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Abstract

This paper presents a novel design-for-test (DFT)

technique that allows core vendors to reduce the test

complexity of a core they are trying to market.  The idea

is to design a core so that it can be tested with a very

small number of test vectors.  The I/O pins of such a

“designed for high test compression” (DFHTC) core are

identical to the I/O pins of an ordinary core.  For the

system integrator, testing a DFHTC core is identical to

testing an ordinary core.  The only difference is that the

DFHTC core has a significantly smaller number of test

vectors resulting in less test data as well as less test time

(fewer scan vectors).  This is achieved by carefully

combining a parallel “test per clock” BIST scheme inside

the core with the normal external testing scheme using a

tester.  The BIST structure inside the core generates

weighted pseudo-random test vectors which detect a

large number of faults in the core.  Results indicate that

such DFHTC cores have a significantly smaller number

of test vectors than their ordinary counterparts thereby

greatly reducing test time and test storage.

1. Introduction

Core-based design and reuse is emerging as a new

paradigm for the design of integrated circuits.  System

integrators construct a system-on-a-chip using pre-

designed and pre-verified cores as building blocks.

System integrators can purchase cores from various core

vendors.  This creates a competitive environment where

multiple core vendors are trying to sell cores with similar

functionality.  As the complexity of systems-on-a-chip

continues to increase, the difficulty and cost of testing

such chips is escalating rapidly [Chandramouli 96],

[Zorian 98].  One characteristic of a core that emerges as

an important distinguishing factor is test complexity.

Given two cores with similar functionality, the core that

can be thoroughly tested with the smallest amount of test

data and the simplest tester program has a significant

competitive advantage because it reduces manufacturing

test costs.

In this paper, a novel design-for-test (DFT) technique

that allows core vendors to reduce the test complexity of

the core they are trying to market is presented.  The idea

is to create a DFHTC core which can be tested with a

significantly smaller number of test vectors compared to

the ordinary core (as illustrated in Fig. 1).  The I/O pins

of the DFHTC are identical to the I/O pins of an ordinary

core.  There is a “scan data in” pin (SDI), “scan data out”

pin (SDO), and a “scan enable” (SE) pin to control the

scan chain (as illustrated in Fig. 2).  For the system

integrator, testing a DFHTC core is identical to testing an

ordinary core.  The only difference is that the DFHTC

core has a significantly smaller number of test vectors

than that of its ordinary counterpart resulting in less test

data as well as less test time (fewer scan vectors).  The

tester program that is required for testing a DFHTC is no

different than that required for testing an ordinary core.

Thus, from the system integrator’s point of view, a

DFHTC core is identical to an ordinary core in all

respects except that it has a much smaller test set.

Internally, however, the actual number of test vectors

that are applied to the core is much larger.  The

additional test vectors are weighted pseudo-random

vectors that are generated internally inside the core and is

completely transparent to the system integrator.

Core DFHTC Core

Test Data

Tester

Test Data

Tester

Figure 1.  Concept of a DFHTC Core

The problem of reducing the test data and test time

for cores has been attacked from several different angles

in recent literature [Aerts 98], [Jas 98], [Rajski 98],

[Sugihara 98].  Scan chain architectures for core-based



designs that maximize bandwidth utilization are

presented in [Aerts 98].  A technique for compression/

decompression of scan vectors using cyclical

decompressors and run-length coding is described in

[Jas 98].  Since a DFHTC core is fully compatible to an

ordinary core, all techniques for optimal testing of cores

with scan can be applied in the same manner to DFHTC

cores.  Another approach for reducing test time is to use

built-in self-test (BIST).  A modular BIST approach that

allows sharing of BIST control logic among multiple

cores is presented in [Rajski 98].

Designing a core with BIST is an alternative to

designing a DFHTC core.  However, there are several

advantages to developing a DFHTC core:

• It is non-trivial to achieve high fault coverage with

BIST alone.  Inserting test points to improve fault

coverage degrades performance.  In many cases, it

may be undesirable to modify the function logic.

• Pure BIST requires long test lengths which can add to

tester socket time (i.e., the time that the chip sits in the

tester socket).

• Developing a tester program for handling a core with

BIST may be more complicated for the system

integrator if all the other cores are conventional scan

designs that are externally tested.

• A DFHTC core is compatible with all other cores with

scan chains, hence the same test integration

methodologies and tools can be used.

• By combining weighted pseudo-random vectors with

deterministic test vectors a DFHTC core achieves a

high fault coverage with a very small number of

deterministic test vectors.

For these reasons, the system integrator may prefer a

DFHTC core to one with BIST.

A novel technique for combining BIST and external

testing across multiple cores is described in

[Sugihara 98].  However there are several disadvantages

with this technique. It requires multiple test sets for each

core with each test set having different components for

BIST and external testing.  It requires a considerable

amount of hardware for scheduling the tests for the

different cores.  Moreover, since it is based on running

BIST simultaneously for all but one of the cores on the

chip, it suffers from large power dissipation during

testing.  This paper presents a simpler and more practical

approach for combining external testing and BIST.

This paper is organized as follows:  Section 2

discusses the implementation details of the scheme.

Section 3 describes a procedure for obtaining a highly

compressed set of scan vectors that provides the desired

fault coverage.  Experimental results are shown in Sec. 4.

Section 5 is a conclusion.

2. Implementing a DFHTC Core

Having described the concept of a DFHTC core, now

the details of how it is designed will be discussed.  It is

best explained with an example.  Figure 2 shows a

DFHTC core.  The test vectors are applied to the core by

a number of pseudo-random pattern generators (PRPGs)

which collectively produce one test vector per clock

cycle.  The PRPGs are formed by adding logic to the

scan chain so that it can be configured as multiple PRPGs

during testing.  Note that these PRPGs are transparent

outside the core.  The controller provides the interface to

the outside world (i.e., the tester) and has a serial-in

parallel-out shift register inside it.  The size of this shift

register is the same as that of the PRPGs.  The tester

shifts in the scan vectors into this shift register from

which they are transferred to the PRPGs by the controller

and applied to the CUT.  Each scan vector may be

conceptually thought of as being composed of a number

of b bit blocks.  Thus if there are N such blocks, then the

total length of a scan vector is bN.  Thus a “test per scan”

approach (as is the case with external tester driven

testing) would imply a test vector is applied once each

bN clock cycles.  In our scheme, we utilize these scan

shift clock cycles which are otherwise wasted to apply

additional test vectors to the CUT.  Ideally we should be

able to apply bN tests to the CUT in bN clock cycles.  In

the following paragraph we explain how such a “test per

clock” scheme can be implemented in the “test per scan”

framework without modifying the external interface of

the core.

As explained earlier, the test vectors are actually

applied to the CUT through the PRPGs in parallel thus

implementing a “test per clock” scheme.  At the very

beginning, the PRPGs are initialized with some starting

seed (as is done in BIST).  The collection of all these

seeds in the PRPGs forms the first test vector that gets

applied to the CUT.  Now the tester starts shifting data to

the core.  As it starts shifting in the first scan vector, the

PRPGs are also started in autonomous mode.  These

PRPGs generate pseudo-random test vectors at the inputs

of the CUT.  The output response of the CUT is

compacted in a multiple input signature register (MISR).

The feedback line of the MISR forms the “scan data out”

(SDO) pin.  At every clock cycle when the tester shifts in

one bit of the scan vector, it can scan out one bit through

the SDO pin.  This makes the output response of the

DFHTC core look like that of an ordinary core.  Using a

MISR introduces the possibility of losing fault coverage

due to aliasing.  This can be avoided by either doing fault

simulation with the MISR when generating the test

vectors, or by choosing the size of the MISR so that the

probability of aliasing is sufficiently low.
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Figure 2.  Test Architecture of a DFHTC Core
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Figure 3.  Example of Internally Generated Weighted

Pseudo-Random Test Vectors

As soon as the controller receives the first b bits of a

scan vector, it loads it in parallel into the first PRPG (the

PRPGs may need to be modified to a small extent to have

this parallel loading capability if they do not already

have one) and “locks” it.  A locked PRPG does not

produce new patterns at every clock cycle but continues

to hold the same pattern which it held last before it was

locked (this can be done either by gating out the clock or

disabling an enable signal).  However, the rest of the

PRPGs are “free”, and they continue to run while the

tester continues to shift in the next b bits of the scan

vector.  Thus, during these b clock cycles, b pseudo-

random vectors get applied to the CUT, all of which have

the same pattern in the set of inputs being fed by the first

PRPG.  Hence these pseudo-random vectors are

“weighted” in a certain set of inputs which continues to

be held at a fixed pattern.  Note that these weights have

actually been derived from an external deterministic scan

vector and thus have a greater probability of detecting

yet undetected faults.  When the tester has received the

second set of b bits of the scan vectors, it loads them in

parallel into the second PRPG and locks it.  Thus during

the next b cycles, two of the PRPGs are locked while the

rest are free and continue to produce more pseudo-

random vectors which are more weighted than those in

the earlier b clock cycles (as these have two PRPGs

locked).  This process continues until the last set of b bits

of the scan vector is received by the controller.  As this

last set gets loaded into the N-th PRPG, we have the

desired scan vector ready to be applied to the core.  Once

this test vector is applied to the CUT, all the PRPGs are

unlocked again.  The whole process is started all over

again, i.e., while the first set of b bits of the next scan

vector are being shifted into the controller by the tester

all the free PRPGs run and produce a “test per clock”.

Thus for every bN bits long deterministic scan vector we

are actually applying bN weighted pseudo-random test

vectors which detect a large number of the remaining

faults in the circuit.  As shown in the experimental results

section later in the paper, this greatly reduces the number

of test vectors which are needed to be stored on the

tester.  Also, note that all these additional weighted

pseudo-random vectors are more likely to detect new

faults than the usual equiprobable pseudo-random vectors

produced by a PRPG as their weights are part of an

ATPG generated test vector.  This phenomenon has been

observed in [Pomeranz 93], [AlShaibi 94], [Touba 95],

and [Tsai 97].  



Fig. 3 illustrates the scheme of internally generating

the weighted pseudo-random vectors which get applied to

the CUT during the course of normal external testing.

The highlighted portions of the test vectors have been

shifted into the core from outside (i.e., from the tester)

and the PRPG has been locked.  The other portions of the

test vectors have been internally generated by running

the PRPG in autonomous mode.

The scheme described above has several other

variations which in some cases produces a better

compression.  In the scheme described above, the PRPGs

are locked in a fixed sequence i.e., the i-th PRPG is

always locked before the j-th PRPG if i < j.  One

alternative would be to implement a round-robin scheme

where for the first deterministic scan vector the first

PRPG is locked first followed by the second, third and so

on; for the second deterministic test vector the second

PRPG is locked first followed by the third, fouth and so

on eventually ending with the first.  Another approach

would be to implement a select scheme.  In this scheme,

we prefix every scan vector with an s bit codeword which

indicates to the controller which locking order is to be

followed when shifting in that particular scan vector

(there can be k=2s fixed predetermined locking orders).

However, all these other schemes make the controller

more complex and consequently increase hardware

overhead.  Hence deciding which scheme to implement

involves a trade-off between the amount of compression

and the hardware overhead.

3. Constructing a Highly Compressed Scan 

Vector Test Set

In this section, an algorithm is described that the core

vendor can use to obtain a highly compressed test set for

the core based on the proposed scheme.  Fig. 4 gives a

flow chart for the algorithm.  In the algorithm, it is

assumed that we have a CUT with bN inputs (N PRPGs

each b bits wide).

The first step is to generate b pseudo-random test

vectors by simulating the PRPGs.  These are the test

vectors that are initially applied to the core when all the

PRPGs are free.  Fault simulation is done to drop all the

faults that are detected by these b pseudo-random test

vectors.  An ATPG tool is then used to target some

undetected fault f in the fault-list.  The resulting test

vector t obtained from ATPG affects the next b(N-1) test

vectors that are applied to the CUT (as explained in

Sec. 2).  These test vectors are computed by locking the

appropriate PRPGs in turn and simulating the remaining

free PRPGs to generate the b(N-1) weighted pseudo-

random test vectors.  Fault simulation is performed to

drop all the faults that are detected by test vector t and all

of the b(N-1) weighted pseudo-random test vectors.  If

the fault-list is not empty at this stage, all the above steps

are repeated.  This continues until the fault-list becomes

empty (i.e., all detectable faults are detected) or the

desired fault coverage has been achieved.

The final set of test vectors that the core vendor gives

the system integrator consists of only the deterministic

test vectors generated in the ATPG step of the above

algorithm.

Generate b pseudo-random vectors

Fault simulate to drop detected faults

Fault list empty ? End

Start

Yes

 Generate test t for some fault f  in
fault-list  using ATPG

 Generate b(N-1) pseudo-random
vectors using weights from t

No

 Fault simulate to drop detected
faults

Fault list empty ? End
Yes

No

Figure 4.  Flowchart for Generating Highly Compressed

Test Set

4. Experimental Results

Experiments were performed for the largest ISCAS

benchmark circuits [Brglez 89].  Table 1 shows the

results comparing a DFHTC core test set with that of an

ordinary core.  The fault coverage in both cases is 100%

of detectable faults.  For the ordinary core, the following

are shown:  the number of test vectors with ATPG and

static compaction, and the total amount of test data (that

must be stored on the tester).  For the DFHTC core, the

following are shown:  the number of PRPGs, the number

of test vectors which results from using our scheme, and

the total amount of test data.  Lastly, the percentage

reduction in the number of scan cycles required for   



Table 1. Results Comparing Test Sets of DFHTC and Ordinary Core Using Same ATPG Software
 

   Normal Core  DFHTC  

 Circuit

 Name

 Scan Size

 (bits)

 Num. of

 Test Vectors

Test Data

 (bits)

 Num.

 PRPGs

 Num. of

 Test Vectors

 Test Data

 (bits)

 % Reduction

in Test Data

 s5378  199  181  72038  4

 8

 49

 48

 19502

 19104

 72.9

 73.5

 s9234  247  198  97812  4

 8

 85

 78

 41990

 38532

 57.1

 60.6

 s13207  700  266  372400  4

 8

 33

 28

 47200

 39200

 87.6

 89.5

 s15850  611  153  186966  8

 16

 56

 60

 68432

 73320

 63.4

 60.1

 s38417  1664  270  898560  8

 16

 156

 142

 505856

 472576

 42.2

 47.4

 s38584  1464  213  623644  8

 16

 33

 32

 93696

 96624

 84.5

 85.0

testing each circuit is shown.  The percentage is

computed as follows:

[(Original Scan Test Data) - (DFHTC Core Scan Test

Data)] / (Original Scan Test Data) x 100

As can be seen from the results, the number of test

vectors required to test the DFHTC core is substantially

less than that of its ordinary counterpart.  Consequently,

the total amount of test data is reduced and the number of

scan cycles for testing the circuit is also reduced.  As can

be seen, the number of PRPGs has a relatively small

effect on the amount of compression.

In terms of area overhead, the scheme requires a shift

register, controller, and additional logic to configure the

scan chain into PRPGs.  We synthesized the controllers

and found that they ranged from 204 to 257 two-input

gate equivalents for the benchmark circuits shown in

Table 1.

5.  Conclusion

A DFHTC core reduces test time and tester memory

requirements.  It provides some nice advantages

compared with using a pure BIST approach because it is

fully compatible with ordinary cores, i.e., it has the same

test I/O pins and can use the same tester program.

Hence, the system integrator does not need to treat a

DFHTC core any different than other cores.

A DFHTC core will reduce test costs for the system

integrator.  Thus, core vendors may find DFHTC cores a

means to achieve a competitive advantage in selling their

cores.

The general idea of combining BIST and external

testing for cores is an attractive one.  A hybrid test

approach allows the test time and test storage to be

reduced as with BIST, and it provides a high fault

coverage without having to insert test points as with

external testing.  The technique described here is one

possible approach for combining BIST and external

testing, but there are opportunities for further research in

this area.
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