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Abstract
A new embedded-atom method (EAM) potential has been constructed for Ag
by fitting to experimental and first-principles data. The potential accurately
reproduces the lattice parameter, cohesive energy, elastic constants, phonon
frequencies, thermal expansion, lattice-defect energies, as well as energies
of alternate structures of Ag. Combining this potential with an existing
EAM potential for Cu, a binary potential set for the Cu–Ag system has been
constructed by fitting the cross-interaction function to first-principles energies
of imaginary Cu–Ag compounds. Although properties used in the fit refer
to the 0 K temperature (except for thermal expansion factors of pure Cu and
Ag) and do not include liquid configurations, the potentials demonstrate good
transferability to high-temperature properties. In particular, the entire Cu–Ag
phase diagram calculated with the new potentials in conjunction with Monte
Carlo simulations is in satisfactory agreement with experiment. This agreement
suggests that EAM potentials accurately fit to 0 K properties can be capable of
correctly predicting simple phase diagrams. Possible applications of the new
potential set are outlined.

1. Introduction

Embedded-atom method (EAM) potentials represent the most common model of atomic
bonding in metallic systems [1, 2]. They have been applied to atomistic simulations of point
defects, diffusion, plastic deformation, fracture and many other properties. One area where
the capabilities of EAM potentials have not yet been well established is the calculation of
phase diagrams. Indeed, EAM potentials are usually constructed by fitting to experimental
and/or first-principles data for a material at zero degrees Kelvin. It is not evident a priori that a
potential fit to 0 K properties will be transferable to high temperatures or that it will be capable
of reproducing the entire phase diagram of the system.

The ability of EAM potentials to reproduce phase diagrams is very important for many
applications of atomistic simulations, including surface and interface segregation, surface
wetting, alloy crystallization, phase transformations and interdiffusion. It should be noted that
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EAM potentials in conjunction with molecular dynamics and/or Monte Carlo simulations allow
thermodynamic calculations beyond the approximations of the lattice-based models, such as
cluster-expansion methods. Besides all atomic relaxations, such calculations automatically
include atomic vibrations beyond the harmonic approximation and are applicable to both
solid and liquid phases. Essentially, the accuracy of EAM-based thermodynamic calculations
depends primarily on the accuracy and transferability of the EAM potential.

There have been several phase diagram calculations employing EAM potentials, see for
example [3–6] and references therein. Unfortunately, some features of the calculated phase
diagrams disagree with experiment even on a qualitative level. For example, the Fe–Cu diagram
computed in [5] contains BCC Cu and a continuous BCC solid solution region extending from
pure Fe to pure Cu. Hoyt et al [4] calculated the high-temperature part of the Cu–Pb phase
diagram and achieved a semi-quantitative agreement with experiment, but their interatomic
potential had been deliberately fit to reproduce the experimental heats of mixing of liquid alloys.
The γ /γ ′ and γ ′/β lines of the Ni–Al phase diagram calculated with an EAM potential [7] were
found to be in good agreement with experiment. However, the Ni5Al3 phase existing on the
experimental diagram at relatively low temperatures was not reproduced by the calculations.
The liquidus lines of the Ni–Al diagram were not computed in [7].

The present work continues the exploration of capabilities of EAM potentials by posing
and addressing the following question: given a binary system with a very simple phase diagram,
can an EAM potential whose cross-interactions were fit exclusively to first-principles data at
0 K correctly reproduce the entire phase diagram? As a model we choose the Cu–Ag system
exhibiting a single eutectic point and containing a Cu-rich FCC solid solution α, an Ag-rich
FCC solid solution β and a liquid solution [8,9]. Being very simple, this system still contains
such basic features as a miscibility gap, solid–solid and solid–liquid equilibria that need to be
reproduced by the potential correctly. The next level of complexity would be a diagram with
an intermediate phase, which could be the subject of our future work.

All EAM potentials for the Cu–Ag system known to us (e.g. [10–12]) have been constructed
by fitting to experimental data only, with the cross-interaction function fit to experimental heats
of formation of dilute solid solutions. Using Monte Carlo simulations and thermodynamic
integration with the Foiles, Baskes and Daw (FBD) potential [10], Webb et al [13] calculated
the high-temperature part of the Cu–Ag phase diagram and obtained a rough estimate of the
eutectic point by linear extrapolation of the liquidus lines. However, the solvus lines were not
calculated in [13] (this had been done in a separate paper [14] using the same FBD potential
but a different thermodynamic model). On the other hand, Najafabadi et al [15] computed the
solvus lines using the FBD potential in conjunction with a free-energy minimization technique
based on the mean-field approximation to the configurational entropy and the local harmonic
approximation to atomic vibrations. All these authors found reasonable agreement with
the relevant parts of the experimental phase diagram. For the solvus lines this is not very
surprising given that the potential was fit to experimental solution heats, but the agreement
observed for the liquidus lines is encouraging since liquid properties were not included in
the fit.

In this paper we reconstruct the entire Cu–Ag phase diagram using a new EAM potential
set developed in this work. While the pure Cu and pure Ag potentials were developed by
fitting to both experimental and first-principles data, the cross-interaction potential is only
fit to first-principles energies of imaginary Cu–Ag compounds at 0 K. No liquid properties,
experimental or first-principles, are used in the potential construction. Moreover, except for
thermal expansion factors of pure Cu and Ag, all target properties used in the potential fit
refer to 0 K. This deliberately chosen strategy is designed to evaluate the transferability of the
potential to high-temperature properties, including liquid phases.
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2. Embedded-atom potential for the Cu–Ag system

The EAM represents the total energy of an atomic system in the form [1]

Etot = 1

2

∑
ij

Vij (rij ) +
∑

i

Fi(ρ̄i). (1)

Here Vij (rij ) is the pair interaction energy between atoms i and j separated by a distance rij

and Fi is the embedding energy of atom i as a function of the host electron density ρ̄i . The
latter is given by

ρ̄i =
∑
j �=i

ρj (rij ), (2)

where ρj (r) is the electron density function assigned to atom j . An EAM description of
an elemental system requires three functions: for example, VAgAg(r), ρAg(r) and FAg(ρ̄) for
pure Ag. For the binary Cu–Ag system studied here, seven potential functions are required:
VCuCu(r), VCuAg(r), VAgAg(r), ρCu(r), ρAg(r), FCu(ρ̄) and FAg(ρ̄). The traditional way to
construct these functions is to utilize existing potentials for pure Cu and Ag and only fit the
cross-interaction potential VCuAg(r). The invariant transformation parameters [2, 16–18] are
also used in this process as adjustable parameters. In this work we construct a Cu–Ag potential
set by the following scheme:

• Use an existing EAM potential for Cu constructed in [19].
• Develop a new EAM potential for pure Ag by fitting to experimental and first-principles

data.
• Construct the cross-interaction function VCuAg(r) by fitting to first-principles data only.

2.1. Embedded-atom potential for Ag

Since the parametrization and fitting procedures applied for constructing the Ag potential
are very similar to those used previously for Cu [19], only a brief description will be given.
The potential is generated directly in the effective pair format [17]. Omitting the chemical
subscript ‘Ag’, the pair interaction function V (r) is represented by a superposition of two
Morse functions,

V (r) = VM(r) ≡ [E1M(r, r
(1)
0 , α1) + E2M(r, r

(2)
0 , α2) + δ]ψ

(
r − rc

h

)
, (3)

if r � r(1)
s and

V (r) = VM(r(1)
s ) + V ′

M(r(1)
s )(r − r(1)

s ) +
1

2
V ′′

M(r(1)
s )(r − r(1)

s )2

+
1

6
V ′′′

M (r(1)
s )(r − r(1)

s )3 +
5∑

n=1

SnH(r(n)
s − r)(r(n)

s − r)4 (4)

if r < r(1)
s . Here,

M(r, r0, α) = exp(−2α(r − r0)) − 2 exp(−α(r − r0)) (5)

is a Morse function, H(x) is a unit step function and ψ(x) is a cutoff function defined as
ψ(x) = 0 if x � 0 and ψ(x) = x4/(1 + x4) if x < 0. Equations (3) and (4) contain the
fitting parameters E1, E2, r

(1)
0 , r

(2)
0 , α1, α2, δ, rc, h and {r(n)

s , Sn}n=1,...,5. The electron density
function is parametrized in the form

ρ(r) = ρd(r) ≡ [A exp(−β1(r − r
(3)
0 )2) + exp(−β2(r − r

(4)
0 ))]ψ

(
r − rc

h

)
(6)
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if r � r
(1)
d and

ρ(r) = ρd(r
(1)
d ) + ρ ′

d(r
(1)
d )(r − r

(1)
d ) +

1

2
ρ ′′

d (r
(1)
d )(r − r

(1)
d )2 +

1

6
ρ ′′′

d (r
(1)
d )(r − r

(1)
d )3

+ Q1
(r − r

(1)
d )4

1 + 9(r − r
(1)
d )2

+ Q2H(r
(2)
d − r)(r − r

(2)
d )4

if r < r
(1)
d , with parameters A, r

(3)
0 , r

(4)
0 , β1, β2, r

(1)
d , r

(2)
d , Q1 and Q2. The cutoff function

ψ(x) guarantees that both functions V (r) and ρ(r) as well as their derivatives up to the second
one turn smoothly to zero at the cutoff distance rc.

Two of the above parameters, A and E1, are eliminated by normalizing ρ(r) to ρ̄ = 1
at lattice parameter a = a0 and using the equilibrium condition of the FCC structure with
respect to volume variations at the experimental lattice parameter a0. This reduces the number
of fitting parameters by two.

The embedding function is represented by a polynomial

Fp(ρ̄) = F (0) +
1

2
F (2)(ρ̄ − 1)2 +

4∑
n=1

qn(ρ̄ − 1)n+2 (7)

if ρ̄ < ρ̄1 and

F(ρ̄) = Fp(ρ̄1) + F ′
p(ρ̄1)(ρ̄ − ρ̄1) +

1

2
F ′′

p (ρ̄1)(ρ̄ − ρ̄1)
2 +

1

6
F ′′′

p (ρ̄1)(ρ̄ − ρ̄1)
3 (8)

if ρ̄ > ρ̄1 > 1. The coefficients F (0) and F (2) can be expressed in terms of the experimental
values of the cohesive energy E0 [20] and the bulk modulus B [21] and are thus eliminated from
the list of fitting parameters, while q1 is determined from the boundary condition Fp(0) = 0.
Thus, only ρ̄1 and the coefficients q2, q3, and q4 are used as fitting parameters for F(ρ̄).

Formally, this parametrization of the potential functions includes 30 adjustable parameters.
However, only 15 of them are actually used for fitting to physical properties of Ag. The
parameters ρ̄1, r(n)

s and Sn are chosen almost arbitrarily so as to make the repulsive part of
the binding curve of FCC Ag smooth and somewhat steeper than is predicted by the universal
equation of state by Rose et al [22]. Likewise, r

(n)
d and Qn are chosen so as to prevent

negative values of ρ(r) that could otherwise arise at short atomic separations. Note that this
parametrization scheme automatically guarantees an exact fit to a0, E0 and B.

The potential was optimized by minimizing the weighted mean squared deviation of
selected properties of Ag from their target values. The experimental part of the fitting database
included, besides a0, E0 and B, the elastic constants cij , the relaxed vacancy formation
(Ef

v ) and migration (Em
v ) energies, the phonon frequencies at the zone-boundary point X

and the intrinsic stacking fault energy γSF . The thermal expansion factor of FCC Ag at
1000 K was also included with a small weight. The first-principles part of the database
contained the energies E (per atom) of the FCC, HCP (with the ideal c/a ratio), BCC, simple
cubic (SC) and diamond cubic (DC) structures as functions of the atomic volume �. They
had been generated with the Vienna ab initio simulation package (VASP) [23] within the
local density approximation (LDA). Considering that the reference energies of the EAM and
VASP calculations are different, the goal was to match the energy differences E(�) − E0

calculated by both methods. Furthermore, before the fitting process all interatomic distances
involved in the VASP-generated E(�) functions were scaled by a factor S = a0/a

VASP
0 , where

aVASP
0 = 4.020 Å is the FCC-equilibrium lattice parameter obtained by VASP calculations.

The intention of this scaling is to compensate for the underestimation of interatomic distances
inherent in LDA calculations.
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Table 1. Optimized values of fitting parameters of the EAM potential for Ag.

Parameter Value Parameter Value

rc(Å) 5.995 01 β1 (Å−2) 1.423 25 × 10−2

h (Å) 0.547 388 β2 (Å−1) 5.763 23 × 102

E2 (eV) 3.569 66 × 10−3 S1 (eV Å−4) 32.0

r
(1)
0 (Å) −7.157 62 S2 (eV Å−4) −40.0

r
(2)
0 (Å) 5.284 64 S3 (eV Å−4) 10.0

r
(3)
0 (Å) −60.132 24 S4 (eV Å−4) 29.0

r
(4)
0 (Å) −2.614 31 × 102 S5 (eV Å−4) 50.0

α1 (Å−1) 2.967 60 r
(1)
d (Å) 2.5

α2 (Å−1) 1.500 08 r
(2)
d (Å) 2.0

δ (Å) 6.568 90 × 10−4 ρ̄1 1.4

r
(1)
s (Å) 2.84 q2 (eV) −7.194 74 × 10−2

r
(2)
s (Å) 2.80 q3 (eV) −0.203 959

r
(3)
s (Å) 2.65 q4 (eV) 0.558 648

r
(4)
s (Å) 0.66 Q1 −5.0

r
(5)
s (Å) 0.55 Q2 −0.1

The optimized values of the fitting parameters are listed in table 1 and the potential
functions are shown in figure 1. Tabulated forms of these functions are available from the
authors by request.

2.2. Testing of the Ag potential

Table 2 compares lattice properties of Ag calculated with the EAM potential to experimental
data [20, 21, 24, 25]. Figure 2 shows that the potential provides good agreement with
experimental phonon dispersion curves [25], though some deviations are observed in the high-
frequency range (>5 THz).

Thermal expansion factors of FCC Ag were computed by a Monte Carlo method in which
atoms in a 864-atom cubic supercell were allowed to move around their lattice positions while
the volume could fluctuate to ensure a zero-pressure condition (NPT ensemble) [26, 27]. The
agreement with experiment [28] is very good (figure 3). The melting temperature Tm was
computed by NPT Monte Carlo simulations using a 3920-atom supercell containing a solid–
liquid interface. By observing the direction of the interface motion at various simulation
temperatures, Tm could be located with an accuracy of ±5 K. The value obtained with this
potential, Tm = 1267 K, is in reasonable agreement with the experimental value 1235 K [20].

Lattice defect energies in Ag calculated with the EAM potential are compared with
experimental data in table 3. All defect energies were obtained by fully relaxed calculations.
The vacancy formation and migration energies and the intrinsic stacking fault energy were
included in the fit, but all other properties are predictions of the potential. The ground state of
a self-interstitial is found to be a 〈100〉-oriented split dumbbell configuration. The interstitial
migration energy compares well with experiment. The interstitial dumbbell migrates by
a 90◦ rotation with a simultaneous displacement of its centre of mass by 1/2〈110〉. The
unstable stacking fault energy predicted by the potential, γus = 115 mJ m−2, lies between the
first-principles result, 190 mJ m−2 [29], and tight-binding calculations, 95 mJ m−2 [30]. The
surface relaxations calculated for the (100), (110) and (111) orientations (table 4) also agree
reasonably well with experimental data and with first-principles calculations. The surface
energies underestimate experimental and especially first-principles values, which is the usual
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Figure 1. EAM potential functions for Ag: (a) Pair interaction function, (b) electron density
function and (c) embedding function. The arrows indicate coordination radii in the equilibrium
FCC lattice.

trend of EAM potentials. Attempts to include surface energies in the fitting process and enforce
higher values resulted in a poorer fit to structural energies.

The equilibrium structural energies relative to the FCC structure (table 5) compare with
first-principles calculations fairly well. Note that it is the whole energy-volume curves (figure 4)
that were used in the fit but not the equilibrium energies.

2.3. Binary potential Cu–Ag

Having the elemental potentials for Cu and Ag, the cross-potential VCuAg(r) has been generated.
It is represented by a generalized Morse function

VCuAg(r) = E1[exp(−αβ(r − r0)) − α exp(−β(r − r0)) + δ]ψ

(
r − rc

h

)
(9)
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Table 2. Lattice properties of Ag calculated with the EAM potential in comparison with
experimental data.

Property Experiment EAM

a0 (Å)a 4.09b 4.09
E0 (eV atom−1)a −2.85c −2.85

Elastic constants (GPa)a

B 140d 140
c11 124d 124.2
c12 93.4d 93.9
c44 46.1d 46.4

Phonon frequencies (THz)
L(X)a 5.08e 4.90
T (X)a 3.34e 3.29
L(L) 4.92e 4.88
T (L) 2.23e 2.12
L(K) 3.70e 3.90
T1(K) 3.04e 2.94
T2(K) 4.49e 4.49

a Included in the fitting database.
b [20]; c [24]; d [21]; e [25].
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Figure 2. Phonon dispersion curves in Ag calculated with the EAM potential and compared with
experimental data (circles, [25]).

with parameters E1, r0, α, β, δ, rc and h. The scaling factor of the electron density of
Ag, sAg , and the transformation coefficients gCu and gAg [2, 17, 18] were also used as fitting
parameters.

The fitting database was generated by VASP calculations similar to those performed for
pure Ag. It includes energy-volume relations for seven intermetallic compounds: L12–Cu3Ag,
D022–Cu3Ag, L10–CuAg, B1–CuAg, B2–CuAg, L12–CuAg3 and D022–CuAg3. These
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Figure 3. Linear thermal expansion of Ag relative to room temperature calculated by the NPT
Monte Carlo method using the EAM potential and compared with experimental data ( [28]). The
arrow marks the experimental melting point Tm.

Table 3. Lattice defect properties of Ag calculated with the EAM potential in comparison with
experimental data and first-principles calculations. Notations: E

f
v , vacancy formation energy; �v ,

vacancy formation volume; �0, equilibrium atomic volume; Em
v , vacancy migration energy; E

f

i ,
interstitial formation energy for a 〈100〉-oriented split dumbbell; �i , interstitial formation volume;
Em

i , interstitial migration energy; γSF, intrinsic stacking fault energy; γus, unstable stacking fault
energy; γT , symmetrical twin boundary energy and γs , surface energy.

Property Experiment ab initio EAM

Vacancy

E
f
v (eV)a 1.1b 1.06c, 1.20d 1.103

�v/�0 0.94e 0.684
Em

v (eV)a 0.66b 0.655

Interstitial

E
f

i (eV) 3.226
�i/�0 1.254
Em

i (eV) 0.088f 0.076

Planar faults (mJ m−2)

γSF
a 16g 21h, 33i, 46j, 50k 17.8

γus 190k 115
γT 8g 14h, 19i 9.2

Surfaces (mJ m−2)

γs(110) 1140l 1260m, 1400n 1017
γs(100) 1140l 1210m, 1300n 940
γs(111) 1140l 1210c,m 862

a Included in the fitting database.
b [42]; c [43]; d [44]; e [45]; f [46]; g [47]; h [48] (unrelaxed energy); i [49]; j [50]; k [29]; l For
average orientation [47]; m [51]; n [52].
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Table 4. Multilayer relaxation for the (100), (110) and (111) surfaces of Ag calculated with the
EAM potential in comparison with first-principles calculations and experimental data. The results
are given as the change (in %) from the bulk value of the spacing. The negative and positive values
indicate the contraction and expansion, respectively.

�d12 �d23 �d34 �d45

(111) −1.76 −0.03 0.01 0.00 EAM
−1.4 ab initioa

−2.5 ∼ 10 Experimentb

(100) −2.22 −0.38 0.03 0.00 EAM
−1.9 ab initioa

0.0 ± 1.5 Experimentc

(110) −6.27 0.48 −0.79 0.31 EAM
−3.6 ab initioa

−7.8 ± 2.5 4.3 ± 2.5 Experimentd

a [51]; b [53]; c [54]; d [55].

Table 5. Equlibrium energies (in eV) of alternative structures of Ag obtained with the EAM
potential in comparison with first-principles calculations.

Structure ab initio EAM

HCP 0.003 0.004
BCC 0.039 0.033
SC 0.428 0.400
DC 1.054 0.967

Note: The energies are given relative to the equilibrium FCC structure.
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Figure 4. Comparison of ab initio (points) and EAM calculated (curves) equations of state of the
FCC, BCC, SC and DC structures of Ag relative to the equilibrium FCC structure.

compounds do not exist on the experimental phase diagram [8] and only serve to sample
various FCC and BCC-type atomic environments with three different stoichiometries across
the entire composition range. Each function E(�) contained 7 points around the equilibrium
volume. Prior to the fitting process, all interatomic distances were scaled by the factor S used
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Table 6. Optimized values of fitting parameters of the EAM cross-potential Cu–Ag.

Parameter Value Parameter Value

rc (Å) 5.2 β (Å−1) 0.349 06
h(Å) 4.533 δ 116.405 1
E1 (eV) 6.36726 × 10−2 sAg 0.694 12
r0(Å) 4.435 91 gCu −4.978 94
α 6.670 54 gAg −10.504 58
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Figure 5. Pair interaction functions of the EAM potential for the Cu–Ag system in the effective
pair format.

previously for pure Ag. The usage of the same scaling factor for pure Ag and the compounds
is justified by the fact that scaling factors for Ag and Cu are very close.

The fitting was implemented by minimizing the mean-squared deviation between the
EAM and first-principles formation energies of the seven compounds at all atomic volumes.
The formation energy of a compound CumAgn is defined as

E(�) − m

m + n
ECu

0 − n

m + n
E

Ag
0 , (10)

where ECu
0 and E

Ag
0 are the equilibrium cohesive energies of FCC Cu and Ag, respectively,

and E(�) is the energy of the compound per atom. We emphasize that no experimental data
were used in this fit.

Table 6 contains the optimized values of the fitting parameters. Figure 5 displays the
pair potential functions Cu–Cu, Cu–Ag and Ag–Ag transformed to the binary effective pair
format [2, 17].
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Table 7. Formation energies (in eV) of alternate structures of CuAg, Cu3Ag and Ag3Cu compounds
obtained with the EAM potential in comparison with first-principles calculations.

Cu3Ag CuAg Ag3Cu
Structure ab initio EAM Structure ab initio EAM Structure ab initio EAM

L12 0.093 0.096 L10 0.118 0.118 L12 0.082 0.083
D022 0.095 0.110 B2 0.128 0.177 D022 0.083 0.088

B1 0.518 0.516

Table 8. Impurity solubility energies (Es ) and volumes (�s , normalized by the atomic volume �0
of the matrix) of Ag in Cu and Cu in Ag calculated with the EAM potential in comparison with
experimental data [9] measured at 1052 K.

Ag in Cu Cu in Ag

Property Experiment EAM Experiment EAM

Es (eV) 0.39 0.389 0.25 0.310
�s/�0 0.533 −0.294

2.4. Testing of the Cu–Ag potential

Table 7 presents the equilibrium formation energies of CuAg, Cu3Ag and Ag3Cu compounds
used in the fit. The agreement with the target values is reasonable. Note that the D022 structures
compete with the L12 structures for stability and have only slightly higher energies.

Impurity solubility energies and volumes at T = 0 K were computed using a 864-atom
cubic supercell. A single point defect was created in the centre of the supercell and the total
energy was minimized with respect to local atomic displacements and the supercell volume.
The solubility energies predicted by the potential compare favourably with experimental values
derived from the heats of solution measured at the experimental eutectic temperature [9]
(table 8). The large values and opposite signs of the solubility volumes reflect the large
atomic size misfit between Cu and Ag.

3. Thermodynamic calculations

To test the ability of the EAM potential for predicting high temperature properties, the
equilibrium lines on the Cu–Ag phase diagram have been calculated. The calculation procedure
is similar to the one used previously for the Ni–Al system [7].

The first step of the calculation was to obtain the Gibbs free energies, g(T ), of pure Cu and
Ag. The NPT Monte Carlo simulations that were used for the calculation of thermal expansion
factors in section 2.2 also provided the average potential energy of the crystal per atom, ε(T ),
at each temperature T . The total internal energy per atom, εtot(T ), was obtained by adding to
ε(T ) the classical kinetic energy 3kBT /2, kB being the Boltzmann factor. Because p = 0 was
enforced, εtot(T ) can be equated to the enthalpy h(T ). Each h(T ) curve was approximated by
a quadratic function

h(T ) = h0 + AT + BT 2, (11)

with fitting parameters h0, A and B. The Gibbs free energy was then determined by integrating
the Gibbs equation [31] between a reference temperature T 0 and a temperature T > T 0:

g(T ) = g0 T

T 0
+ h0

(
1 − T

T 0

)
− BT (T − T 0) − AT ln

(
T

T 0

)
. (12)
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Table 9. Thermodynamic parameters describing FCC Cu and Ag (see section 3 for details).

g0 (eV) h0 (eV) A(10−3/K) B(10−6/K2)

Cu −3.5597 −3.5385 0.247 44 0.024 044
Ag −2.9043 −2.8477 0.235 94 0.030 949

Note: The reference temperature is T 0 = 293 K.
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Figure 6. Thermodynamic functions of Cu–Ag alloys at 800 K: (a) Chemical potential difference
and (b) Gibbs free energy of mixing (the excess free energy relative to the pure components). The
lines were calculated with the thermodynamic model described in the text. (b) shows the common
tangent used to compute the solvus concentrations cα and cβ .

The absolute value of the reference free energy g0 at T = T 0 was obtained using the classical
quasi-harmonic approximation [32]. The reference temperature T 0 = 293 K was chosen for
both Cu and Ag. The thermodynamic parameters obtained are listed in table 9.

The next step of the calculation employed restricted grand-canonical zero-stress Monte
Carlo simulations, in which the total number of atoms in a simulation block and the chemical
potential difference, �µ = µAg − µCu, are fixed while the atom chemical sorts are allowed to
switch randomly between Cu and Ag. In addition, individual atoms are subject to random
displacements and all three dimensions of the simulation block are allowed to fluctuate
independently to ensure a zero-stress condition in each direction. For the solvus line
calculations, the simulations employed a 864-atom cubic supercell. For each temperature
and �µ, the system was equilibrated by 2 × 103 Monte Carlo steps per atom followed by a
calculation of its equilibrium chemical composition averaged over 3 × 104 steps per atom.
Each run was repeated for two different initial states of the system: either pure Cu or pure Ag.
A plot of the equilibrium alloy composition cAg (atomic fraction of Ag) against �µ for a fixed
T enables the construction of an isothermal section of the phase diagram, with continuous
segments of the plot representing single-phase fields and concentration jumps corresponding
to two-phase regions [7, 32]. Our simulations, however, reveal that the α/β transformation is
accompanied by a considerable hysteresis (see example in figure 6). Because of this hysteresis,
a cAg versus �µ plot alone does not allow the α/β equilibrium compositions on the phase
diagram to be determined accurately.
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To address this problem, the �µ(cAg, T ) functions of both phases were approximated by
an analytical expression based on a simple thermodynamics model. The model allows us to
determine the free energy functions of the phases and thus to locate the phase boundaries by a
common tangent construction. The alloy Gibbs free energy, g(cAg, T ) per atom, is expressed by

g(cAg, T ) = gAg(T )cAg + gCu(T )(1 − cAg) + acAg +
b

2
c2

Ag +
c

3
c3

Ag

+kBT [cAg ln(cAg) + (1 − cAg) ln(1 − cAg)], (13)

where a = −b/2 − c/3. Here gCu(T ) and gAg(T ) are the free energies of pure Cu and Ag
calculated previously, see equation (12) and table 9. From equation (13) we obtain

�µ(cAg, T ) = −∂g(cAg, T )

∂cAg
= gCu(T ) − gAg(T ) − a − bcAg − cc2

Ag − kB ln

(
cAg

1 − cAg

)
.

(14)

This expression for �µ(cAg, T ) was fit to both branches of the Monte Carlo �µ(cAg) curve at
a fixed temperature by adjusting the parameters b and c (figure 6(a)). With these parameters
known, equation (13) gives the free energy curve g(cAg) at the chosen temperature T . The
equilibrium phase concentrations (points on the solvus lines) are then calculated by the common
tangent construction implemented numerically (figure 6(b)).

For solidus and liquidus line calculations, restricted grand-canonical zero-stress Monte
Carlo simulations were conducted using a 3920-atom supercell containing a solid–liquid
interface with the (100) orientation. An alternative approach would be to model the alloy
crystallization and melting by molecular dynamics (see, e.g. [6]). In this case, however, slow
diffusion processes could give rise to inhomogeneous chemical compositions in the phases.
Indeed, the equilibrium phase compositions vary in the course of the crystallization/melting.
Limited simulation times may prevent the compositional changes to occur homogeneously
since the diffusion processes in the solid phase require the generation, migration and
annihilation of vacancies. Monte Carlo simulations were chosen here to circumvent the slow
diffusion problem of molecular dynamics (in Monte Carlo all compositional changes occur
homogeneously) and to employ a common approach throughout this work.

The direction of the interface motion was monitored as the chemical potential difference
�µ was varied in small increments at a fixed temperature. For each chosen �µ value,
8.5 × 104 Monte Carlo steps per atom were made to determine �µ corresponding to the
equilibrium condition (no interface motion) within ±0.005 eV per atom. Then, for each
selected temperature and its estimated equilibrium �µ value, the single-phase compositions
were determined by equilibrating the system by 2 × 103 Monte Carlo steps per atom followed
by a calculation of its equilibrium chemical composition averaged over 4×103 steps per atom.
These simulations used the same 3920-atom supercell but started as pure Cu for the α solidus
line, pure Ag for the β solidus line and as a homogeneous liquid Cu–Ag alloy for the liquidus
lines.

The Cu–Ag phase diagram shown in figure 7 compares the Monte Carlo calculation results
with experimental data [8,9]. All features of the experimental diagram have been reproduced
correctly. The estimated eutectic temperature TE (935 K), eutectic concentration (0.458) and
solubility limits (0.03 and 0.937) agree satisfactorily with the experimental values (1053 K,
0.601, 0.049, 0.860, respectively). The melting temperatures of the elements, 1327 K for
Cu [33] and 1267 K for Ag, are within 30 K of the experimental values (1358 K for Cu and
1235 K for Ag [20]). The heats of melting of the elements, Hm = 12.01 kJ mole−1 for Cu and
12.45 kJ mole−1 for Ag, calculated in this work compare reasonably well with the experimental
values Hm = 13.03 kJ mole−1 for Cu and 11.30 kJ mole−1 for Ag [34].
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Figure 7. Calculated and experimental [8, 9] phase diagram of the Cu–Ag system. Filled circles
represent calculations using a thermodynamic model; open circles were obtained from the solid–
melt interface simulations.

Although the calculations involving the solid–liquid interface were performed for a
particular (100) orientation, we believe that other orientations would give similar results.
As indirect evidence, both the melting point and heat of melting of Cu computed for the (100),
(110) and (111) interface orientations [33] were found to be almost identical.

As another stringent test, the enthalpy of mixing of liquid Cu–Ag solutions at 1423 K
has been calculated by the Monte Carlo method. The liquid composition was varied by
adjusting the �µ value. The energy of a 3920-atom supercell containing an equilibrium
liquid solution was averaged over 4 × 103 Monte Carlo steps per atom at zero pressure. The
required reference energies of the elemental liquids were determined by similar calculations.
The mixing enthalpies predicted by the EAM potential (figure 8) underestimate the values
reported by Hultgren and Desai [9] and Hayes et al [35]. Although the relative magnitude of
the discrepancy is large, it should be noted that the enthalpy of mixing in this system is rather
small. The maximum absolute value of the discrepancy, 0.02 eV atom−1, is probably close to
the limit of accuracy of this potential. This number is comparable to the mismatch between
the EAM and first-principles calculations for structural energies of some of the solid phases,
see for example tables 5 and 7.

4. Discussion and conclusions

The EAM Ag potential developed in this work demonstrates very good agreement with
both fitted and predicted properties, including elastic constants, phonon frequencies, thermal
expansion, lattice-defect energies and energies of alternate structures. Given that the potential
generation procedure was similar to the one used previously for Cu [19], both potentials are
expected to be nearly equally accurate. Except for experimental thermal expansion factors
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Figure 8. Enthalpy of mixing of liquid Cu–Ag solutions as a function of composition at 1423 K
calculated with the EAM potentials and compared with experimental data of Hultgren and Desai [9]
and Hayes [35].

used in the potential construction with a small weight, both Cu and Ag potentials are fit to 0 K
properties. Although no liquid properties were included in the fitting database, both potentials
predict the melting temperatures and heats of melting in reasonable agreement with experiment.
This attests to their good transferability to high temperatures.

Although the Cu–Ag cross-interaction function is only fit to first-principles data at 0 K,
the calculated Cu–Ag phase diagram is in satisfactory quantitative agreement with experiment.
Note that the liquidus/solidus and solvus lines were obtained by two different and independent
calculation methods (solid–liquid interface equilibrium above TE and a thermodynamic model
for the free energy below TE). The apparently smooth junction between the lines obtained by
the two methods (figure 7) suggests that the simulation methodology applied in this work is
reliable. A conclusion which we draw from figure 7 is that an EAM potential fit accurately to
experimental and first-principles data at 0 K can be transferable to high temperatures and can
predict a simple binary phase diagram in reasonable agreement with experiment.

This agreement might be further improved by including in the fitting database a set of
first-principles energies and/or forces representing liquid configurations. This might raise
TE and shift the eutectic composition towards Ag in better agreement with experiment. This
improvement, however, might come at the expense of low-temperature properties. This scheme
can be tested in future work.

Even as it is, the new potential set developed in this paper can be useful for atomistic
simulations of the Cu–Ag system. For example, we are currently studying Ag segregation
at Cu grain boundaries at T > TE where we expect to see the formation of a thin boundary
layer of liquid as we approach the solubility limit. While Ag grain boundary segregation in Cu
has been studied by atomistic modelling before [11, 36–38], the possibility of grain-boundary
wetting transition has not been examined so far. As another area of applications, it is known
experimentally that in 5–10 nm size particles the eutectic temperature is drastically reduced, in
some systems even below the liquid–glass transition temperature [39–41]. The Cu–Ag eutectic
system can offer a meaningful model for a detailed study of atomistic mechanisms of phase
transformations in nanometre-scale particles.
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