0.13 1.68×10−1 1.59×10−1 30.9 22.5

5 0.06 8.40×10−3 4.44×10−3 0.47 3.89×100 1.68×100 0.09 1.59×10−1 1.59×10−1 30.9 22.5

6 0.06 8.40×10−3 4.44×10−3 0.47 3.89×100 1.68×100 0.09 1.59×10−1 1.59×10−1 30.9 22.6

T Identified noise parameters versus T (α = 5, c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200)

150 0.08 2.07×10−2 1.36×10−2 -1.17 7.78×101 4.77×101 0.04 6.49×10−1 4.49×10−1 25.8 12.8

200 0.07 1.55×10−2 1.04×10−2 0.85 1.73×101 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

300 0.04 1.03×10−2 7.14×10−3 0.45 1.72×100 1.54×100 0.11 8.54×10−2 5.90×10−2 31.9 23.1

350 0.04 8.80×10−3 6.17×10−3 0.06 8.75×10−1 7.52×10−1 0.08 5.54×10−2 4.15×10−2 32.3 23.8

S Identified noise parameters versus S (α = 5, c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, T = 200)

150 0.06 1.78×10−2 1.36×10−2 0.53 1.60×101 1.43×101 0.17 2.27×10−1 2.13×10−1 29.8 17.6

200 0.07 1.55×10−2 1.04×10−2 0.85 1.73×101 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

300 0.06 1.14×10−2 6.94×10−3 -0.14 9.31×100 7.69×100 0.11 1.47×10−1 1.12×10−1 30.8 19.7

350 0.06 8.76×10−3 6.23×10−3 0.71 1.08×101 6.74×100 0.16 1.34×10−1 1.02×10−1 31.2 19.4

α Identified noise parameters versus α (c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

5 0.07 1.55×10−2 1.04×10−2 0.85 1.73×100 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

10 0.12 2.97×10−2 1.53×10−2 0.99 3.08×101 2.10×101 0.16 9.98×10−1 7.58×10−1 32.3 23.4

15 0.12 4.21×10−2 2.47×10−2 0.04 4.21×101 3.36×101 0.11 2.68×100 2.24×100 33.5 24.9

20 0.20 7.92×10−2 3.72×10−2 1.00 6.22×101 4.77×101 0.28 6.14×100 5.00×100 33.3 25.6

c Identified noise parameters versus c (α = 30, σ2 = 3000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200

-10 0.32 1.95×10−1 9.03×10−2 1.84 1.65×102 1.20×102 0.41 1.27×100 1.00×101 33.2 25.3

0 0.32 1.94×10−1 9.03×10−2 1.83 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

10 0.32 1.95×10−1 9.03×10−2 1.84 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

150 0.32 1.95×10−1 9.03×10−2 1.85 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

σ2 Identified noise parameters versus σ2 (α = 30, c = 150, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

2000 0.10 1.50×10−1 8.15×10−2 -2.85 1.35×102 1.03×102 -0.22 1.26×101 1.18×101 33.7 25.6

3000 0.32 1.94×10−1 9.03×10−2 1.83 1.65×102 1.20×102 0.41 1.26×101 1.00×101 33.2 25.3

4000 0.33 2.10×10−1 1.21×10−1 2.09 1.89×102 1.04×102 0.41 1.15×101 6.80×100 33.0 24.9

6000 0.34 2.34×10−1 1.15×10−1 2.46 2.28×102 1.59×102 0.42 1.01×101 7.73×100 32.7 24.2

u Identified noise parameters versus u (α = 1, c = 150, σ2 = 25, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

1 0.01 3.96×10−4 2.61×10−4 -0.03 4.46×10−1 3.29×10−1 0.02 6.54×10−3 6.04×10−3 25.2 9.4

5 0.01 4.56×10−4 2.80×10−4 0.15 4.99×10−1 3.36×10−1 0.02 8.59×10−3 6.60×10−3 31.0 21.1

15 0.01 5.29×10−4 3.21×10−4 0.10 3.87×10−1 3.56×10−1 0.02 9.48×10−3 8.31×10−3 31.2 24.6

30 0.01 4.47×10−4 3.66×10−4 0.04 4.13×10−1 3.84×10−1 0.03 1.20×10−2 1.11×10−2 31.6 26.7

k, k
Identified noise parameters versus k range (α = 30, c = 150,σ2 = 1000, u = 5, u = 150, S = 200, T = 200)

k̃0 = 0.01, k̃1 = 0.005, k̃2 = 0.00125, k̃3 = 0.000625

k̃1, k̃0 0.31 1.67×10−1 7.48×10−2 0.18 6.98×101 6.98×101 0.27 1.50×101 1.33×101 33.5 27.0

k̃2, k̃1 0.33 2.79×10−1 8.20×10−2 0.41 5.69×102 4.72×102 0.81 8.59×101 8.30 ×101 32.7 22.2

k̃1, k̃2 0.21 1.68×10−1 8.42×10−2 -19.8 1.67×103 9.47×102 -5.86 1.65×102 1.65×102 32.9 16.4

k̃2, k̃3 0.28 2.27×10−1 8.48×10−2 -34.47 5.72×103 1.33×103 -8.70 4.50×102 2.44×102 28.4 5.4

Table 2: Performance of the proposed EM algorithm under different working conditions.

of the original data when the noise parameters are unknown. Finally we have shown that our approach
constitutes a solution for high quality noise parameter estimation of fluorescence macroscopy data. The
proposed approach can thus be expected to be useful across a broad range of applications, as the developed
statistical techniques are applicable not only to images but to any kind of arbitrary dimensional signals.

A Approximations of infinite summations

Let (s, t) ∈ S and let d ∈ N. The results in this appendix are based on the following upper bound for
function Πs,t obtained through Stirling’s formula:

(
∀qs,t ∈ N

∗) Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, qs,t) (60)

where (∀τ ∈ ]0,+∞[)

Π̂s,t(θ, d, τ) = exp

(
− (rs,t − α(τ + d)− c)2

2σ2

)
(use

−kst)τ+d

√
2πτ τe−τ

. (61)

Lemma A.1 Function Π̂s,t(θ, d, ·) has a unique maximizer

q∗s,t =
σ2

α2
W

(
α2

σ2
use

α

σ2 (rs,t−c−dα)−tks

)
(62)
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α̂ ĉ σ̂
Init. EM Init. EM Init. EM

bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE

1 -0.15 2.91×10−1 0.07 1.55×10−2 -14.03 9.81×101 0.85 1.73×101 -1.12 1.50×100 0.13 2.21×10−1

2 -0.28 5.09×10−1 0.05 7.75×10−3 -6.77 1.34×102 0.55 5.02×100 -0.29 5.07×100 0.17 2.43×10−1

3 0.06 2.65×10−1 0.04 8.80×10−3 -1.96 1.29×101 0.05 8.75×10−1 -0.52 2.53 ×100 0.08 5.54×10−2

4 -0.14 3.81×10−1 0.08 1.80×10−1 -17.61 6.10×101 0.91 2.70×101 -1.14 1.03 ×100 0.18 2.74×10−1

5 -0.02 8.38×10−3 0.01 3.44×10−4 -3.52 5.77×100 0.10 0.38×100 -0.34 7.15×10−2 0.02 9.12×10−3

Table 3: Improvement brought by EM algorithm w.r.t. its initialization for five different parameter settings
(α is equal to 5 and 1 for tests 1− 4 and 5, respectively; c = 150 ; σ2 is equal to 1000, 200, 1000, 2000 and
25 for tests 1−5, respectively; u is equal to 5 and 15 for tests 1−4 and 5, respectively; u = 150, k = 0.0001,
k = 0.01, S is equal to 200 and 150 for tests 1, 3− 5 and 2, respectively; T is equal to 200 and 350 for tests
1, 2, 4, 5 and 3, respectively). Bias and MSE are computed over L = 100 noise realizations.

where W denotes the Lambert W function. We recall that Lambert W function satisfies the following relation:

W(x)eW(x) = x (63)

In addition,
(
∀qs,t ∈ N

∗)

Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, q
∗
s,t) exp

(
− α2

2σ2

(
qs,t − q∗s,t

)2
)
. (64)

Proof. For every τ ∈ ]0,+∞[, we have

ln
(
Π̂s,t(θ, d, τ)

)
= − (rs,t − α(τ + d)− c)2

2σ2
− tks(τ + d)

+ (τ + d) lnus − τ ln τ + τ − 1

2
ln(2π). (65)

This allows us to deduce that

∂
(
ln Π̂s,t(θ, d, τ)

)

∂τ
= − ln τ − α2

σ2
τ + lnus

+
α

σ2
(rs,t − c− αd)− tks. (66)

Hence, any extremum value q∗s,t of Π̂s,t(θ, d, ·) must satisfy the following equation:

ln q∗s,t +
α2

σ2
q∗s,t − lnus −

α

σ2
(rs,t − c− αd) + tks = 0. (67)

There exists a unique solution to this equation which is given by (152) [55]. It is easy to check from (156)
that

∂
(
ln Π̂s,t(θ, d, τ)

)

∂τ
> 0 ⇔ τ < q∗s,t (68)

so that q∗s,t is the unique maximizer of Π̂s,t(θ, d, ·).
In addition, we derive from (157) that

ln
(
Π̂s,t(θ, d, τ)

)
− ln

(
Π̂s,t(θ, d, q

∗
s,t)
)

=− α2

2σ2

(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q

∗
s,t

+ (τ − q∗s,t)
(
lnus +

α

σ2
(rs,t − c− αd)− tks + 1

)

=− α2

2σ2

(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q

∗
s,t

+ (τ − q∗s,t)

(
ln q∗s,t +

α2

σ2
q∗s,t + 1

)

=− α2

2σ2

(
τ − q∗s,t

)2
+ τ(ln q∗s,t − ln τ) + τ − q∗s,t. (69)
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By using now the concavity of the logarithm function, we get

ln q∗s,t − ln τ ≤ 1

τ
(q∗s,t − τ). (70)

Altogether (150), (159) and (160) yield (154).

As illustrated by Fig. 16, the value q∗s,t corresponding to the maximum of function Π̂s,t(θ, d, ·) is a close
approximation to the maximizer of function Πs,t(θ, d, ·).

As shown next, the above lemma is useful to derive finite sum approximations to the series in (113),
(114) and (115).

Proposition A.2 Let ∆ > 0 and set

q−s,t = ⌊q∗s,t −∆
σ

α
⌋, q+s,t = ⌈q∗s,t +∆

σ

α
⌉ (71)

where q∗s,t is given by (152). Then,
∑q+s,t

qs,t=max(1,q−s,t)
Πs,t(θ, d, qs,t) constitutes a lower approximation to

∑+∞
qs,t=1 Πs,t(θ, d, qs,t) with maximum error value

√
2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1− erf

( ∆√
2

))
.

Proof. For every qs,t ∈ N such that qs,t ≥ q∗s,t and, for every τ ∈ R such that qs,t ≤ τ ≤ qs,t + 1, we have

exp

(
− α2

2σ2
(qs,t + 1− q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
. (72)

This allows us to deduce that

+∞∑

qs,t=q+s,t+1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ +∞

q+s,t

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

≤
∫ +∞

q∗s,t+∆ σ
α

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√
2π

σ

2α

(
1− erf

( ∆√
2

))
(73)

where erf is the error function.
Similarly, for every qs,t ∈ N such that qs,t ≤ q∗s,t − 1 and, for every τ ∈ R such that qs,t ≤ τ ≤ qs,t + 1,

we get

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
, (74)

which, by assuming that q−s,t ≥ 2, yields

q−s,t−1∑

qs,t=1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ q−s,t

1

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

≤
∫ q∗s,t−∆ σ

α

−∞
exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√
2π

σ

2α

(
1− erf

( ∆√
2

))
. (75)
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By using now (154), (163) and (165), it can be concluded that

0 ≤
+∞∑

qs,t=1

Πs,t(θ, d, qs,t)−
q+s,t∑

qs,t=max(1,q−s,t)

Πs,t(θ, d, qs,t)

≤ Π̂s,t(θ, d, q
∗
s,t)




max(q−s,t−1,0)∑

qs,t=1

e−
α2

2σ2 (qs,t−q∗s,t)
2

+

+∞∑

qs,t=q+s,t+1

e−
α2

2σ2 (qs,t−q∗s,t)
2




≤
√
2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1− erf

( ∆√
2

))
. (76)

Note that, when ∆ = 5,
√
2π
(
1− erf

(
∆√
2

))
≃ 1.44× 10−6.

B Computation of the proximity operator of γϕs

From the definition of the proximity operator [46] of function γϕs:

(∀(cs, xs) ∈ R
2) (c̃s, x̃s) = proxγϕs

(cs, xs) ⇔

(c̃s, x̃s) = argmin
(cs,xs)∈R2

γϕs(cs, xs) +
1

2
(cs − cs)

2

+
1

2
(xs − xs)

2. (77)

We substitute ϕs in (167) with (125). We need to solve the following problem:

minimize
as∈R,xs∈[ε,1−ε],cs∈R

γ

T∑

t=1

(
rs,t − cs − asx

t
s

)2
+

1

2
(cs − cs)

2 +
1

2
(xs − xs)

2. (78)

For any value of xs ∈ [ε, 1− ε], differentiating with respect to cs and as yields ãs(xs) and c̃s(xs) as the
optimal values of as and cs in the above minimized quadratic function. The solution can be written in a
2× 2 matrix form: [

T + (2γ)−1 ωs

ωs ω2
s

] [
c̃s(xs)
ãs(xs)

]
=

[
(2γ)−1cs + rs

ρs

]
(79)

where

ωs =

T∑

t=1

xts = χ(xs), ω2
s =

T∑

t=1

x2ts = χ(x2s) (80)

rs =

T∑

t=1

rs,t, ρs =

T∑

t=1

rs,tx
t
s (81)

and function χ is defined in (129). The linear solution to (169) yields

c̃s(xs) =
ω2
s((2γ)

−1cs + rs)− ωsρs

(T + (2γ)−1)ω2
s − (ωs)2

(82)

ãs(xs) =
(T + (2γ)−1)ρs − ωs((2γ)

−1cs + rs)

(T + (2γ)−1)ω2
s − (ωs)2

. (83)
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The solution to (168) thus reduces to the one-variable minimization problem:

Find x̃s = argmin
xs∈[ε,1−ε]

γ
T∑

t=1

(
rs,t − c̃s(xs)− ãs(xs)x

t
s

)2

+
1

2

(
c̃s(xs)− cs

)2
+

1

2
(xs − xs)

2

= argmin
xs∈[ε,1−ε]

− γ
(
((2γ)−1cs + rs)c̃s(xs) + ρsãs(xs)

)

+
1

2
(xs − xs)

2. (84)

The minimization of this rational function can be performed by various numerical methods. For instance,
the global optimization method proposed in [56–59] can be employed. We conclude that proxγϕs

(cs, xs) =
(c̃s(x̃s), x̃s).

C Moment-based estimation of α, u and σ

In this appendix, we show how simple estimates of α, u and σ can be derived from the estimates of c, k and
a provided by the optimization approach described in Section F.3. To do so, we start by rewriting (119) as

E[(Rs,t − E[Rs,t])
2] = E[(Rs,t − ase

−kst − c)2] = αase
−kst + σ2. (85)

The following weighted least squares estimate for α can then be derived:

α̂ =
ν
∑S

s=1 νsâsµs −
∑S

s=1 νses
∑S

s=1 νsâsωs

ν
∑S

s=1 νsâ
2
sω

2
s − (

∑S
s=1 νsâsωs)2

, (86)

where (νs)1≤s≤S are positive weights, ν = T
∑S

s=1 νs, and, for every s ∈ {1, . . . , S},

ωs = χ(x̂s), ω2
s = χ(x̂2s), es =

T∑

t=1

es,t, µs =

T∑

t=1

x̂tses,t, (87)

(∀t ∈ {1, . . . , T}) es,t = (rs,t − âsx̂
t
s − ĉ)2. (88)

An estimate of u follows as

(∀s ∈ {1, . . . , S}) ûs =
âs
α̂
. (89)

Finally, the estimation process is completed by computing

σ̂2 =

∑
(s,t) νs

(
es,t − α̂âsx̂

t
s

)
∑

(s,t) νs
=

∑S
s=1 νs

(
es − α̂âsωs

)

ν
. (90)

D Problem

Of interest here is a parametric model arising in the case of random variables modeled as a weighted
sum of Poisson and Gaussian components. The problem is to estimate the vector of parameters θ char-
acterizing the associated mixed continuous-discrete probability distribution from available observations
r = (rs,t)1≤s≤S,1≤t≤T , which are realizations of a random field R = (Rs,t)1≤s≤S,1≤t≤T . Here, s corre-
sponds to a location index (e.g. locating pixel (x, y) in 2D or voxel (x, y, z) in 3D) and t is the time
index.

More precisely, the considered stochastic model reads :

∀(s, t) ∈ S Rs,t = αQs,t +Ws,t (91)

where S = {1, . . . , S} × {1, . . . , T}, α ∈ (0,+∞) is a scaling parameter, and, for every (s, t) ∈ S, Qs,t is a
random variable following a Poisson distribution, and Ws,t is a normally distributed random variable, which
are expressed as

Qs,t ∼ P
(
vs,t
)
, Ws,t ∼ N (c, σ2) (92)

where v = (vs,t)1≤s≤S,1≤t≤T ∈ [0,+∞)
ST

is the vector of intensities of the Poisson distribution and c ∈ R

(resp. σ > 0) is the mean value (resp. standard-deviation) of the Gaussian distribution.
Our goal is to estimate the vector of unknown parameters (v, α, c, σ2) under the following assumptions:
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Variable Definition

s location index, 1 ≤ s ≤ S
t time index, 1 ≤ t ≤ T
r = (rs,t)1≤s≤S,1≤t≤T observed signal in R

ST

Rs,t random variable following a Poisson-Gaussian distrib.
q = (qs,t)1≤s≤S,1≤t≤T the numbers of occurrences in N

ST

Qs,t random variable following a Poisson distrib.
α > 0 scaling parameter
v = (vs,t)1≤s≤S,1≤t≤T mean values in (R+)

ST of the Poisson distrib.
u = (us)1≤s≤S ∈ (R∗

+)
S initial values of the exponential change rate

k = (ks)1≤s≤S ∈ (R∗
+)

S Poisson distrib. decay rates
x = (xs)1≤s≤S ∈ (R∗

+)
S Poisson distrib. exponential decays xs = e−ks

a = (as)1≤s≤S ∈ (R∗
+)

S mean values of Poisson distrib. for t = 1, as = usxs
Ws,t normally distributed random noise variable
c ∈ R mean value of the Gaussian distribution
σ > 0 standard-deviation of the Gaussian distribution
θ = [u⊤, k⊤, α, c, σ2]⊤ vector of unknown parameters

Table 4: Notations.

• Q = (Qs,t)1≤s≤S,1≤t≤T and W = (Ws,t)1≤s≤S,1≤t≤T are mutually statistically independent;

• the components of Q (resp. W ) are independent.

Note that some special instances of this model have been studied in the literature, in the case when, for
example, vs,t is no longer depending on t, thus reducing to

∀(s, t) ∈ S vs,t = us. (93)

Most existing works [8,10,33] assume that c = 0, whereas in [1] we considered a Gaussian noise with non-zero
mean. The motivation of these works was to identify noise parameters, the knowledge of which is required in
many algorithms used for denoising [15] or restoration [19, 20]. These parameters are usually not known in
advance and their values may depend on experimental conditions, for instance in the case of imaging systems
on camera settings, temperature, vibrations, . . . Gaussian approximations [8,10] of the Poisson distribution
are sometimes performed in the identification process, which often rely on the use of variance stabilization
methods like the Anscombe transform [34] in the subsequent data recovery tasks [12].

In this paper, we consider a more challenging case than (93), when

∀(s, t) ∈ S vs,t = use
−kst (94)

with u = (us)1≤s≤S ∈ (0,+∞)S and k = (ks)1≤s≤S ∈ (0,+∞)S . In this case, the 2S+3-dimensional vector
of unknown noise parameters becomes θ = [u⊤, k⊤, α, c, σ2]⊤ where (·)⊤ denotes the transpose operator
and ST > 2S + 3. Some results concerning time series data decaying exponentially in time in the presence
of additive noise can be found in [35, 36] but they cannot deal with the considered Poisson model. The
notations used in the paper are summarized in Table 4.

E EM approach

Under the considered statistical assumptions, for every s ∈ {1, . . . , S} and t ∈ {1, . . . , T}, the mixed
continuous-discrete distribution of (Rs,t, Qs,t) is obtained by applying Bayes rule:

(∀rs,t ∈ R)(∀qs,t ∈ N) pRs,t,Qs,t
(rs,t, qs,t | θ)

=fRs,t|Qs,t=qs,t(rs,t | α, c, σ)P(Qs,t = qs,t | us, ks)
=fWs,t

(rs,t − αqs,t | c, σ)P(Qs,t = qs,t | us, ks)

=
exp

(
− (rs,t−αqs,t−c)2

2σ2

)

√
2πσ

(use
−kst)qs,t

qs,t!
exp(−use−kst), (95)
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where fRs,t|Qs,t=qs,t(· | α, c, σ) is the conditional probability density function (pdf) of Rs,t knowing that
Qs,t = qs,t and fWs,t

(· | c, σ) is the pdf of Ws,t. Using the spatial and time independence properties, the
associated likelihood takes the following intricate form:

(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
)
fR(r | θ) =

S∏

s=1

T∏

t=1

+∞∑

qs,t=1

pRs,t,Qs,t
(rs,t, qs,t | θ). (96)

Deriving the maximum likelihood estimate of the unknown parameter vector θ from this expression appears
to be analytically intractable. To circumvent this difficulty, we propose to resort to an EM approach. Then,
R is viewed as an incomplete random vector and the chosen completed vector is [R⊤, Q⊤]⊤. This formulation
allows us to estimate θ by using the following EM iterations:

(∀n ∈ N) θ(n+1) = argmax
θ

J(θ | θ(n)) (97)

where
J(θ | θ(n)) = EQ|R=r,θ(n) [ln pR,Q(R,Q | θ)] (98)

and

(
∀r = (rs,t)1≤s≤S,1≤t≤T ∈ R

ST
)

(
∀q = (qs,t)1≤s≤S,1≤t≤T ∈ N

ST
)

pR,Q(r, q | θ) =
S∏

s=1

T∏

t=1

pRs,t,Qs,t
(rs,t, qs,t | θ) (99)

is the mixed continuous-discrete probability distribution of (R,Q). The complete data log-likelihood can
now be rewritten as:

ln pR,Q(R,Q | θ) = − 1

2σ2

S∑

s=1

T∑

t=1

(Rs,t − αQs,t − c)2

− ST

2
ln(2πσ2)−

S∑

s=1

use
−ks

1− e−Tks

1− e−ks

+

S∑

s=1

lnus

T∑

t=1

Qs,t −
S∑

s=1

ks

T∑

t=1

tQs,t −
S∑

s=1

T∑

t=1

ln(Qs,t!). (100)

By dropping the terms that are independent of θ and via a change of sign, we see that the EM algorithm
reduces to:

(∀n ∈ N) θ(n+1) = argmin
θ

J̃(θ | θ(n)) (101)

where

J̃(θ | θ(n)) = 1

2σ2

S∑

s=1

T∑

t=1

EQ|R=r,θ(n) [(rs,t − αQs,t − c)2]

+

S∑

s=1

ks

T∑

t=1

tEQ|R=r,θ(n) [Qs,t] +

S∑

s=1

use
−ks

1− e−Tks

1− e−ks

−
S∑

s=1

lnus

T∑

t=1

EQ|R=r,θ(n) [Qs,t] + ST lnσ. (102)

The EM algorithm alternates between expectation and maximization steps, guaranteeing that the likelihood
is increased at each iteration [29], [37].

The update rules are found by differentiating (102). The obtained relations lead us to the following
operations to be performed at iteration n:

1. For every s ∈ {1, . . . , S}, find k(n+1)
s satisfying:

1 + Te−(T+1)k(n+1)
s − (T + 1)e−Tk(n+1)

s

(1− e−k
(n+1)
s T )(1− e−k

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t] =
T∑

t=1

tEQ|R=r,θ(n) [Qs,t]. (103)
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2. For every s ∈ {1, . . . , S} compute

u(n+1)
s =

1− e−k(n+1)
s

e−k
(n+1)
s (1− e−Tk

(n+1)
s )

T∑

t=1

EQ|R=r,θ(n) [Qs,t]. (104)

3. Determine c(n+1) and α(n+1) by solving the following system of linear equations:




ST
∑

(s,t)∈S

EQ|R=r,θ(n) [Qs,t]

∑

(s,t)∈S

EQ|R=r,θ(n) [Qs,t]
∑

(s,t)∈S

EQ|R=r,θ(n [Q2
s,t]



[
c(n+1)

α(n+1)

]
=




∑

(s,t)∈S

rs,t

∑

(s,t)∈S

rs,tEQ|R=r,θ(n) [Qs,t]


 . (105)

4. Set (σ2)(n+1) to

1

ST

∑

(s,t)∈S

EQ|R=r,θ(n) [(rs,t − α(n+1)Qs,t − c(n+1))2] =

1

ST

∑

(s,t)∈S

rs,t

(
rs,t − α(n+1)

EQ|R=r,θ(n) [Qs,t]− c(n+1)
)
. (106)

As discussed in the next section, the procedure however raises a number of numerical issues which need to
be carefully addressed.

F Implementation issues of the EM algorithm

F.1 Computation of the required conditional means

According to (102), the expectation step requires to compute the conditional expectations EQs,t|Rs,t=rs,t,θ[Qs,t]
and EQs,t|Rs,t=rs,t,θ[Q

2
s,t], for every (s, t) ∈ S. These are expressed as follows

EQs,t|Rs,t=rs,t,θ[Qs,t] =
+∞∑

qs,t=1

qs,tP(Qs,t = qs,t | R = r, θ(n)) (107)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

+∞∑

qs,t=1

q2s,tP(Qs,t = qs,t | R = r, θ(n)) (108)

where, for every qs,t ∈ N,

P(Qs,t = qs,t | R = r, θ) =
pRs,t,Qs,t

(rs,t, qs,t | θ)
fRs,t

(rs,t | θ)
, (109)

pRs,t,Qs,t
(·, · | θ) is given by (95) and

(∀rs,t ∈ R) fRs,t
(rs,t | θ) =

+∞∑

qs,t=0

pRs,t,Qs,t
(rs,t, qs,t | θ). (110)

Hence, one can reexpress (107) and (108) as

EQs,t|Rs,t=rs,t,θ[Qs,t] =
ζs,t(θ)

ηs,t(θ)
(111)

EQs,t|Rs,t=rs,t,θ[Q
2
s,t] =

ξs,t(θ)

ηs,t(θ)
(112)

where

ζs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) (113)

ηs,t(θ) =
+∞∑

qs,t=0

Πs,t(θ, 0, qs,t) (114)

ξs,t(θ) =

+∞∑

qs,t=0

Πs,t(θ, 1, qs,t) +

+∞∑

qs,t=0

Πs,t(θ, 2, qs,t) (115)
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and, for every (d, qs,t) ∈ N
2,

Πs,t(θ, d, qs,t) = exp

(
− (rs,t − α(qs,t + d)− c)2

2σ2

)
(use

−kst)qs,t+d

qs,t!
. (116)

The computation of a ratio of two infinite sums is not always an easy task when these sums do not have
closed form expressions. A method allowing us to get a reliable approximation of the series given by (113),
(114) and (115) while simultaneously limiting the required computational time is described in Appendix A.
More precisely, it is shown that it is possible to determine the most significant terms in the summations by
studying properties of function Πs,t. This result is established using the Lambert W function.

Fig. 9 indicates that the bounds proposed in Proposition A.2 given by q−st = max(0,
⌊
q∗s,t −∆σ

α

⌋
) and

q+st =
⌈
q∗s,t +∆σ

α

⌉
,2 where ∆ > 0 and q∗s,t = σ2

α2W

(
α2

σ2 use
α

σ2 (rs,t−c−dα)−tks

)
, are sufficiently precise in

practice. We compare them with the summation bounds proposed in [18, 19] given by q−st = 0 and q+st =
rs,t +4σ. Those bounds are not guaranteed to include all the significant coefficients (see Fig. 9(a)) or to be
very effective (see Fig. 9(b)), unlike the ones we propose.

F.2 Estimation of the exponential decay rates

In the previous developments, a difficulty also arises in solving the update equation (103). A useful result
is the following one:

Proposition F.1 For every n ∈ N, s ∈ {1, . . . , S} and x ∈ R, let

gn,s(x) =

T−1∑

β=0

xβ

(
(β + 1)

T∑

t=1

EQ|R=r,θ(n) [Qs,t] −
T∑

t=1

tEQ|R=r,θ(n) [Qs,t]

)
. (117)

Then, e−k(n+1)
s is the unique positive real root x∗n,s of polynomial gn,s.

Proof. Simplifying the double root at 1 in the numerator of (103), we see that e−k(n+1)
s is a root x∗n,s in

(0, 1) of polynomial gn,s. We now show that x∗n,s is the unique positive root of this polynomial.

For every β ∈ {0, . . . , T − 1}, let b(β)n,s denote the coefficient of the term of degree β in gn,s. According to
(117) we have:

• b
(0)
n,s =

∑T
t=1(1− t)EQ|R=r,θ(n)[Qs,t] < 0 (Due to (111), (113) and (116), for every (s, t) ∈ S, us > 0 ⇒

EQ|R=r,θ(n)[Qs,t] > 0.)

• ∀β ∈ {1, . . . , T − 2}, b(β)n,s = b
(β−1)
n,s +

∑T
t=1 EQ|R=r,θ(n) [Qs,t]

• b
(T−1)
n,s =

∑T
t=1(T − t)EQ|R=r,θ(n) [Qs,t] > 0.

Since the sequence (b
(β)
n,s)0≤β≤T−1 is an increasing arithmetic sequence, the number of sign differences be-

tween consecutive nonzero coefficients is at most 1. Moreover, since b
(T−1)
n,s > 0, we can conclude using

Descartes’ rule of signs that the maximum number of positive roots of gn,s is equal to 1. As g
(0)
n,s < 0 and

limx→+∞ gn,s(x) = +∞, it can be deduced that there exists a unique positive root of gn,s.

In practice, we propose to compute k
(n+1)
s by using Halley’s iterative procedure [38] with M = 20 iterations

in typical cases. The iterations are given by Algorithm 3, where g′n,s (resp. g′′n,s) denotes the first (resp.
second) derivative of gn,s.

F.3 Moment-based initialization

Since the EM algorithm is not guaranteed to converge to a global maximizer of the likelihood, its behavior
can be improved by a judicious initialization. Usually, the choice of a good starting value is discussed in
the context of specific applications [1]. For the considered problem, we propose a moment-based approach.
Although methods of moments are often outperformed by other estimators, their simplicity makes them
popular statistical tools [7].

2⌊·⌋ (resp. ⌈·⌉) denotes the lower (resp. upper) rounding operation.
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Algorithm 3 Halley’s algorithm for computing k
(n+1)
s

Init : x
(0)
n,s = e−k(n)

s

For m = 0, . . . ,M − 1⌊
x
(m+1)
n,s = x

(m)
n,s − 2gn,s(x

(m)
n,s )g′n,s(x

(m)
n,s )

2(g′n,s(x
(m)
n,s ))2 − gn,s(x

(m)
n,s )g′′n,s(x

(m)
n,s )

k
(n+1)
s = − log x

(M)
n,s

Due to the independence assumptions made in Section C, the first and second order statistics of the
observations can be expressed as

• mean value: E[Rs,t] = αe−kstus + c (118)

• variance: Var[Rs,t] = α2e−kstus + σ2. (119)

Note that (118) can be re-expressed as

Rs,t = ase
−kst + c+ Es,t (120)

where as = αus and (Es,t)1≤s≤S,1≤t≤T are independent zero-mean random variables. This suggests adopting

a nonlinear least squares approach to compute estimates â = (âs)1≤s≤S , k̂ = (k̂s)1≤s≤S and ĉ of the
parameters:

(â, k̂, ĉ) ∈ Argmin
a,k,c

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (121)

The traditional approach to address such a problem is to rewrite it as

minimize
k∈(0,+∞)S

ψ(k) (122)

where, for every k = (ks)1≤s≤S ∈ (0,+∞)S ,

ψ(k) = min
a∈RS ,c∈R

S∑

s=1

T∑

t=1

(
rs,t − c− ase

−kst
)2
. (123)

Finding the expression of ψ reduces to a linear least squares problem the solution of which can be expressed
in a closed form. However, for large-size problems where S takes a high value, the minimization of ψ requires
solving a large dimensional non-convex minimization problem. Alternatively, by setting xs = e−ks for every
s ∈ {1, . . . , S}, (121) can be reexpressed as the problem of finding a minimizer of a real-valued multivariate
polynomial on a set defined by polynomial inequalities. Global optimization methods for such problems
were introduced in [42,43]. Nevertheless, these methods do not scale well with the size of the problem.

In order to circumvent these difficulties, we propose to adopt a splitting strategy. More specifically, we
reformulate the problem in the product space R

S × R
S as follows:

minimize
(c1,...,cS)∈R

S

(x1,...,xS)∈R
S

S∑

s=1

ϕs(cs, xs) + ιD(c1, . . . , cS) (124)

where, for every (cs, xs) ∈ R
2,

ϕs(cs, xs) =




min
as∈R

∑T
t=1

(
rs,t − cs − asx

t
s

)2
if xs ∈ [ε, 1− ε]

+∞ otherwise,
(125)

ε ∈ (0, 1/2) is a tolerance parameter, D is the vector space {(c1, . . . , cS) ∈ R
S | c1 = · · · = cS}, and ιD is

the indicator function of D defined as

(∀c = (c1, . . . , cS) ∈ R
S)ιD(c1, . . . , cS) =

{
0 if c ∈ D

+∞ otherwise.
(126)

Guidelines for addressing such split optimization problems is provided in [44] by employing proximal tools,
namely algorithms involving computations of proximity operators. However, there is a limited number of
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results concerning the convergence of proximal splitting algorithms in the non-convex case. Among these al-
gorithms, we propose to use the Douglas-Rachford algorithm which was observed to behave satisfactorily [45]
in a number of non-convex optimization problems.

For many functions the proximity operator has an explicit form [46]. For instance, the proximal operator
proxιD of ιD reduces to the projection onto D, i.e.

(∀(cs)1≤s≤S ∈ R
S) proxιD (c1, . . . , cS) =

c1 + · · ·+ cS
S

(1, . . . , 1). (127)

For every s ∈ {1, . . . , S}, the expression of the proximity operator of γϕs with γ ∈ ]0,+∞[ is provided in
Appendix B. This allows us to apply the Douglas-Rachford method summarized in Algorithm 4. It is worth
noticing that the computation of the proximity operators proxγϕs

for different values of s ∈ {1, . . . , S} can
be implemented in a parallel manner.

Once estimates ĉ and (x̂s)1≤s≤S have been obtained in this fashion, the following estimates of the
amplitude values can be derived from (125):

(∀s ∈ {1, . . . , S}) âs =
1

χ(x̂2s)

T∑

t=1

(rs,t − ĉ)x̂ts (128)

where

∀υ ∈ [0,+∞), χ(υ) = υ
1− υT

1− υ
. (129)

Note that an alternative approach relying upon an alternating minimization approach was proposed in [2].
However, it was observed to exhibit slower convergence.

Algorithm 4 Douglas-Rachford iterations for computing moment-based estimates of k and c.

Initialization:

Initialize ĉ(0).
Set c

(0)
s = ĉ(0), for every s ∈ {1, . . . , S}.

Set initial values in [ε, 1− ε] for (x̂
(0)
s )1≤s≤S .

Main loop:

For m = 0 . . .M − 1

For s = 1 . . . S⌊
(ĉ

(m)
s , x̂

(m+1)
s ) = proxγϕs

(c
(m)
s , x̂

(m)
s )

ĉ(m+1) = 1
S

∑S
s=1 ĉ

(m)
s

For s = 1 . . . S⌊
c
(m+1)
s = c

(m)
s + 2ĉ(m+1) − ĉ(m) − ĉ

(m)
s

Outputs:

ĉ = ĉ(M)

For s = 1 . . . S⌊
k̂s = − ln

(
x̂(M)
s

)

It remains now to deduce estimates of α, u and σ. The proposed estimators are described in Appendix
C.

The final proposed noise modeling procedure is summarized in Fig. 10.

G Performance bounds

This section aims at deriving lower bounds on the best achievable performance in estimating the parameters
of Model (91). These bounds will allow us to evaluate the performance of the estimator proposed in
Section E. A well-known lower bound on the variance of an unbiased estimator is provided by the Cramer-
Rao inequality, which involves the inverse of the Fisher Information Matrix (FIM) [47]. The problem of
computing the required FIM is addressed in Section G.1, whereas the inversion of the FIM is discussed in
Section G.2.
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G.1 Form of the Fisher information matrix

Recall that the FIM is expressed from the log-likelihood as follows

I(θ) = ER|θ

[
∂ln(fR(R | θ))

∂θ

(
∂ln(fR(R | θ))

∂θ

)⊤]

=
S∑

s=1

T∑

t=1

ER|θ[Us,tU
⊤
s,t] (130)

where, for every (s, t) ∈ S, Us,t is the score function defined as

Us,t =
∂ln(fRs,t

(Rs,t | θ))
∂θ

(131)

and the marginal pdf of Rs,t is given by (110). This yields

∂fRs,t
(rs,t | θ)
∂θ

=
+∞∑

qs,t=0

∂pRs,t,Qs,t
(rs,t, qs,t | θ)
∂θ

(132)

which allows us to deduce that Us,t is equal to

∑+∞
qs,t=0

{
∂ln(pRs,t,Qs,t

(rs,t,qs,t|θ))
∂θ

pRs,t,Qs,t
(rs,t, qs,t | θ)

}

∑+∞
qs,t=0 pRs,t,Qs,t

(rs,t, qs,t | θ)

= EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂θ

]
. (133)

The components of vector Us,t can then be expressed from the conditional means of Qs,t and Q
2
s,t. Indeed,

according to (95), we have: for every s′ ∈ {1, . . . , S},

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂us′

]
=

(
1

us
EQs,t|Rs,t=rs,t,θ[Qs,t]− e−kst

)
δs′−s (134)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂ks′

]
= t

(
use

−kst − EQs,t|Rs,t=rs,t,θ[Qs,t]
)
δs′−s (135)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂c

]
=

1

σ2

(
rs,t − αEQs,t|Rs,t=rs,t,θ[Qs,t]− c

)
(136)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂α

]
=

1

σ2

(
(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t]

−αEQs,t|Rs,t=rs,t,θ[Q
2
s,t]
)

(137)

EQs,t|Rs,t=rs,t,θ

[
∂ln(pRs,t,Qs,t

(rs,t, Qs,t | θ))
∂σ

]
=

1

σ3

(
(rs,t − c)2 − σ2 + α2

EQs,t|Rs,t=rs,t,θ[Q
2
s,t]

−2α(rs,t − c)EQs,t|Rs,t=rs,t,θ[Qs,t]
)

(138)

where δs′−s = 1 if s′ = s and 0 otherwise. So, provided that EQs,t|Rs,t=rs,t,θ[Qs,t] and EQs,t|Rs,t=rs,t,θ[Q
2
s,t] are

known, the above equations allow us to deduce the expression of Us,t. We still need to calculate the expecta-
tion with respect to R in (130), which is unfortunately intractable. To circumvent this difficulty, we propose
to proceed similarly to the Monte Carlo approach in [48], by drawing L≫ 1 realizations of R and calculat-

ing, for each realization r(ℓ) with ℓ ∈ {1, . . . , L}, the associated correlation matrix
∑S

s=1

∑T
t=1 U

(ℓ)
s,t (U

(ℓ)
s,t )

⊤.
Then, the FIM is approximated by the following consistent sample estimate

ÎL(θ) =
1

L

L∑

ℓ=1

S∑

s=1

T∑

t=1

U
(ℓ)
s,t (U

(ℓ)
s,t )

⊤. (139)

G.2 Inversion of the Fisher information matrix

Let θ̂i : R
ST → R with i ∈ {1, . . . , 2S +3} be an unbiased estimator of the i-th component θi of vector θ. A

lower bound of the mean square error E[(θ̂i(R)− θi)2] is given by the i-th diagonal term of the inverse of the
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FIM. It is thus of main interest to compute the diagonal terms of the inverse of matrix I(θ) ∈ R
(2S+3)×(2S+3).

Although S may take large values, the inversion can be efficiently performed due to the sparse structure of
the FIM.

More precisely, the FIM can be expressed as the following block matrix:

I(θ) =

[
A B
B⊤ C

]
(140)

where
• the matrix A ∈ R

2S×2S takes the following form

A =

[
A1,1 A1,2

A⊤
1,2 A2,2

]
(141)

with

A1,1 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

S×S (142)

A1,2 = ER|θ

[
∂ln(fR(R | θ))

∂u

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S (143)

A2,2 = ER|θ

[
∂ln(fR(R | θ))

∂k

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

S×S ; (144)

• the matrix B is given by
B⊤ = [B1 | B2] (145)

where

B1 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂u

)⊤]
∈ R

3×S (146)

B2 = ER|θ

[
∂ln(fR(R | θ))

∂θ̃

(
∂ln(fR(R | θ))

∂k

)⊤]
∈ R

3×S (147)

with θ̃ = [c, α, σ]⊤;

• C = ER|θ

[
∂ln(fR(R|θ))

∂θ̃

(
∂ln(fR(R|θ))

∂θ̃

)⊤]
∈ R

3×3.

From the standard Frobenius-Schur formula for the inverse of a block matrix [49], the i-th diagonal terms
of I(θ)−1 is given by

[I(θ)−1]i,i = (148)
{
[A−1 +A−1B(C −B⊤A−1B)−1B⊤A−1]i,i if i ≤ 2S

[(C −B⊤A−1B)−1]i,i otherwise.

Hence, both C − B⊤A−1B ∈ R
3×3 and A need to be inverted. The former inversion is easy due to the

small size of the matrix, but a more challenging task is to invert the latter, which is typically of large
dimension. However, a closer look at (134) and (135) allows us to observe that matrices A1,1, A1,2 and A2,2

in (142)-(144) are diagonal. Thus, using again the block matrix inversion formula, we get

A−1 = [A−1
1 | A−1

2 ] (149)

with A−1
1 =

[
(A1,1 −A1,2A

−1
2,2A1,2)

−1

−A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

]
and A−1

2 =

[ −A−1
1,1A1,2(A2,2 −A1,2A

−1
1,1A1,2)

−1

(A2,2 −A1,2A
−1
1,1A1,2)

−1

]
,

where all the required inversions are straightforward due to the diagonal structure of all the involved ma-
trices.

In summary, the mean square error E[(θ̂i(R) − θi)
2] is lower bounded by [I(θ)−1]i,i which is given by

(148).
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H Experimental results

This section illustrates the good performance of the proposed approach and shows its usefulness in a real
microscopy application. The algorithm performance is measured by computing the mean square error
(MSE) between the original and reconstructed noise parameters and by inspecting the difference between
the variance of our estimator and the Cramer-Rao bounds (CRB). Results of a series of synthetic data
simulation are provided in Section H.1, while Section H.2 is devoted to practical considerations, necessary
details about the application and presentation of the results on a real data set.

H.1 Validation of the proposed approach on synthetic data

Firstly we evaluate the performance of the proposed algorithm under different working conditions. In
particular the influence of the values of parameters ∆, S, T , c, α, σ2, us and ks is studied. Realizations of
the observed signal Rs,t are generated according to (91) for different set of parameter values for θ, S and T .
Randomly chosen values of us and ks are uniformly distributed over [u, u] and

[
k, k
]
, respectively. Poisson

and Gaussian noise realizations are drawn using the random number generators proposed in Park et al. [50].

The bias on the estimate of the i-th component of the parameter vector is computed as 1
L

∑L
ℓ=1(θi−θ̂

(ℓ)
i ) over

L = 100 different noise realizations. As expected, Table 5 illustrates that our estimator is asymptotically

unbiased when T → +∞. Average values of the MSE are computed by 1
L

∑L
ℓ=1(θi − θ̂

(ℓ)
i )2. Similarly, the

SNR values provided in Table 5 correspond to averages computed over the L realizations, e.g. SNR(û) =
1
L

∑L
ℓ=1

(∑S
s=1 u

2
s/
∑S

ℓ=s(us − ûs)
2
)
. The good performance of the proposed estimator is confirmed by the

small difference between the MSE and the associated CRB (usually less than 50%). Note that, for finite
T , our estimator is biased, so that the CRB constitutes only a quality measure which is not theoretically
guaranteed to provide an achievable lower bound for the MSE. Firstly, the influence of the approximation of
the infinite summations proposed in Appendix A is investigated. The inspection of the MSE, bias and CRB
values in the provided example illustrates that 5 is an adequate choice for ∆ (as defined in Section F.1) and
that any higher value does not improve the estimation results. Note that the CRB computation procedure
appears to be less sensitive to the choice of ∆ than the EM algorithm. Additionally, the influence of
the choice of T and S on the estimation quality is assessed. As expected, the estimation performance is
improved by increasing T and S, but the influence of T is more important. Note that one would expect the
Cramer-Rao bound to depend on T . However, since the FIM (139) is evaluated by Monte Carlo simulation,
this dependency is not explicit but only appears through our numerical results. Finally, we provide some
numerical results related to the behaviour of our algorithm for different choices of θ. The following points
have been highlighted through our study:

• the accuracy of u and k estimation increases with α, while the accuracy of α, c and σ estimation
decreases with α ;

• the estimation performance of our algorithm does not depend on the value of c ;

• the accuracy of c, u and k estimation decreases with σ2, while the estimation of σ is improved ;

• σ is better estimated when low values of us are present in signal u ;

• the considered estimation problem becomes more difficult when the decay rate ks is small.

One can observe that our EM estimates can be quite precise for some good choices of S, T and ∆ as the
estimation error can fall under 5%.

We now illustrate the performance of the initialization method proposed in Section F.3. As shown in
Table 6, the moment based initialization results are further improved with the second step of the algo-
rithm, i.e. the EM step. This is in agreement with the general claim that the method of moments is often
outperformed by other estimators e.g. maximum likelihood when applicable. Results presented in Fig. 11
concern the alternating minimization approach proposed in [2] and the Douglas-Rachford approach corre-
sponding to Algorithm 4. Fig. 11 illustrates the convergence characteristics of these algorithms in terms
of energy (see (121)) and of the estimated values of α, σ2 and c. At each iteration, parameters α and
σ2 were computed using (182) and (186), respectively, where all positive weights (νs)1≤s≤S were set to 1.
The results were averaged over L = 10 different noise realizations. The parameter γ was set to 0.01. One
can observe in Fig. 11 (a) that the initialization proposed in the paper leads to faster convergence, while
retaining estimation quality as illustrated by Fig. 11 (b-d). The EM algorithm is computationally more
intensive, which results in a slower convergence. Note that its computational efficiency can be improved by
resorting to various acceleration techniques, e.g. [?].
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Param.
α̂ ĉ σ̂ û k̂

bias MSE CRB bias MSE CRB bias MSE CRB SNR SNR

∆ Identified noise parameters versus ∆ (α = 5, c = 150, σ2 = 200, u = 5, u = 100, k = 0.0001, k = 0.01, S = 200, T = 200)

3 -0.29 9.31×10−2 4.44×10−3 2.60 6.76×102 3.80×100 8.27 6.84×101 1.59×10−1 27.1 12.0

4 0.06 8.01×10−3 4.44×10−3 0.63 4.21×100 1.68×100 0.13 1.68×10−1 1.59×10−1 30.9 22.5

5 0.06 8.40×10−3 4.44×10−3 0.47 3.89×100 1.68×100 0.09 1.59×10−1 1.59×10−1 30.9 22.5

6 0.06 8.40×10−3 4.44×10−3 0.47 3.89×100 1.68×100 0.09 1.59×10−1 1.59×10−1 30.9 22.6

T Identified noise parameters versus T (α = 5, c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200)

150 0.08 2.07×10−2 1.36×10−2 -1.17 7.78×101 4.77×101 0.04 6.49×10−1 4.49×10−1 25.8 12.8

200 0.07 1.55×10−2 1.04×10−2 0.85 1.73×101 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

300 0.04 1.03×10−2 7.14×10−3 0.45 1.72×100 1.54×100 0.11 8.54×10−2 5.90×10−2 31.9 23.1

350 0.04 8.80×10−3 6.17×10−3 0.06 8.75×10−1 7.52×10−1 0.08 5.54×10−2 4.15×10−2 32.3 23.8

S Identified noise parameters versus S (α = 5, c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, T = 200)

150 0.06 1.78×10−2 1.36×10−2 0.53 1.60×101 1.43×101 0.17 2.27×10−1 2.13×10−1 29.8 17.6

200 0.07 1.55×10−2 1.04×10−2 0.85 1.73×101 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

300 0.06 1.14×10−2 6.94×10−3 -0.14 9.31×100 7.69×100 0.11 1.47×10−1 1.12×10−1 30.8 19.7

350 0.06 8.76×10−3 6.23×10−3 0.71 1.08×101 6.74×100 0.16 1.34×10−1 1.02×10−1 31.2 19.4

α Identified noise parameters versus α (c = 150, σ2 = 1000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

5 0.07 1.55×10−2 1.04×10−2 0.85 1.73×100 1.11×101 0.13 2.21×10−1 1.69×10−1 30.1 19.2

10 0.12 2.97×10−2 1.53×10−2 0.99 3.08×101 2.10×101 0.16 9.98×10−1 7.58×10−1 32.3 23.4

15 0.12 4.21×10−2 2.47×10−2 0.04 4.21×101 3.36×101 0.11 2.68×100 2.24×100 33.5 24.9

20 0.20 7.92×10−2 3.72×10−2 1.00 6.22×101 4.77×101 0.28 6.14×100 5.00×100 33.3 25.6

c Identified noise parameters versus c (α = 30, σ2 = 3000, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200

-10 0.32 1.95×10−1 9.03×10−2 1.84 1.65×102 1.20×102 0.41 1.27×100 1.00×101 33.2 25.3

0 0.32 1.94×10−1 9.03×10−2 1.83 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

10 0.32 1.95×10−1 9.03×10−2 1.84 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

150 0.32 1.95×10−1 9.03×10−2 1.85 1.65×102 1.20×102 0.41 1.26×100 1.00×101 33.2 25.3

σ2 Identified noise parameters versus σ2 (α = 30, c = 150, u = 5, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

2000 0.10 1.50×10−1 8.15×10−2 -2.85 1.35×102 1.03×102 -0.22 1.26×101 1.18×101 33.7 25.6

3000 0.32 1.94×10−1 9.03×10−2 1.83 1.65×102 1.20×102 0.41 1.26×101 1.00×101 33.2 25.3

4000 0.33 2.10×10−1 1.21×10−1 2.09 1.89×102 1.04×102 0.41 1.15×101 6.80×100 33.0 24.9

6000 0.34 2.34×10−1 1.15×10−1 2.46 2.28×102 1.59×102 0.42 1.01×101 7.73×100 32.7 24.2

u Identified noise parameters versus u (α = 1, c = 150, σ2 = 25, u = 150, k = 0.0001, k = 0.01, S = 200, T = 200)

1 0.01 3.96×10−4 2.61×10−4 -0.03 4.46×10−1 3.29×10−1 0.02 6.54×10−3 6.04×10−3 25.2 9.4

5 0.01 4.56×10−4 2.80×10−4 0.15 4.99×10−1 3.36×10−1 0.02 8.59×10−3 6.60×10−3 31.0 21.1

15 0.01 5.29×10−4 3.21×10−4 0.10 3.87×10−1 3.56×10−1 0.02 9.48×10−3 8.31×10−3 31.2 24.6

30 0.01 4.47×10−4 3.66×10−4 0.04 4.13×10−1 3.84×10−1 0.03 1.20×10−2 1.11×10−2 31.6 26.7

k, k
Identified noise parameters versus k range (α = 30, c = 150,σ2 = 1000, u = 5, u = 150, S = 200, T = 200)

k̃0 = 0.01, k̃1 = 0.005, k̃2 = 0.00125, k̃3 = 0.000625

k̃1, k̃0 0.31 1.67×10−1 7.48×10−2 0.18 6.98×101 6.98×101 0.27 1.50×101 1.33×101 33.5 27.0

k̃2, k̃1 0.33 2.79×10−1 8.20×10−2 0.41 5.69×102 4.72×102 0.81 8.59×101 8.30 ×101 32.7 22.2

k̃1, k̃2 0.21 1.68×10−1 8.42×10−2 -19.8 1.67×103 9.47×102 -5.86 1.65×102 1.65×102 32.9 16.4

k̃2, k̃3 0.28 2.27×10−1 8.48×10−2 -34.47 5.72×103 1.33×103 -8.70 4.50×102 2.44×102 28.4 5.4

Table 5: Performance of the proposed EM algorithm under different working conditions.

H.2 Application to fluorescence imaging system - macroscopy case

Confocal macroscopy (i.e. large field of view confocal microscopy) is a recently-developed imaging modality.
We use a few images from a confocal macroscope as real data examples. We have applied our algorithm
to time series of real fluorescence images, acquired using a macro confocal laser scanning microscope (Leica
TCS-LSI) from a cross-section through the rhizome of Convallaria majalis (Lily of the Valley). The reported
signal intensities at each location within the biological sample result from natural occurring auto-fluorescence
caused by different compounds like lignin and other phenolics. In microscopy practice, the intensity decay
modeled in (94) is due to the photobleaching effect [51]. The acquired data is corrupted with noise. Thus
our noise identification problem arises naturally [7, 9, 12, 52, 53]. We evaluated our algorithm using cross
validation techniques, i.e. we applied our algorithm to two subsets coming from one dataset. We can then
assume that the two sequences are corrupted with the same noise model and parameters. The processed
time lapse sequences consists of 300 images with 12-bit resolution of size 190 × 190, which translates into
T = 300 and S = 36100. Fig. 14 (a,c) and Fig. 14 (b,d) illustrate the first and last images of the considered
sequences 1 and 2, respectively. The visual results are presented in Fig. 14 (e,f). The identified models are

given by 168 × P
(
ûse

−k̂st
)
+ N (114, 64.12) and 174 × P

(
ûse

−k̂st
)
+ N (114, 62.992) for sequence 1 and 2,

respectively. One can observe that these parameter values are indeed quite close, which shows the validity
of our hypotheses. The plots in Fig. 15 illustrate the variation of the measured and reconstructed signals
along t, while s is fixed. One can observe that the bleaching curves are a good fit for the series of measured
data points. The estimated ûs values lie in [0, 13]. The relatively small data value range can be explained
by the fact that the sampling time is only 1.2 µs.
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α̂ ĉ σ̂
Init. EM Init. EM Init. EM

bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE

1 -0.15 2.91×10−1 0.07 1.55×10−2 -14.03 9.81×101 0.85 1.73×101 -1.12 1.50×100 0.13 2.21×10−1

2 -0.28 5.09×10−1 0.05 7.75×10−3 -6.77 1.34×102 0.55 5.02×100 -0.29 5.07×100 0.17 2.43×10−1

3 0.06 2.65×10−1 0.04 8.80×10−3 -1.96 1.29×101 0.05 8.75×10−1 -0.52 2.53 ×100 0.08 5.54×10−2

4 -0.14 3.81×10−1 0.08 1.80×10−1 -17.61 6.10×101 0.91 2.70×101 -1.14 1.03 ×100 0.18 2.74×10−1

5 -0.02 8.38×10−3 0.01 3.44×10−4 -3.52 5.77×100 0.10 0.38×100 -0.34 7.15×10−2 0.02 9.12×10−3

Table 6: Improvement brought by EM algorithm w.r.t. its initialization for five different parameter settings
(α is equal to 5 and 1 for tests 1− 4 and 5, respectively; c = 150 ; σ2 is equal to 1000, 200, 1000, 2000 and
25 for tests 1−5, respectively; u is equal to 5 and 15 for tests 1−4 and 5, respectively; u = 150, k = 0.0001,
k = 0.01, S is equal to 200 and 150 for tests 1, 3− 5 and 2, respectively; T is equal to 200 and 350 for tests
1, 2, 4, 5 and 3, respectively). Bias and MSE are computed over L = 100 noise realizations.

I Conclusions

In this paper, we have proposed a new EM-based approach for dealing with Poisson-Gaussian noise parameter
estimation problems. We have presented a practical procedure for computing the corresponding Cramer-Rao
bounds. We have shown that the proposed method can lead to accurate results given sufficient measurements.
The numerical issues related to the computation of our estimator have been addressed. In particular, we
have proposed a fast and reliable way to approximate the infinite sums arising in our estimator with a
high degree of accuracy. We have proposed an improved moment based estimation method, which we used
to initialize the EM algorithm. As a side result, the proposed algorithm can deliver a good estimation
of the original data when the noise parameters are unknown. Finally we have shown that our approach
constitutes a solution for high quality noise parameter estimation of fluorescence macroscopy data. The
proposed approach can thus be expected to be useful across a broad range of applications, as the developed
statistical techniques are applicable not only to images but to any kind of arbitrary dimensional signals.

A Approximations of infinite summations

Let (s, t) ∈ S and let d ∈ N. The results in this appendix are based on the following upper bound for
function Πs,t obtained through Stirling’s formula:

(
∀qs,t ∈ N

∗) Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, qs,t) (150)

where (∀τ ∈ ]0,+∞[)

Π̂s,t(θ, d, τ) = exp

(
− (rs,t − α(τ + d)− c)2

2σ2

)
(use

−kst)τ+d

√
2πτ τe−τ

. (151)

Lemma A.1 Function Π̂s,t(θ, d, ·) has a unique maximizer

q∗s,t =
σ2

α2
W

(
α2

σ2
use

α

σ2 (rs,t−c−dα)−tks

)
(152)

where W denotes the Lambert W function. We recall that Lambert W function satisfies the following relation:

W(x)eW(x) = x (153)

In addition,
(
∀qs,t ∈ N

∗)

Πs,t(θ, d, qs,t) ≤ Π̂s,t(θ, d, q
∗
s,t) exp

(
− α2

2σ2

(
qs,t − q∗s,t

)2
)
. (154)

Proof. For every τ ∈ ]0,+∞[, we have

ln
(
Π̂s,t(θ, d, τ)

)
= − (rs,t − α(τ + d)− c)2

2σ2
− tks(τ + d)

+ (τ + d) lnus − τ ln τ + τ − 1

2
ln(2π). (155)
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This allows us to deduce that

∂
(
ln Π̂s,t(θ, d, τ)

)

∂τ
= − ln τ − α2

σ2
τ + lnus

+
α

σ2
(rs,t − c− αd)− tks. (156)

Hence, any extremum value q∗s,t of Π̂s,t(θ, d, ·) must satisfy the following equation:

ln q∗s,t +
α2

σ2
q∗s,t − lnus −

α

σ2
(rs,t − c− αd) + tks = 0. (157)

There exists a unique solution to this equation which is given by (152) [55]. It is easy to check from (156)
that

∂
(
ln Π̂s,t(θ, d, τ)

)

∂τ
> 0 ⇔ τ < q∗s,t (158)

so that q∗s,t is the unique maximizer of Π̂s,t(θ, d, ·).
In addition, we derive from (157) that

ln
(
Π̂s,t(θ, d, τ)

)
− ln

(
Π̂s,t(θ, d, q

∗
s,t)
)

=− α2

2σ2

(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q

∗
s,t

+ (τ − q∗s,t)
(
lnus +

α

σ2
(rs,t − c− αd)− tks + 1

)

=− α2

2σ2

(
τ2 − (q∗s,t)

2
)
− τ ln τ + q∗s,t ln q

∗
s,t

+ (τ − q∗s,t)

(
ln q∗s,t +

α2

σ2
q∗s,t + 1

)

=− α2

2σ2

(
τ − q∗s,t

)2
+ τ(ln q∗s,t − ln τ) + τ − q∗s,t. (159)

By using now the concavity of the logarithm function, we get

ln q∗s,t − ln τ ≤ 1

τ
(q∗s,t − τ). (160)

Altogether (150), (159) and (160) yield (154).

As illustrated by Fig. 16, the value q∗s,t corresponding to the maximum of function Π̂s,t(θ, d, ·) is a close
approximation to the maximizer of function Πs,t(θ, d, ·).

As shown next, the above lemma is useful to derive finite sum approximations to the series in (113),
(114) and (115).

Proposition A.2 Let ∆ > 0 and set

q−s,t = ⌊q∗s,t −∆
σ

α
⌋, q+s,t = ⌈q∗s,t +∆

σ

α
⌉ (161)

where q∗s,t is given by (152). Then,
∑q+s,t

qs,t=max(1,q−s,t)
Πs,t(θ, d, qs,t) constitutes a lower approximation to

∑+∞
qs,t=1 Πs,t(θ, d, qs,t) with maximum error value

√
2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1− erf

( ∆√
2

))
.

Proof. For every qs,t ∈ N such that qs,t ≥ q∗s,t and, for every τ ∈ R such that qs,t ≤ τ ≤ qs,t + 1, we have

exp

(
− α2

2σ2
(qs,t + 1− q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
. (162)
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This allows us to deduce that

+∞∑

qs,t=q+s,t+1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ +∞

q+s,t

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

≤
∫ +∞

q∗s,t+∆ σ
α

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√
2π

σ

2α

(
1− erf

( ∆√
2

))
(163)

where erf is the error function.
Similarly, for every qs,t ∈ N such that qs,t ≤ q∗s,t − 1 and, for every τ ∈ R such that qs,t ≤ τ ≤ qs,t + 1,

we get

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)
≤ exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
, (164)

which, by assuming that q−s,t ≥ 2, yields

q−s,t−1∑

qs,t=1

exp

(
− α2

2σ2
(qs,t − q∗s,t)

2

)

≤
∫ q−s,t

1

exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

≤
∫ q∗s,t−∆ σ

α

−∞
exp

(
− α2

2σ2
(τ − q∗s,t)

2

)
dτ

=
√
2π

σ

2α

(
1− erf

( ∆√
2

))
. (165)

By using now (154), (163) and (165), it can be concluded that

0 ≤
+∞∑

qs,t=1

Πs,t(θ, d, qs,t)−
q+s,t∑

qs,t=max(1,q−s,t)

Πs,t(θ, d, qs,t)

≤ Π̂s,t(θ, d, q
∗
s,t)




max(q−s,t−1,0)∑

qs,t=1

e−
α2

2σ2 (qs,t−q∗s,t)
2

+

+∞∑

qs,t=q+s,t+1

e−
α2

2σ2 (qs,t−q∗s,t)
2




≤
√
2π
σ

α
Π̂s,t(θ, d, q

∗
s,t)

(
1− erf

( ∆√
2

))
. (166)

Note that, when ∆ = 5,
√
2π
(
1− erf

(
∆√
2

))
≃ 1.44× 10−6.

B Computation of the proximity operator of γϕs

From the definition of the proximity operator [46] of function γϕs:

(∀(cs, xs) ∈ R
2) (c̃s, x̃s) = proxγϕs

(cs, xs) ⇔

(c̃s, x̃s) = argmin
(cs,xs)∈R2

γϕs(cs, xs) +
1

2
(cs − cs)

2

+
1

2
(xs − xs)

2. (167)
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We substitute ϕs in (167) with (125). We need to solve the following problem:

minimize
as∈R,xs∈[ε,1−ε],cs∈R

γ

T∑

t=1

(
rs,t − cs − asx

t
s

)2
+

1

2
(cs − cs)

2 +
1

2
(xs − xs)

2. (168)

For any value of xs ∈ [ε, 1− ε], differentiating with respect to cs and as yields ãs(xs) and c̃s(xs) as the
optimal values of as and cs in the above minimized quadratic function. The solution can be written in a
2× 2 matrix form: [

T + (2γ)−1 ωs

ωs ω2
s

] [
c̃s(xs)
ãs(xs)

]
=

[
(2γ)−1cs + rs

ρs

]
(169)

where

ωs =
T∑

t=1

xts = χ(xs), ω2
s =

T∑

t=1

x2ts = χ(x2s) (170)

rs =

T∑

t=1

rs,t, ρs =

T∑

t=1

rs,tx
t
s (171)

and function χ is defined in (129). The linear solution to (169) yields

c̃s(xs) =
ω2
s((2γ)

−1cs + rs)− ωsρs

(T + (2γ)−1)ω2
s − (ωs)2

(172)

ãs(xs) =
(T + (2γ)−1)ρs − ωs((2γ)

−1cs + rs)

(T + (2γ)−1)ω2
s − (ωs)2

. (173)

The solution to (168) thus reduces to the one-variable minimization problem:

Find x̃s = argmin
xs∈[ε,1−ε]

γ

T∑

t=1

(
rs,t − c̃s(xs)− ãs(xs)x

t
s

)2

+
1

2

(
c̃s(xs)− cs

)2
+

1

2
(xs − xs)

2

= argmin
xs∈[ε,1−ε]

− γ
(
((2γ)−1cs + rs)c̃s(xs) + ρsãs(xs)

)

+
1

2
(xs − xs)

2. (174)

The minimization of this rational function can be performed by various numerical methods. For instance,
the global optimization method proposed in [56–59] can be employed. We conclude that proxγϕs

(cs, xs) =
(c̃s(x̃s), x̃s).

C Moment-based estimation of α, u and σ

In this appendix, we show how simple estimates of α, u and σ can be derived from the estimates of c, k and
a provided by the optimization approach described in Section F.3. To do so, we start by rewriting (119) as

E[(Rs,t − E[Rs,t])
2] = E[(Rs,t − ase

−kst − c)2] = αase
−kst + σ2. (175)

The following weighted least squares estimate for α can then be derived:

α̂ =
ν
∑S

s=1 νsâsµs −
∑S

s=1 νses
∑S

s=1 νsâsωs

ν
∑S

s=1 νsâ
2
sω

2
s − (

∑S
s=1 νsâsωs)2

, (176)

where (νs)1≤s≤S are positive weights, ν = T
∑S

s=1 νs, and, for every s ∈ {1, . . . , S},

ωs = χ(x̂s), ω2
s = χ(x̂2s), es =

T∑

t=1

es,t, µs =

T∑

t=1

x̂tses,t, (177)

(∀t ∈ {1, . . . , T}) es,t = (rs,t − âsx̂
t
s − ĉ)2. (178)
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An estimate of u follows as

(∀s ∈ {1, . . . , S}) ûs =
âs
α̂
. (179)

Finally, the estimation process is completed by computing

σ̂2 =

∑
(s,t) νs

(
es,t − α̂âsx̂

t
s

)
∑

(s,t) νs
=

∑S
s=1 νs

(
es − α̂âsωs

)

ν
. (180)

In this appendix, we show how simple estimates of α, u and σ can be derived from the estimates of c,
k and a provided by the optimization approach described in Section F.3. To do so, we start by rewriting
(119) as

E[(Rs,t − E[Rs,t])
2] = E[(Rs,t − ase

−kst − c)2] = αase
−kst + σ2. (181)

The following weighted least squares estimate for α can then be derived:

α̂ =
ν
∑S

s=1 νsâsµs −
∑S

s=1 νses
∑S

s=1 νsâsωs

ν
∑S

s=1 νsâ
2
sω

2
s − (

∑S
s=1 νsâsωs)2

, (182)

where (νs)1≤s≤S are positive weights, ν = T
∑S

s=1 νs, and, for every s ∈ {1, . . . , S},

ωs = χ(x̂s), ω2
s = χ(x̂2s), es =

T∑

t=1

es,t, µs =

T∑

t=1

x̂tses,t, (183)

(∀t ∈ {1, . . . , T}) es,t = (rs,t − âsx̂
t
s − ĉ)2. (184)

An estimate of u follows as

(∀s ∈ {1, . . . , S}) ûs =
âs
α̂
. (185)

Finally, the estimation process is completed by computing

σ̂2 =

∑
(s,t) νs

(
es,t − α̂âsx̂

t
s

)
∑

(s,t) νs
=

∑S
s=1 νs

(
es − α̂âsωs

)

ν
. (186)

References

[1] A. Jezierska, C. Chaux, J.-C. Pesquet, and H. Talbot, “An EM approach for Poisson-Gaussian noise
modeling,” in Proc. Eur. Sig. and Image Proc. Conference, Barcelona, Spain, Aug. 2011, pp. 2244–2248.

[2] A. Jezierska, H. Talbot, C. Chaux, J.-C. Pesquet, and G. Engler, “Poisson-Gaussian noise parameter
estimation in fluorescence microscopy imaging,” in Proc. IEEE Int. Symp. Biomed. Imaging, Barcelona,
Spain, May 2012.

[3] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood and the EM algorithm,”
SIAM Rev., vol. 26, no. 2, pp. 195–239, 1984.

[4] J. Roberts, S, D. Husmeier, I. Rezek, and W. D. Penny, “Bayesian approaches to gaussian mixture
modeling,” IEEE Trans. Patt. Anal. Mach. Int., vol. 20, no. 11, pp. 1133–1142, 1998.

[5] H. Lantéri and C. Theys, “Restoration of astrophysical images - the case of Poisson data with additive
Gaussian noise,” EURASIP J. Adv. Signal Process., vol. 2005, no. 15, pp. 2500–2513, 2005.

[6] P. Paul, D. Kalamatianos, H. Duessmann, and H. Huber, “Automatic quality assessment for fluorescence
microscopy images,” in IEEE Int. Conf. on BioInformatics and BioEngineering, Athens, Greece, 2008,
pp. 1–6.

[7] Milan Sonka, Medical image processing and analysis, SPIE Press, Bellingham, 2009.

[8] Q. Sun, J. Zhou, Z. Zhong, J. Zhao, and X. Duan, “Gauss-Poisson joint distribution model for degra-
dation failure,” IEEE Transactions on Plasma Science, vol. 32, no. 5, pp. 1864–1868, 2004.

33



[9] A. Segall, “Lower estimation error bounds for gauss-poisson processes,” in Stochastic Control Theory

and Stochastic Differential Systems, M. Kohlmann and W. Vogel, Eds., vol. 16 of Lecture Notes in

Control and Information Sciences, pp. 559–565. Springer Berlin Heidelberg, 1979.

[10] G. E. Healey and R. Kondepudy, “Radiometric CCD camera calibration and noise estimation,” IEEE

Trans. Patt. Anal. Mach. Int., vol. 16, pp. 267–276, 1994.

[11] J.-L. Starck and F. Murtagh, “Automatic noise estimation from the multiresolution support,” Publi-

cations of the Astronomical Society of the Pacific, vol. 110, no. 744, pp. 193–199, 1998.
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(a) (rs,1)1 (b) (rs,1)2

(c) (rs,300)1 (d) (rs,300)2

(e) reconstructed (ûs)1 (f) reconstructed (ûs)2

Figure 4: (a,c,e) and (b,d,f) correspond to first and second sequence or image fragments, respectively.
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(a) 168× 4.5 e−3.1×10
−4

t + 114 (b) 174× 9 e−2.2×10
−4

t + 114

Figure 5: (a,b) illustrate time variations for fixed s for time series 1 and 2, respectively. The observed data

are plotted in blue and the reconstructed ones (using formula α̂ûse
−k̂st + ĉ) in red.
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(a) (rs,1)1 (b) (rs,1)2

(c) (rs,300)1 (d) (rs,300)2

(e) reconstructed (ûs)1 (f) reconstructed (ûs)2

Figure 6: (a,c,e) and (b,d,f) correspond to first and second sequence or image fragments, respectively.
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(a) 168× 4.5 e−3.1×10
−4

t + 114 (b) 174× 9 e−2.2×10
−4

t + 114

Figure 7: (a,b) illustrate time variations for fixed s for time series 1 and 2, respectively. The observed data

are plotted in blue and the reconstructed ones (using formula α̂ûse
−k̂st + ĉ) in red.

(a) (b)

Figure 8: Πs,t(θ, 0, qs,t) as a function of qs,t for rs,t = 50 (green) for following settings: (a) α = 1, c = 0,
σ2 = 50, (b) α = 9, c = 0, σ2 = 300. The mean of Poisson noise is us = 100 and us = 30 in (a) and (b)
respectively. q∗s,t is marked in blue.

(a) (b)

Figure 9: Πs,t(θ, 0, qs,t) as a function of qs,t (green) for rs,t = 50 and the following settings: (a) α = 1,
c = 0, σ2 = 50, (b) α = 9, c = 0, σ2 = 300. The mean of Poisson noise is us = 100 and us = 30 in (a) and
(b) respectively. The proposed summation bounds for ∆ = 5 are marked in blue. The summation bounds
proposed in [19] are marked in red. The black dotted line indicates rs,t while the pink dotted one indicates
us.
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Initialization

EM algorithm

1. Init k̂ and ĉ using Algo. 4

2. Init â using (128)

3. Init α̂ using (182)

4. Init û using (185)

5. Init σ̂2 using (186)

For n = 1, . . .

E - Step

M - Step

Update EQs,t|Rs,t=rs,t,θ[Qs,t] using (111)

Update EQs,t|Rs,t=rs,t,θ[Q
2
s,t] using (112)

∀s ∈ {1, . . . , S} update k
(n+1)
s using Algo. 3

∀s ∈ {1, . . . , S} update u
(n+1)
s using (104)

Update c(n+1) and α(n+1) using (105)

Update (σ2)(n+1) using (106)

r

θ0

θ∗

∀(s, t) ∈ S

Figure 10: Flowchart of the proposed parametric estimation method.

(a) Energy (121) (b) α̂− α

(c) ĉ− c (d) σ̂
2 − σ

2

Figure 11: Comparison of initialization proposed in [2] (blue) and initialization provided by Algorithm 4
(green). (a,b,c,d) illustrate convergence profiles of the energy, α, c and σ2 in terms of algorithm iterations
(α = 5, c = 150, σ2 = 1000, when u = 5, u = 150, k = 0.0001, k = 0.01, T = 200, S = 200). The results are
averaged over L = 10 different noise realizations. The maximum iteration number is set to 600.
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(a) (rs,1)1 (b) (rs,1)2

(c) (rs,300)1 (d) (rs,300)2

(e) reconstructed (ûs)1 (f) reconstructed (ûs)2

Figure 12: (a,c,e) and (b,d,f) correspond to first and second sequence or image fragments, respectively.
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(a) 168× 4.5 e−3.1×10
−4

t + 114 (b) 174× 9 e−2.2×10
−4

t + 114

Figure 13: (a,b) illustrate time variations for fixed s for time series 1 and 2, respectively. The observed data

are plotted in blue and the reconstructed ones (using formula α̂ûse
−k̂st + ĉ) in red.

43



(a) (rs,1)1 (b) (rs,1)2

(c) (rs,300)1 (d) (rs,300)2

(e) reconstructed (ûs)1 (f) reconstructed (ûs)2

Figure 14: (a,c,e) and (b,d,f) correspond to first and second sequence or image fragments, respectively.
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(a) 168× 4.5 e−3.1×10
−4

t + 114 (b) 174× 9 e−2.2×10
−4

t + 114

Figure 15: (a,b) illustrate time variations for fixed s for time series 1 and 2, respectively. The observed data

are plotted in blue and the reconstructed ones (using formula α̂ûse
−k̂st + ĉ) in red.

(a) (b)

Figure 16: Πs,t(θ, 0, qs,t) as a function of qs,t for rs,t = 50 (green) for following settings: (a) α = 1, c = 0,
σ2 = 50, (b) α = 9, c = 0, σ2 = 300. The mean of Poisson noise is us = 100 and us = 30 in (a) and (b)
respectively. q∗s,t is marked in blue.
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