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ABSTRACT

A multi-step Expectation-Maximization based (EM-based) algorithm is proposed to solve
the piecewise surface regression problem which has typical applications in market seg-
mentation research, identification of consumer behavior patterns, weather patterns in me-
teorological research, and so on. The multiple steps involved are local regression on each
data point of the training data set and a small set of its closest neighbors, clustering on the
feature vector space formed from the local regression, regression learning for each indi-
vidual surface, and classification to determine the boundaries for each individual surface.
An EM-based iteration process is introduced in the regression learning phase to improve
the learning outcome. In this phase, ensemble learning plays an important role in the re-
assignment of the cluster index for each data point. The reassignment of cluster index is
determined by the majority voting of predictive error of sub-models, the distance between
the data point and regressed hyperplane, and the distance between the data point and
centroid of each clustered surface. Classification is performed at the end to determine the
boundaries for each individual surface. Clustering quality validity techniques are applied to
the scenario in which the number of surfaces for the input domain is not known in advance.
A set of experiments based on both artificial generated and benchmark data source are
conducted to compare the proposed algorithm and widely-used regression learning pack-
ages to show that the proposed algorithm outperforms those packages in terms of root
mean squared errors, especially after ensemble learning has been applied.

Keywords: piecewise surface regression, EM-based, cluster index reassignment, ensem-
ble learning.
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1 Introduction

The solution to any learning problem involves the reconstruction of an unknown function f :

X → Y from a finite set S of sample of f (training set), possibly affected by noise. Different ap-
proaches are usually adopted when the range of Y only contains a reduced number of disjoint
elements, typically without a specific ordering among them (classification problems) or when
Y is an interval of the real axis with the usual topology (regression problems). The real world



application areas can be the determination of market segments in a marketing research study,
the identification of distinct spending patterns in studies of consumer behavior, the detection
of different types (clusters) of documents in text mining or weather patterns in meteorological
research.
Regression analysis attempts to build a model based on the relationship of several independent
variables and a dependent variable (Draper and Smith, 1998). Let x1, ..., xn, be independent
variables, and y, be dependent variable, both range over the set of R. The latter is a random
variable defined over the underlying distribution of sample tuples in In = R × R × ... × R.
Suppose the learning set contains m tuples. Let us denote such a tuple as xh = (xh1, ..., xhn)

for h = 1, ...,m. The collection of data, c = (xh, yh) for h = 1, . . . ,m, represent the available
training data to estimate the values of the random variable y = f(xh, β) + N for h = 1, . . . ,m,
where β represents a set of coefficients and N is a random noise. We assume that N is
distributed as a Gaussian with 0 mean and variance σ such that: E(y) = E(f(xh, β) + N) =

E(f(xh, β)) = f(xh, β) , where E is the expected value. The standard least squares method is
used to find coefficients β of f that minimize σ.
Application can be found, which lie on the borderline between classification and regression;
these occur when the input space X can be subdivided into disjoint regions Xi characterized
by different behaviors of the function f to be reconstructed. One of the simplest situation of
such kind is piecewise surface regression: in this case X is a polyhedron in the n-dimensional
space Rn and {X}ki=1 is a polyhedral partition of X, i.e. Xi ∩ Xj = ∅ for every i, j = 1, . . . , k

and
⋃k

i=1Xi = X. The target of a piecewise surface regression problem is to reconstruct an
unknown function f : X → R having a linear behavior in each region Xi

f∗(x) = fi(x, βi) if x ∈ Xi (1.1)

when only a training set D containing m samples (xh, yh), h = 1, . . . ,m, is available. The
output yh gives a noisy evaluation of f(xh), being xh ∈ X; the region Xi to which xh belongs
is not given in advance. The parameters set β1, β2, . . . , βi for i = 1, 2, . . . , k, characterizes the
function set fi and their estimate is a target of the piecewise surface regression problem. The
regions Xi are polyhedral, i.e., they are defined by a set of li linear inequalities, which can be
written in the following form:

Ai

(
1

x

)
≥ 0 (1.2)

where Ai is a matrix with li rows and n + 1 columns and their estimate is another target of
learning process for every i = 1, 2, . . . , k . According to 1.1 and 1.2, the target of the learning
problem is actually two-fold: to generate both the regions Xi and the parameter set βi for the
unknown function set fi, utilizing the information contained in the training set.
There has been work on the learning of piecewise surface regression problem. The quality
of a piecewise regression algorithm heavily depends on the accuracy of the partition of input
space. In the Local Linear Map (LLM) of (Ritter, 1991) and combinatorial regression learning
of (Luo and Brodsky, 2010), only information about the input space is used for partition of the
data. However, when data points can not be separated within the input space but a mean-
ingful separation can still be obtained by considering the target variable together. Different



approaches have been proposed to solve the problem of partitioning data by incorporating the
target variable. Some of them focuses on solving problems in two dimensional spaces as in
(Cherkassky, 1991) and (Luo and Brodsky, 2011). In (Hathaway and Bezdek, 1993), the data is
clustered based on the local model parameters learned from a set of small size local data set.
In (Ferrari-Trecate and Muselli, 2002), a connectionist model, i.e., a three layer neural network
is constructed to learn the parameter set in the regression problem. While neural networks
show high accuracy on training data set, they typically do not perform well on testing data set
which is caused by over-fitting problem. An approach is outlined in (McGee, 1963) that uses hi-
erarchical clustering to cluster data points into segments that represent the individual regimes
of the piecewise function and perform standard linear regression on them.
An EM-based algorithm (EMPRR) has been proposed proposed in (Arumugam and Scott,
2004) to solve general piecewise surface regression model. It is developed based on Levenberg-
Marquardt (LM) (Levenberg, 1944) and (Marquardt, 1963) algorithm, an iterative technique
which helps in locating the discrepancy between a given model and the corresponding data
and has become a standard technique for nonlinear least-square problems. Since EMPRR is
a nonlinear optimization technique, an absolute bound on the time complexity is not feasible
since there is no way of knowing exactly how long it takes for the method to converge. At the
same time, an initial guess need to be made for every unknown parameter in the piecewise
surface regression model as inputs. This brings more uncertainty into the optimization process
and increases the chance of getting trapped in a local minimum. Another EM-like piecewise
linear regression algorithm has been proposed in (Nusser, Otte and Hauptmann, 2008) as well.
It describes an EM-like piecewise linear regression algorithm that uses information about the
target variable to determine a meaningful partitioning of the input space. The main goal of
this approach is to incorporate information about the target variable in the prototype selection
process of a piecewise regression approach. The drawback of this approach lies in the fact
that it randomly assigns an initial cluster index for each data point in the data set. It makes the
learning process hard and ineffective to converge and at the same time, the learning outcome
is unpredictable.
Some algorithms which have been developed for learning decision trees are variations of the
algorithms which employs a top-down, greedy search through the space of decision trees.
The Classification and Regression Trees (CART) system (Breiman, Friedman, Olshen and
Stone, 1984) is a tree learning technique that assigns constant values at the leaves of the
tree. Consequently it can fit piecewise constant data well but fit piecewise linear data with
errors. A package called M5P, which combines conventional decision trees with linear regres-
sion functions at the leaves, is developed by (Quinlan, 1992) and (Wang and Witten, 1997).
These model trees are similar to piecewise linear functions. The M5P will be run as part of our
experiment as a comparison approach.
Ensemble learning is a type of machine learning that studies algorithms and architectures that
build collections, or ensembles, of statistical classifiers that are more accurate than a single
classifier. An ensemble consists of a set of individual predictors (such as decision trees or
neural network) whose predictions are combined when classifying a given example. The pur-
pose of ensemble learning is to improve the performance of individual classifier by exploiting



knowledge derived form different sources. In (Jain, Duin and Mao, 2000), numerous reasons
for combining multiple classifiers are listed: one may have different feature sets, different train-
ing sets, different classification methods or different training sessions, all resulting in a set of
classifiers whose results may be combined with the hope of improved overall classification ac-
curacy. The majority voting ensemble learning is applied in the regression learning phase of
our learning algorithm.
The contribution of this paper can be summarized as: First, we propose an EM-based multi-
step algorithm (EMMPSR) for the general piecewise surface regression problem described in
1.1 and 1.2, no matter what dimension the input space is and considering the target variable in
the clustering process; Second, multiple steps involved are local regression, clustering, regres-
sion learning on each individual surface and classification to determine the boundaries of each
surface. The clustering process is performed based on the feature vector space of input data
set, instead of the data set itself. The feature vector for each data point is calculated by local
regression on a small subset of data which are closest to that data point. The estimation of sub-
models in 1.1 is learned by robust regression learning which can effectively detect ”outliers”.
The estimation of boundaries for each region in 1.2 is performed by a multi-category classifi-
cation algorithm; Third, an EM-based iteration process is introduced in the regression learning
phase to improve the learning outcome. The clustering phase assigns a cluster index to each
data point. However, the assignment may not be the correct and can be adjusted in the next
iteration. A majority voting ensemble learning is applied to the decision of index reassignment;
Fourth, in the scenario that the number of surfaces is not known in advance, a few clustering
quality validity indexes are adopted to detect the optimal number of surfaces contained by the
input data set; Finally, a set of experiments are conducted to show the performance of the
proposed algorithm and the effects of ensemble learning.
The paper is organized as following. The problem definition is given and related literatures are
discussed in section 1. The detailed algorithm is described in section 2. Experiment setups on
both synthetic and benchmark data are discussed in section 3. Section 4 concludes the paper
and points out possible future work.

2 The EM-based Multi-Step Piecewise Surface Regression Algorithm

The Expectation Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977) has been
adapted in our algorithm. The input space is partitioned by applying a double-fold k-means
clustering algorithm, incorporating the value of target variable. After the clustering of polyhedral
regions, a multi-category SVM library (Chang and Lin, 2001) is called to calculate the boundary
matrix Ai (see 1.2) which represents a polyhedral region. For each polyhedral region, its
surface regression model can be learned by robustfit (Huber and Ronchetti, 1981). Similar to
EM algorithm, an iteration process is involved in our approach. First, the surface models are
learned the resulted clusters of clustering process. Then all data points in are re-assigned to
the surface model which has the best predictive performance. The surface models are further
updated based on the newly created clusters of polyhedral regions. The iteration process is
repeated until termination criterion has been reached. Details are described in Algorithm 1.



Algorithm 1: The EM-based Multi-step Piecewise Surface Regression Algorithm
Input: Data set D with size m, number of clusters k
Output: Surface function model fi and boundary matrix Ai for i = 1, ..., k

1 (Local regression) foreach h = 1, ..., m do
1.1 Build the local dataset Eh containing the sample (xh, yh) and the pairs (x, y) ∈ D,
together with the e− 1 closest neighbors x to xh.
1.2 Perform a linear regression to obtain the feature vector vh of a linear unit fitting the
samples in Eh.

2 (Clustering) Perform clustering process in the feature vector space.
2.1 Run regular k-means on feature vector space Rn+1 with an assigned feature vector
centroid set CV to subdivide the set of feature vectors vh into k groups Ui, i = 1, ..., k.
2.2 Build a new training set D′ containing m pairs (xh, ih) being Uih the cluster including vh
repeat

3 (Regression) For every j = 1,..., k, run a linear regression on the samples (x, y)εD with
xεXi. The parameter set βi returned represents the ith surface function fi.

4 Update cluster index of each data point, further the training set D′, according to the
minimal predictive error among surface models fi for i = 1, ..., k.

until Maximum number of iterations has been reached or no cluster index is reassigned ;
5 Multi-category classification on training set D′ to compute the boundary matrix Ai for

every surface Xi.

2.1 Local Regression

As discussed in the introduction, the learning effect of piecewise regression problem depends
on the accuracy of the partition of input space. Given a training set D, the intuitive way to
do partitioning is classical K-means clustering (MacKay, 2003). However, k-means clustering
results are sensitive to the initial centroid which are randomly picked, when clusters are of
differing sizes, densities or non-globular shapes. Instead of clustering on training set, we
proposes a different way of clustering, i.e. clustering on the feature (parameter) vector space
of training set. The feature vector for each data point is learned by local linear regressor based
on small subset of the whole training set D. It is observed that points close to one another are
more likely to belong to the same region Xi than those are not. For each sample (xh, yh), with
h = 1, ..., m, a local data set Eh is built to contain (xh, yh) and its e− 1 nearest neighbors (x̂, ŷ)

that satisfy

‖x(h)− x̂‖2 ≤ ‖x(h)− x̃‖2 ∀(x̃, ỹ) ∈ D \ Eh, (2.1)

The distance between points is calculated by ‖xh − x‖ where ‖.‖ is the Euclidean norm. Note
that each Eh can be labeled by the point (xh, yh). This way a bijective map between data
points and local data sets is formed. Most sets Eh contain data points belonging to the same
region Xi, while the rest, called mixed, include data points from different regions Xj . The local
regression step is trying to obtain a first estimate of the parameter set βi set which characterize
the functional models fi. Local linear regression is run on small subsets of the whole training



set D based on the fact that points xh which are close to one another are more possible to
belong to the same region Xj than those not close. The feature vector vh (with dimension
n+ 1) learned from pure local data set Eh is a good estimate of parameter βi which represents
the region function fi, while the feature vectors learned from mixed local set lead to the wrong
estimate of βi so their number need to be kept at the lowest possible level.
The number of mixed local data set depends both on the sampling schedule of input space
and choice of parameter e. As to the sampling schedule, an implicit assumption for good
results from our algorithm is that the sampling is fair, i.e., the data points drawn are not all
concentrated around the boundary of the sets Xi. The parameter e should be chosen well in
order to obtain non-overlapping clusters of feature spaces and minimize, at the same time, the
number of outliers. If the parameter e is low, the ratio between the number of mixed and non-
mixed local data sets is low. However, when the noise level is not negligible, a low e produces
poor estimates of the feature vectors, i.e. estimates with high variance, thus preventing a good
partitioning of the feature vectors. So the value of e can not be assigned too low. On the other
hand, if e is too high, a large percent of mixed local data sets (further outliers in the feature
space) will be generated. In the extreme case is that when e is equal to the number of sample
data set D, all local sets built are mixed and every feature vector collapse in a single hyperplane
fitting all the data. In order to have a well-defined clusters, the value of the parameter e need
to be tuned in experiments with cross-validation techniques.
The least-squared estimation is used to compute the feature (parameter) vector of every local
data set Eh which contains data points (x1h, y

1
h), (x2h, y

2
h), ..., (xeh, y

e
h). We can define φh and ψh

as

φh =

[
x1h x2h ... xeh
1 1 ... 1

]′
, ψh =

[
y1h y2h ... yeh

]′
(2.2)

The ′ is the transpose operator for matrix. The feature vector vh can be computed by the
formula

vh = (φ′hφh)−1φ′hψh (2.3)

Another bijective map can be formed between feature vectors V computed for each data point
and each local data set. Given the bijective map between data points and local data sets, a
new bijective map between each data point and each feature vectors is formed as well.

2.2 Clustering

After the feature vector space has been generated, the next step of the algorithm is to cluster
the feature vectors into k disjoint subsets Ui. Principally, any clustering algorithm can be used
but the performance of classical clustering algorithms like k-means is often spoiled by poor ini-
tialization of centroid which are randomly picked, when clusters are of differing sizes, densities
or non-globular shapes (MacKay, 2003). In our case, we propose a two fold k-means clustering
algorithm which can decrease the misclassification rate of k-means and at the same time, the
computational efficiency of K-means will still be kept. The clustering process is described in
Algorithm 2.



Algorithm 2: Two-fold k-means clustering algorithm
Input: data set D with size m, feature vector set V with size m, number of clusters k
Output: Feature vector set V with cluster index assigned for every feature vector

1 Do regular k-means clustering on the data points with randomly picked initial centroid
2 For each cluster X1, X2, ..., Xk returned by 1, calculate its mean X̄1, X̄2, ..., X̄k

3 For each cluster mean X̄i, i = 1, ..., k, among data points in cluster Xi, find the data point
which is most close to X̄i and save it to the centroid set C with size k

4 For each ci ∈ centroid set C, i=1,...,k, find the corresponding feature vector cvi in the
feature vector set V having the same index as centroid in the data set to form a feature
vector centroid set CV.

5 Run k-means clustering on the feature vector set V with initially assigned centroid set CV
to subdivide feature vector set into k groups Ui for i = 1, ..., k.

The difference between Algorithm 2 and the classical k-means is the initial picking of centroid.
In Algorithm 2, the k-means clustering is run the first time to estimate the centroid of clusters
of data point. Due to the bijective mapping between each data point and each feature vector,
a corresponding feature vector can be found for each centroid resulted from the first step. This
centroid set works as a much better initial input for the second k-means clustering which will
be run on the feature vector space, compared to the randomly picked centriod among feature
vectors. The clustering quality for the feature vector sets are obviously improved by decreasing
the misclassification rate of each feature vector. Finally, by using the bijective maps between
feature vectors and data points, the original data can now be classified. In fact, each data point
(xh, yh), h=1,...,m is assigned a cluster index ih being Uih the cluster including vh. A new data
set D′ is formed as m pairs (xh, ih), h=1,...,m.

2.3 EM-based iteration process

The EM-based iteration process consists of two main steps: First, surface regression models
fi, i = 1,..., k for each region are determined according to the cluster assignment ih of each
data point (xh, yh), h=1,...,m; Second, each data point is re-assigned to one of the clusters
Xi, i=1,...,k where the predictive error of the corresponding regression model is minimal. The
assignment can be defined as a mapping:

CI(h) = i, with 1 ≤ h ≤ m, 1 ≤ i ≤ k (2.4)

which assigns the hth data point to the ith cluster. Each surface model is represented by
function fi, i = 1,..., k. The surface regression model of the ith cluster is trained on all data
points that are assigned by the mapping CI to the ith cluster:

fi(xh) = yi where CI(h) = i (2.5)



2.3.1 Estimation of sub-models

To learning the surface regression models fi, i = 1,..., k, least squares can accomplish this
task. However, one of the main drawbacks of least squares lies in the sensitivity of the method
to outliers (Huber and Ronchetti, 1981) that may be present due to classification errors. The
robust regression techniques (Huber and Ronchetti, 1981) is less sensitive to outliers than
least squares, especially when the number of outliers is a small fraction of the data points.
That is why the estimation of each sub-model is solved by the robust regression learning.

2.3.2 Cluster index reassignment

The second main step of EM-based iteration process is to update cluster index of each data
point. The mapping defined in 2.4 is updated according to the minimum predictive error among
all sub-models fi, i = 1,..., k

CI(h) = argmini=1,...,k|yh − fi(xh)| (2.6)

If any data point which is misclassified at the beginning, it is possible that its cluster index
will be re-assigned by Equation 2.6. The reassignment process changes region in terms of
data point, furthermore, the estimation of the sub-models and boundary matrices will be re-
estimated as well. The iteration process is repeated until no more cluster reassignment occurs
or the maximum number of iterations has been reached.

2.3.2.1 Majority voting ensemble learning
The minimum predictive error of sub-models is one measure to reassign the cluster index.

However, another two measures can be adopted to do reassignment as well. The minimum
distance between data point and centroid of each sub-model is one natural choice. Given
the centroid CEi for sub-model fi, i = 1,...,k, the mapping defined in Equation 2.4 is updated
according to the following equation

CI(h) = argmini=1,...,k||x− CEi|| (2.7)

The third measure is the distance between data point and hyperplane set coefi, which repre-
sents the sub-model fi, for i = 1,...,k. The mapping defined in Equation 2.4 is updated according
to the following equation

CI(h) = argmini=1,...,k(
x ∗ coefi

sqrt||coefi||
) (2.8)

Any single measure may not be always right, however, the majority voting combines three
measures together and leads to performance improvement.

2.4 Estimation of boundary matrices

After the surface models have been obtained, the next step is to obtain an approximation of
the unknown polyhedral regions which are specified by a set of matrices Ai, i = 1,..., k in
Equation 1.2. The matrices are solved by multi-category classification technique derived from
the support vector machine (Chang and Lin, 2001).



2.5 Detection of the number of regions

So far we assume that the number of clusters for data set is known in advance. However for
some real data sets, this is not known a priori and, in fact, there might be no definite or unique
answer as to what value k should take. In other words, k is a nuisance parameter of the cluster-
ing model. Numerous techniques can be applied to determine this k value. Among them, v-fold
cross validation (Hill and Lewicki, 2007) and a few clustering validity indexes (silhouette index
(Rousseeuw, 1987), Davis-Bouldin index (Davies and Bouldin, 1979), Calinski-Harabasz index
(Calinski and Harabasz, 1974) and Dunn index (Dunn, 1974)) are computed and compared.

2.5.1 V-fold cross-validation

The v-fold cross-validation algorithm is applied to clustering. The general idea of this method is
to divide the overall sample into a number of v folds. The same type of analysis is then succes-
sively applied to the observations belonging to the v-1 folds (training sample), and the results
of the analysis are applied to sample v (the sample or fold that was not used to estimate the
parameters, i.e, the testing sample) to compute some index of predictive validity. The results
for the v replications are averaged to yield a single measure of the stability of the respective
model, i.e., the validity of the model for predicting new observations. We can apply the v-fold
cross-validation method to a range of numbers of clusters in k-means, observe the resulting
average distance of the observations (in the testing samples) from their cluster centers.

2.5.2 Clustering Quality Validity Indexes

Four different indexes are calculated to estimate the optimal number of clusters in benchmark
data sets. The Silhouette index calculates the silhouette width for each sample, average sil-
houette width for each cluster and overall average silhouette width for a total data set. It uses
average dissimilarities between points to identify the structure of the data and highlights pos-
sible clusters. It is suitable for estimating the first choice or the best partition. The value range
of Silhouette index is between [-1, 1]. If silhouette value is close to 1, it means that sample
data set is well-clustered and it was assigned to a very appropriate cluster. If silhouette value is
close to -1, it means that sample data set is misclassified and is merely somewhere in between
the clusters. The Davis-Bouldin index is a function of the ratio of the sum of within-cluster scat-
ter to between-cluster separation. The ratio is small if the clusters are compact and far from
each other. Consequently, Davis-Bouldin index will have a small value for a good clustering.
Calinski-Harabasz index is the pseudo F statistic calculating the quotient between the intra-
cluster average squared distance and intercluster average squared distance. The higher the
Calinski-Harabasz index, the better the clustering quality. Dunn’s index is based on geomet-
rical considerations for hard clustering. This index is designed to identify sets of clusters that
are compact and well separated. The main goal of this measure is to maximize the interclus-
ter distances and minimize the intracluster distances. Therefore, the number of clusters that
maximize the Dunn’s index is taken as the optimal number of clusters.



Figure 1: Synthetic Data Set Generated in Model 2

3 Experiments

To evaluate our EM-based multi-step piecewise surface regression algorithm EMMPSR, we
generate synthetic high-dimensional data which is piecewise-defined. We compare the per-
formance of EMMPSR with those of M5P (WEKA package) (Hall, Frank, Holmes, Pfahringer,
Reutemann and Witten, 2009), classregtree (Matlab statistical toolbox) (MATLAB, 2010), and
MultilayerPerceptron (three layer neural network) (Hall et al., 2009) on a set of experimen-
tal data set. These three packages are widely-used regression learning tools.The data set
includes three synthetic data set and four benchmark data set.

3.1 Synthetic Data Sets

Three data sets are generated using four different piecewise models. Each model has linear
boundaries between regions and linear functions within each region. Model 1 and model 2
each has three regions and two independent variables. Model 3 has five regions and nine
independent variables with linear boundaries and linear functions as well. Data in each model
are generated with additive Gaussian noise with zero mean and 0.1 variance. We generated
300 sample points for model 1, 900 data points for model 2 and 1500 data points for model 3.
The second data set is generated from the following piecewise functions:

f(x1, x2) =


3 + 4x1 + 2x2, if 0.5x1 + 0.29x2 ≥ 0 and x2 ≥ 0

−5− 6x1 + 6x2, if 0.5x1 + 0.29x2 < 0 and 0.5x1 − 0.29x2 < 0

−2 + 4x1 − 2x2, if 0.5x1 − 0.29x2 ≥ 0 and x2 < 0

(3.1)

This target function is depicted in Figure 1. Total 900 samples are drawn uniformly from I2 =
[−1, 1]× [−1, 1] and y is determined as y = f∗(x1, x2) + ε, where ε ∼ N(0, 0.1). In this setting,
the target value need to combined to determine the appropriate cluster prototypes.



The following function estimate is yielded by the EMMPSR algorithm:

f(x1, x2) =


3.0067 + 3.9940x1 + 1.9977x2, if 0.5x1 + 0.32x2 ≥ 0.005 and x2 ≥ 0

−5.0217− 6.0201x1 + 6.0056x2, if 0.5x1 + 0.32x2 < 0.005and0.5x1 − 0.31x2 < 0.01

−2.0035 + 3.9793x1 − 2.0330x2, if 0.5x1 − 0.31x2 ≥ 0.01 and x2 < 0

(3.2)
As noted, the generated model is a good approximation of the unknown function to learn in
3.1. Five-fold cross validation is adopted to evaluate the learning performance by randomly
dividing the data set into 5 equal parts. Each part is held out in turn and the remaining four is
trained for the learning method. The root mean squared error (RMSE) (Alpaydin, 2004) will be
calculated on the unseen data. The results are summarized in Table 1.

Table 1: RMSE values for performance comparison experiments on synthetic data sets
Model M5P MultilayerPerceptron Classregtree EMMPSR

Model1 1.0925 3.0657 2.8899 0.3759
Model2 0.7599 1.8773 0.4995 0.2538
Model3 37.6910 47.8030 33.3755 30.8755

Another matrix to be compared among different methods is average number of rules generated
by each model for a data set. In EMMPSR it is the number of regions, while in M5P and Class-
regtree it is the number of rules generated during the process of building the tree. EMMPSR
only uses a fraction of the rules that are generated by M5P and Classregtree. It is obvious that
EMMPSR outperforms other methods as to RMSE as well.

3.2 Benchmark Data Set

Benchmark data sets are obtained from the Repository of Regression Problems at (LIACC,
2006). This repository is actually a collection of data from other sources, however we still
choose it because the data sets have been preprocessed to meet our specifications – nominal
attributes and samples with missing attributes have been removed. Five-fold cross validation
is adopted to evaluate the learning performance as well.
Auto MPG Data Set: The task of this data set is to predict the fuel consumption in miles per gal-
lon (MPG) of different cars. Five attributes of the original data set are used as input dimensions
acceleration’, displacement’, horsepower’, model-year, and weight. The data set consists of
398 instances. Six instances with missing values are ignored within the experiments.
Delta Ailerons Data Set: This data set is also obtained from the task of controlling the ailerons
of an F16 aircraft, although the target variable and attributes are different from the ailerons
domain. The target variable here is a variation instead of an absolute value, and there is some
pre-selection of the attributes. 7129 cases with 6 continuous attributes.
California Housing: This data set contains information on block groups in California from the
1990 Census. The target variable is median house value. Independent attributes are median
income, housing median age, total rooms, total bedrooms, population, households, latitude,
and longitude. 20640 cases with 8 continuous attributes.



Figure 2: Sum of squared errors within the test data set vs. number of clusters

Stock Data Set: Daily stock prices from January 1988 through October 1991, for ten aerospace
companies. 950 cases with 10 continuous attributes.
The number of clusters for the real data set is not known in advance so first the v-fold cross-
validation algorithm described in section 2.5.1 is adopted to determine the number of piecewise
surfaces which are involved in the piecewise regression problem. The optimal number of clus-
ters in Stock Data Set is calculated to describe the determination process. From Figure 2,
it is observed that as the number of clusters increases, the sum of squared errors within the
test set goes down fast until the number of cluster is equal to 7. Then the sum of squared
errors goes down very slightly and gets stable when the number of clusters is equal to 8, 9 or
even more. Consequently we can set the tentative number of clusters to value either 8 or 9.
However, the v-fold cross-validation is very time consuming due to the fact that the EMMPSR
algorithm is involved in each run of the v-fold cross-validation process. The clustering validity
indexes are calculated as well to determine the optimal number of clusters in the Stock data
set. Each index value is plotted in Figure 3 against the number of clusters. The star which
represents the optimal number of clusters in the figure is circled with a small rectangle box.
For Silhouette index, when the number of cluster is equal to 8, its value reaches the peak
point, 0.52. Davis-Boudin index and Dunn index both display the optimal number of clusters as
8. The Calinski-Harabasz index shows that the optimal number is 9. We observe very similar
result to what is observed in the cross validation.
After we determine the optimal number of clusters for every benchmark data set, the learning
outcome is summarized in Table 2.
It is observed from the Table 2 that the EMMPSR algorithm can mostly achieve the best learn-
ing outcome among the four algorithms and at the same time, has the simplest format of
representation for the piecewise regression problem.
Figure 4 displays the effect of ensemble learning by majority voting which is described in sec-
tion 2.3.2.1. The measure to evaluate its learning effect is the number of cluster index ad-
justments during each iteration of the learning process. From Figure 4, we can observe that



Figure 3: Clustering Quality Validity Index vs. The Number of clusters

Table 2: RMSE values for performance comparison experiments on benchmark data sets
Model M5P MultilayerPerceptron Classregtree EMMPSR
Auto 3.8419 4.6238 4.0455 2.5332

Delta Ailerons 0.0002 0.0002 0.0003 0.0002
California Housing 0.4838 0.6022 0.5998 0.1617

Stock 1.0151 1.3441 0.9746 0.4876

the number of cluster index adjustments after applying the majority voting ensemble learning
decreases faster than the learning process by applying Equation 2.6. Furthermore, the num-
ber of iterations required for the ensemble learning is less than what is required for learning
process by applying Equation 2.6. At the same time, the learning outcome (in terms of RMSE)
of ensemble learning is slightly smaller as well.



Figure 4: Learning Effect of Ensemble Learning by Majority Voting

4 Conclusion and Future Work

A EM-based multi-step piecewise linear regression learning algorithm is proposed in this pa-
per. A set of experiments are compared to show in most cases the EMMPSR algorithm outper-
forms other popular packages used for classification and regression. The ensemble learning
is involved in the cluster index reassignment phase and proves to perform better than single
learning strategy. Future research topic will be main feature selections which will used for re-
gression, and how to improve the EMMPSR algorithm to solve more general form of piecewise
surface regression problems.
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