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Abstract — We propose an EM-based algorithm to ef-
ficiently detect transmitted data in an OFDM system as
well as estimating the channel impulse response (CIR).
The maximum likelihood estimate of CIR is obtained by
using channel statistics (their means and covariances) via
the expectation-maximization (EM) algorithm. This algo-
rithm can improve signal detection and the channel estima-
tion accuracy by making use of pilot symbols to obtain an
initial estimate for the iteration. Simulation results show
that the bit error rate (BER) can be significantly reduced
by this algorithm, and validate its good convergence and
robust properties.

I. Introduction
Orthogonal frequency division multiplexing (OFDM) [1], a

spectrally efficient form of FDM, divides its allocated channel
spectrum into several parallel sub-channels. OFDM is inher-
ently robust against frequency selective fading, since each sub-
channel occupies a relatively narrow band, where the channel
frequency characteristic is nearly flat. OFDM has an addi-
tional advantage of being computationally efficient because
the fast Fourier transform (FFT) technique can be used to
implement the modulation and demodulation functions [2].
Furthermore, the OFDM system can eliminate intersymbol in-
terference (ISI) through use of a cyclic prefix (CP) that must
be longer than the length of the channel impulse response
(CIR). Figure 1 shows a schematic diagram of an OFDM sys-
tem. OFDM has already been used in European digital audio
broadcasting (DAB), digital video broadcasting (DVB) sys-
tems and high performance radio local area network (HIPER-
LAN). It has been proven that OFDM is an effective way to
increase data rates and simplify the equalization in wireless
communications [3].

It is not possible to make reliable data decisions unless a
good channel estimate is available. Thus, an efficient and
accurate channel estimation procedure is necessary to coher-
ently demodulate received data. Although differential detec-
tion could be used to detect the transmitted signal in the ab-
sence of channel information, it would result in about 3dB loss
in signal to noise ratio (SNR) compared to coherent detection.
Several channel estimation algorithms have been reported in
the literature [5]-[10]. In these algorithms, however, the chan-
nel estimate is continuously updated by transmitting pilot
symbols using specified time-frequency lattices. One class of
such pilot assisted estimation algorithms adopt an interpola-
tion technique with fixed parameters (two-dimensional (2-D)
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[7][8] or one-dimensional (1-D) [6]) to estimate the frequency
domain CIR by using channel estimates obtained at the lat-
tices assigned to the pilot tones. Linear, spline and Gaus-
sian filters have all been studied [6]. Another method adopts
known channel statistics and channel estimates at pilot tones
to estimate CIR in the sense of minimum mean square error
(MMSE) [5][9][10]. Shortcomings of these algorithms include
(i) a large error floor that may be incurred by a mismatch
between the estimated and real CIRs, and (ii) difficulty in
obtaining the correlation function of the channel impulse re-
sponse.

The Expectation-Maximization (EM) algorithm [11] is a
technique for finding maximum likelihood estimates of sys-
tem parameters in a broad range of problems where observed
data are incomplete. The EM algorithm consists of two iter-
ative steps: the expectation step and the maximization step.
The expectation step is performed with respect to unknown
underlying parameters, using the current estimate of the pa-
rameters, conditioned upon the incomplete observations. The
maximization step then provides a new estimate of the param-
eters that maximizes the expectation of log likelihood function
defined over complete data, conditioned on the most recent ob-
servation and the last estimate. These two steps are iterated
until the estimated values converge [12].

The main objective of this paper is to investigate use of an
EM-based algorithm for signal detection of an OFDM system
over a frequency selective channel. For simplicity, we assume
the channel is time-invariant during a given OFDM frame pe-
riod. We leave the time-variant case for a future study.

The rest of the paper is organized as follows. Section II
describes the baseband OFDM system model used in the anal-
ysis and simulation of the paper. Section III derives the EM-
based algorithm to estimate the transmitted signal and CIR.
The simplified EM-based algorithm is introduced in section
IV. Section V presents computer simulation results to demon-
strate the effectiveness of this algorithm. Finally, section VI
gives the conclusion.

II. Baseband OFDM System Model

The schematic diagram of Figure 1 is a baseband equiva-
lent representation of an OFDM system. The input binary
data is first fed into a serial to parallel (S/P) converter. Each
data stream then modulates the corresponding sub-carrier by
MPSK or MQAM. Schemes can vary from one sub-carrier to
another in order to achieve the maximum capacity or the min-
imum bit error rate (BER) under some constraints. In this
paper we use, for simplicity, only QPSK or 16QAM in all the
sub-carriers. The modulated data symbols, represented by
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complex variables X(0), · · · ,X(M − 1), are then transformed
by the inverse fast Fourier transform (IFFT). The output sym-
bols are denoted x(0), · · · , x(M − 1). In order to avoid ISI,
cyclic prefix (CP) symbols, which replicate the end part of
the IFFT output symbols, are added in front of each frame.
The parallel data are converted back to a serial data stream
before being transmitted over the frequency selective channel.
The received data y(0), · · · , y(M − 1) corrupted by multipath
fading and AWGN are converted back to Y (0), · · · , Y (M − 1)
after discarding the prefix, and applying FFT and demodula-
tion.
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Figure 1: Baseband OFDM system model

The channel model we will adopt in the present paper is
a multipath time-invariant fading channel, which can be de-
scribed by

y(k) =

L−1∑
l=0

hlx(k − l) + n(k), 0 ≤ k ≤ M − 1, (1)

where hl’s (0 ≤ l ≤ L − 1) are independent complex-valued
Rayleigh distributed random variables, and nk’s (0 ≤ k ≤ M−
1) are independent complex-valued Gaussian random variables
with zero mean and variance σ2 for both real and imaginary
components. L is the length of the time-domain CIR.

If we add the cyclic prefix in each OFDM data frame, with
its length chosen to be longer than L, there will be no ISI
between OFDM frames. Thus we need to consider only one
OFDM frame with M sub-carriers in analyzing the system
performance. After discarding the cyclic prefix and perform-
ing an FFT at the receiver, we can obtain the received data
frame in the frequency domain:

Y (m) =
1√
M

M−1∑
k=0

y(k)e−j2π km
M . (2)

Substituting (1) into (2), we have

Y (m) = X(m)H(m) +N(m), 0 ≤ m ≤ M − 1, (3)

where H(m) is the frequency response of the channel at sub-
carrier m, which can be obtained by

H(m) =

L−1∑
l=0

hle
−j2π ml

M , 0 ≤ m ≤ M − 1, (4)

and the set of the transformed noise variables N(m), 0 ≤ m ≤
M − 1, which can be obtained by

N(m) =
1√
M

M−1∑
k=0

n(k)e−j2π mk
M , 0 ≤ m ≤ M − 1, (5)

are i.i.d. complex-valued Gaussian variables and have the
same distribution as n(k), i.e., with mean zero and variance
σ2.

We adopt ∗,T and H to denote complex conjugate, trans-
pose and complex conjugate transpose (Hermite) in the fol-
lowing analysis.

Note that inter-carrier interference (ICI) is also eliminated
at the FFT output because of the orthogonality between the
sub-carriers.

III. EM-Based Signal Estimation Algorithm

Our objective is to detect the transmitted signal X(m), 0 ≤
m ≤ M − 1 from the observation Y (m), 0 ≤ m ≤ M − 1. In
order to reduce bit errors caused by uncertainty in the channel,
we apply the following EM-based algorithm to take an average
over the unknown CIR, assuming that the probability density
function (PDF) of CIR response is known to the receiver.

As stated earlier, the transmitted signal X(m) is modu-
lated by QPSK or 16QAM. To simplify the expressions, we use
H,h,X, Y ,N to denote the vectors of frequency-domain CIR,
time-domain CIR, modulated input data, output data and
white Gaussian noise respectively, where h = [h0, · · · , hL−1]

T ,
X = [X(0), · · · , X(M − 1)]T , Y = [Y (0), · · · , Y (M − 1)]T ,
N = [N(0), · · · , N(M − 1)]T and H = Wh, W is a M × L
matrix:

W =




1 1 · · · 1

1 e−j2π 1
M · · · e−j2π L−1

M

...
...

. . .
...

1 e−j2π M−1
M · · · e−j2π

(M−1)(L−1)
M




M×L

. (6)

We also use the notation X = diag(X), which denotes a M ×
M matrix with X(m) as its (m,m) entry (0 ≤ m ≤ M − 1)
and zeros elsewhere.

We assume there is no ISI between two successive OFDM
symbols due to the assumption that the cyclic prefix is longer
than the channel time spread, thus we need to consider only
one OFDM symbol at a time. We thus omit the symbol index,
and express channel model by

Y = XWh+N. (7)

The EM-based algorithm is used here to obtain an estimate
of X that maximizes f(Y |X) by averaging the logarithm of
another likelihood function f(Y , h|X) over the unknown pa-
rameters h. The “incomplete” and “complete” data are (Y )

0-7803-7376-6/02/$17.00 (c) 2002 IEEE. 226229



and (Y , h), respectively. Each iterative process p = 0, 1, 2, · · ·,
in the EM algorithm for estimating X from Y consists of the
following two steps:

E − step : Q(X|Xp) = E
{
log f(Y , h|X)|Y ,Xp

}
, (8)

M− step : Xp+1 = argmax
X

Q(X|Xp), (9)

In the E-step at the (p + 1)st iteration, we compute the ex-
pected value of log f(Y , h|X), given Y and Xp, the estimate

obtained in the pth iteration. The M-step of the (p+1)st iter-
ation determines the transmitted signal Xp+1 that maximizes
Q(X|Xp) given Xp. Equation (8) can be rewritten as

Q(X|Xp) =

∫
[log f(Y , h|X)]f(h|Y ,Xp)dh, (10)

where the log likelihood function can be express as

log f(Y , h|X) = log f(Y |h,X) + log f(h|X). (11)

The conditional PDF f(h|Y ,Xp) is used in (10) to take the
conditional expectation over the unknown parameters h. We
assume that h and X are independent of each other. This is
a reasonable assumption since the CIR does not depend on
the transmitted signal in general. Thus, for the purpose of
maximization in (9), the Q function of (10) can be replaced
by

Q(X|Xp) =

∫
[log f(Y |h,X)]f(h|Y ,Xp)dh, (12)

The conditional PDF f(h|Y ,Xp) can be calculated by

f(h|Y ,Xp) =
f(Y |h,Xp)f(h|Xp)

f(Y |Xp)
=

f(Y |h,Xp)f(h)

f(Y |Xp)
.

where we use the assumption that h and Xp are independent
of each other. Thus, (12) can be further reduced to

Q(X|Xp) =

∫
[log f(Y |h,X)]f(Y |h,Xp)f(h)dh, (13)

since f(Y |Xp) does not depend on X, hence can be discarded
in the last expression.

We now compute the above Q(X|Xp) for a fading chan-
nel with AWGN. The conditional PDFs f(Y |h,X) and
f(Y |h,Xp) take the form

f(Y |h,X) = (2πσ2)−M exp
{
−‖Y −XWh‖2/2σ2

}
,

f(Y |h,Xp) = (2πσ2)−M exp
{
−‖Y − XpWh‖2/2σ2

}
,

where σ2 is the variance of both real and imaginary compo-
nents of complex-valued Gaussian white noise. The PDF f(h)
is given by

f(h) =
1

(2π)L|detΣ| exp
{
−1

2
(h− E{h})H Σ−1 (h−E{h})

}

where E{h} and Σ are the mean and covariance matrix of the
complex-valued CIR vector h. By omitting the constant term
and the scaling factor, (12) can be expressed as

Q(X|Xp) = −
∫

‖Y − XWh‖2f(h|Y ,Xp)dh. (14)

And f(h|Y ,Xp) can be represented as

f(h|Y ,Xp) = K2 exp
{
−1

2
(h− ĥp)

HΣ̂−1
p (h− ĥp)

}
, (15)

where K1 and K2 are some constants. ĥp and Σ̂p are called
the estimated posterior mean and posterior covariance matrix
at the pth iteration given by

ĥp = Σ̂p

(
WHXH

p Y /σ2 + Σ−1E{h}
)
, (16)

Σ̂p =
(
WHXH

p XpW/σ2 +Σ−1
)−1

. (17)

Maximization of (14) is equivalent to minimizing the dis-
tance

argmax
X

Q(X|Xp) = argmin
X

E
{
‖Y − XWh‖2|Y ,Xp

}
. (18)

This minimization can be further simplified as

max
X

E
{
hHF + FHh− hHGh|Y ,Xp

}
, (19)

where

F = WHXHY , (20)

G = WHXHXW. (21)

Since the distribution of random vector Y given h and Xp

is Gaussian with mean ĥp and covariance matrix Σ̂p, it is easy
to compute

E
{
hHF + FHh|Y ,Xp

}
= ĥ

H

p F + FH ĥp. (22)

Moreover, all entries of matrix G are given in terms of the
signal energies, i.e., ‖X(0)‖2, · · · , ‖X(M − 1)‖2. Thus, we can
compute the third part of (19) as

E
{
hHGh|Y ,Xp

}
=

M−1∑
i=0

C2
i ‖X(i)‖2, (23)

where C2
i , 0 ≤ i ≤ M − 1 are some real values dependent on

ĥp and Σ̂p and can be obtained by the following equation:

C2
i =

M−1∑
m=0

M−1∑
n=0

ej2π
(m−n)i

M
(
Σ̂p(m,n) + ĥ∗

p(m)ĥp(n)
)
. (24)

In order to calculate Q(X|Xp) completely with respect to
X , we write (20) as follows

F = WHYX∗. (25)

Thus, maximizing Q(X|Xp) is the same as

max
X

{
ĥ

H

p WHYX∗ +XT YHWĥp −
M∑

i=1

C2
i ‖X(i)‖2

}
. (26)
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Equation (26) can be solved as

X̃p+1 = argmax
X

Q(X|Xp) = C−1
(
ĥ

H

p WHY
)T

, (27)

where C = diag(C0, · · · , CM−1). After quantizing X̃
p+1

we
obtain the (p+ 1)st estimate

Xp+1 = Quantization(X̃p+1). (28)

In each iteration, the updated estimation of channel im-
pulse response ĥp is obtained automatically as a byproduct.

Thus far we have assumed that L, the number of multi-
paths, is known. In a real situation, however, L may not be
known. In such a case, we need to perform channel-order de-
tection together with parameter estimation. Alternatively, we
may use some upperbound for L, which may be easier to ob-
tain than trying to estimate an exact value of L. In an OFDM
system we can set L equal to or less than the length of the
cyclic prefix, as we stated earlier that cyclic prefix must be
longer than the channel time spread in order to eliminate ISI.
Another limitation of our model is that the mean E{h} and
the covariance matrix Σ of time-domain CIR are also assumed
to be known. In a practical situation, these channel statistics
may not be known.

As is known from the general convergence property of the
EM algorithm, there is no guarantee that the iterative steps
converge to a global maximum. For a likelihood function with
multiple local maxima the convergence point may be one of
these local maxima, depending on the initial estimateX0. We,
therefore, propose to use pilot symbols distributed at certain
locations in the OFDM time-frequency lattice to obtain an
appropriate initial value X0, which is more likely to converge
to the true maximum point.

IV. Simplified EM Algorithm

In the above analysis, we assumed that the channel statis-
tics (mean and covariance matrix) are known to the receiver.
However, as we stated above, exact channel statistics are diffi-
cult to obtain in reality. Fortunately, as we examine (16) and
(17), we find that when σ2 is small (i.e., signal to noise ratio is
high), the contribution of Σ is so small that we can eliminate
it and yet expect a similar performance.

Furthermore, for the MPSK modulated signal, i.e.,
‖X(m)‖2 = A for all m, where A is a positive constant mean-
ing signal energy, and the signal estimation can be performed
by using only the phase information. Thus, we can simplify
(27) to

X̃p+1 =
(
Y HXpWWHY

)T
. (29)

It only needs multiplication and addition operations and
WWH can be calculated and stored ahead of time.

V. Simulation Results

We constructed an OFDM simulate model to demonstrate
the validity and effectiveness of the EM-based signal estima-
tion algorithm. The entire channel bandwidth is 400kHz, and
is divided into 64 subcarriers (or tones). To make the tones
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Figure 2: Bit error rate v.s. Eb/N0
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Figure 3: Mean square error v.s. Eb/N0

orthogonal to each other, the symbol duration is 160 µs. An
additional 20 µs cyclic prefix is used to provide protection
from ISI and ICI due to channel delay spread. Thus, the total
OFDM frame length is Ts = 180 µs and subchannel symbol
rate is 5.56 kbaud. The modulation scheme used in the system
is QPSK. One OFDM frame out of 8 OFDM frames has pilot
symbols and 8 pilot symbols are inserted into such frame. The
simulated system can transmit data at 700 kbits/s. The max-
imum Doppler frequency is chosen to be 55.6Hz and 277.8Hz,
which make fdTs 0.01 and 0.05, respectively. The channel
impulse response used in the simulation is given by

h(n) =
1

C

7∑
k=0

e−k/2αkδ(n− k),

where C =

√∑7

k=0
e−k is the normalization constant and

αk, 0 ≤ k ≤ 7 are independent complex-valued Rayleigh dis-
tributed random variables with unit energy, which vary in time
according to the Doppler frequency. This is a conventional ex-
ponential decay multipath channel model.
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Figure 4: The number of iteration v.s. Eb/N0

Fig. 2 shows the BER performance of EM-based OFDM sig-
nal estimation algorithm with the above two different Doppler
frequencies and fig. 3 displays the corresponding MSE. In the
conventional channel estimation algorithm, for those OFDM
frames containing pilot symbols, the estimate of CIR is ob-
tained by using these 8 equally spaced pilot symbols. For
those OFDM frames without pilot symbols, the conventioanl
estimation of CIR comes from the channel estimate of the
previous OFDM frame. In the EM-based algorithm we use
the estimate of the previous OFDM frame as the initial value
for the current OFDM frame if there is no pilot symbols in
this frame. From these two figures we can see that the EM-
based algorithm can achieve almost as good performance as
the ideal case in terms of BER where the channel characteris-
tics are completely known when fdTs = 0.01, i.e., the channel
does not change very fast. Furthermore, the MSE of the EM-
based channel estimation converges to the Cramer-Rao Lower
Bound (CRLB) when Eb/N0 becomes large. On the other
hand, when fdTs = 0.05, the performance of EM-based algo-
rithm cannot achieve that of the ideal case. This is because
the pilot symbols contained in the time-frequency grid cannot
track the channel variation in such rapid fading. This demon-
strates that the performance of the EM-based algorithm de-
pends on the accuracy of the initial estimation. In both cases,
the performance gain from the initial estimate is considerably
large, especially when fdTs = 0.05. Another interesting result
obtained from our simulation is that the performance degra-
dation is quite small when we use the simplified EM-based
algorithm that does not use the channel statistics. Thus, this
algorithm has a very good robust property.

In Fig. 4, we plot the number of iterations required for
the estimates Xp to converge versus Eb/N0 at the receiver
input. We can see that the number of necessary iterations is
relatively small in a broad range of Eb/N0 whether the channel
changes slowly enough or not. And the fast channel variation
causes only a very small increase in the number of iterations
required to converge. This demonstrates that the algorithm
can achieve a substantial performance improvement with only
a modest increase in the computational complexity.

VI. Conclusion

In this paper we proposed a new EM-based iterative al-
gorithm to efficiently estimate the OFDM transmitted signal
that is received from a multipath fading channel with AWGN.
The main idea here is to detect the transmitted OFDM frames
by averaging over unknown multipath channel paprameters.
By making use of pilot symbols to obtain the initial estimate,
the algorithm can achieve a near-optimal estimate after very
few iterations when the channel changes slowly. We also in-
troduce a simplified algorithm without using channel statistics
which has almost the same performance as the non-simplified
one.
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