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An Embedded, 8-Channel, Noise Canceling,

Wireless, Wearable sEMG Data Acquisition System

with Adaptive Muscle Contraction Detection
Mert Ergeneci, Kaan Gokcesu, Erhan Ertan, Panagiotis Kosmas

Abstract—Wearable technology has gained increasing popular-
ity in the applications of healthcare, sports science and biomedical
engineering in recent years. Because of its convenient nature, the
wearable technology is particularly useful in the acquisition of
the physiological signals. Specifically, the sEMG systems, which
measure the muscle activation potentials, greatly benefit from this
technology in both clinical and industrial applications. However,
the current wearable sEMG systems have several drawbacks
including inefficient noise cancellation, insufficient measurement
quality and difficult integration to customized applications.
Additionally, none of these sEMG data acquisition systems
can detect sEMG signals (i.e., contractions), which provides a
valuable environment for further studies such as human machine
interaction, gesture recognition and fatigue tracking. To this end,
we introduce an embedded, 8-channel, noise canceling, wireless,
wearable sEMG data acquisition system with adaptive muscle
contraction detection. Our design consists of two stages, which
are the sEMG sensors and the multi-channel data acquisition
unit. For the first stage, we propose a low cost, dry and active
sEMG sensor that captures the muscle activation potentials, a
data acquisition unit that evaluates these captured multi-channel
sEMG signals and transmits them to a user interface. In the
data acquisition unit, the sEMG signals are processed through
embedded, adaptive methods in order to reject the power line
noise and detect the muscle contractions. Through extensive
experiments, we demonstrate that our sEMG sensor outperforms
a widely used, commercially available product and our data
acquisition system achieves 4.583 dB SNR gain with 98.9784%

accuracy in the detection of the contractions.

Index Terms—EMG sensors, noise cancellation, real-time data
acquisition, wearable technology, adaptive systems, muscle con-
traction detection

I. INTRODUCTION

WEARABLE technology has gained a lot of attention

in recent years because of its application in a wide

range of fields such as gaming, medical analysis and human

machine interface [1]–[9]. The various benefits of wearable

technology include compactness, user-friendliness and con-

tinuous monitoring. Since wearable technologies can be used

standalone, the experiments can be carried out in places other

than laboratories [10]. The acquisition of muscle activity data

particularly benefits from this since wearable data acquisition

systems allow for a greater motion freedom [2], [9], [10].
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In a wearable system, the muscle data is collected via

electromyography (EMG) technology, which is an electrodi-

agnostic medicine technique for evaluating and recording the

electrical activity produced by skeletal muscles [11]. EMG

technology is used in a wide range of applications such as

medical diagnosis and rehabilitation [12]–[15], sports science

research, athlete monitoring [16], human machine interaction

and gesture recognition [17]–[20]. Specifically, non-invasive

EMG technology, i.e., surface electromyography (sEMG), has

been recently used in research with these wearable systems

[21].

The sEMG sensors are divided into two main categories:

the sensors with disposable electrodes (gel-based) and reusable

electrodes (dry). Gel-based electrodes have a long setup time,

are sensitive to long-term usage (motion) and are generally for

single use [22]. Hence dry electrode technology is preferred

for wearable applications. Even though, active dry electrodes

are readily available in the market, they are highly expensive

and are difficult to integrate into specific purpose systems [10],

[22]. To this end, we propose an active, dry sEMG sensor

design with an 8 channel data acquisition unit.

Our proposed sEMG data acquisition system hardware

design consists of two parts, the sensors and the multi-

channel data acquisition unit. In the first part (sensor), we

amplify the sEMG signal that has a very low magnitude (0-

5mV) [23], [24]. The amplification process is designed to

prevent noise and other disturbing artifacts [25]–[27]. After

the amplification, an analog bandpass filter (20 − 500 Hz) is

used to reduce the system noise and motion artifacts [28],

[29]. Finally, the sensor outputs are connected to the second

part of our system, which is an 8-channel data acquisition unit

(DAU) that can capture up to 8 different sEMG signal streams

simultaneously. In the second part of our system, i.e., DAU, the

incoming sEMG channels are processed in a microcontroller

unit (MCU) simultaneously. However, since the MCU can only

process one waveform at a time, a multiplexer (MUX) is used

to sequentially sample through all of the sEMG channels. After

the processing at MCU, the sEMG signals are transmitted to

an interface via WiFi. To exclusively acquire sEMG data,

data is transmitted only when muscle activity/contractions

are detected. To do this, we have introduced an embedded

digital method to adaptively detect contractions. Through our

adaptive contraction detection algorithm, the signals coming

from the sEMG sensors are labeled according to their in-

dividual contraction and relaxation times, which lessens the

complexity for data transmission as well (since only the parts
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of the signal including muscle activity are transmitted). This

approach provides a valuable tool for further sEMG signal

analysis such as in fatigue tracking, voluntary contraction ratio,

muscle power development and muscle injury risk estimation

since in order to perform most sEMG analyses only the

contractions are required [10], [26], [30].

Moreover, in sEMG data acquisition, power line noise

(PLN) is a huge obstacle that can reduce the captured wave-

form quality and make the analysis of the sEMG signals

quite difficult [31]. Even though the PLN signal is known

to be a sinusoidal at 50/60 Hz (possibly with its harmon-

ics), its frequency can vary by ±2 Hz and its amplitude is

dependent on the environment (e.g., the power of electronic

components) [24], [32]. To this end, we use an adaptive

approach to minimize the adverse effects of PLN’s frequency

and amplitude variations. The algorithm is similarly embedded

into the MCU located in the DAU. Most of the traditional

approaches to reduce the PLN generally suffer from two

significant problems, which are the loss of valuable EMG data

near PLN frequency, and an inadequate decrease in the noise

power due to nonadaptive structures [24], [30], [33], [34]. To

overcome these limitations, we introduce an online adaptive

algorithm which sequentially removes the power line noise

whilst keeping the valuable EMG data untouched during active

muscle periods.

Our paper is organized as follows. In Section II, we provide

a detailed description of the state of the art sEMG data

acquisition systems, power line noise cancellation algorithms

and contraction detection techniques as well as our differences

and contributions. Section III gives the overall hardware im-

plementation of both the sEMG sensor and 8-channel data

acquisition unit (DAU). Our contraction detection and noise

cancellation methods are detailed in Section IV. In Section V,

we present various experiments to validate the performance

of our proposed sEMG data acquisition system. Experiments

include the comparison of the proposed sEMG sensor with a

commercially available product (Biometrics sx230-1000 [35])

by evaluating their SNR values and frequency responses

during relaxation and contraction phases. We also include

experiments for the error rate of our contraction detection

algorithm and SNR gain of our noise cancellation method.

Finally, some concluding remarks are given in Section VI.

II. PRIOR ART AND COMPARISONS

In the academic literature and the industrial market, there

are several solutions for sEMG data acquisition. These include

the commercially available products Biometrics DataLOG

[36], Delsys Trigno Lab [37], Myo Armband [21] and the

academic works [22], [38]–[42]. The works in [22], [36], [42]

lack wearability. Hence, they do not offer sufficient motion

freedom. The solutions proposed in [38], [39], [41] do not use

wireless data transmission and are not suitable for general use

outside of laboratory environments. The works in [38], [42]

use wet (disposable) electrodes, which do not offer reusability.

The system in [22] supports only a single channel sEMG,

which is insufficient for various sEMG applications. [21] only

provides a sampling rate of 200 Hz, which is only suitable for

detecting low frequency events (such as gestures) and cannot

be used for general purpose EMG signal evaluations (such as

fatigue tracking). Our system solves the various shortcomings

of the current solutions to the sEMG data acquisition. A

summary of the comparisons are given in Table I.

The systems proposed in [22], [36], [38], [39], [42] do not

have any means of power line noise cancellation, which is

especially problematic in high noise environments. On the

other hand, the works in [21], [37], [40], [41] use notch

filters, which are band-stop filters with a narrow bandwidth

(located specifically at 50/60 Hz and possibly at its harmon-

ics). Adjusting the center frequency and the bandwidth of

notch filters is not trivial. If the band is too small, it can

miss the PLN frequency and a too large of a bandwidth can

distort the valuable EMG data [24], [43]. To solve the data

distortion problem of notch filters, Signal Interpolation method

[43] have been proposed, which passes the observed EMG

spectrum from a window smoothing (since it assumes that

the observed spectrum is the superposition of the true EMG

data and a peak at the PLN frequency). Laguerre filters [44]

have been proposed as improved versions of the notch filters

that solves the adaptivity issue. APF method [24], [45] itera-

tively estimates the frequency of the PLN and its harmonics.

Regression Subtraction and Sinusoidal Modeling [24], [34]

type approaches provide performance gains only if the PLN

frequency is known in advance (since they try to fit a certain

model). All of these methods (both adaptive or nonadaptive)

aim to find the exact frequency and power of PLN. However,

all of these methods substantially distort the valuable EMG

data near PLN frequency because of overfitting. To this end,

we propose a Q-learning based method to adaptively estimate

the noise in the whole EMG spectrum, which subsequently

removes only the stationary interferences including PLN (i.e.,

do not distort the valuable EMG signal).

Furthermore, our system can accurately detect the muscle

contractions to acquire the sEMG data exclusively, which is

nonexistent in the other systems. All of these systems merely

provide the outputs of the sEMG channels. On the other hand,

by detecting the time instances the sEMG data is present in

the sEMG channel, we are able to truly perform sEMG data

acquisition.

To detect contractions, various approaches in literature try

to detect patterns in biosignals (EMG, ECG, EEG). As an

example, various QRS detection techniques use successive

thresholds to accurately capture and detect the specific signal

behavior. They generally use a transform such as derivation

to model the nonlinearity. In [46], [47], the authors approxi-

mate the derivative with a first order difference. In [48], the

derivative is modeled with the difference of the low-pass filter

output. In [49], the authors use an FIR filter to model the

derivative. In all of these algorithms, the process outputs a

nonnegative value (similar to a full-wave rectification), then

the resulting output is compared with a threshold. Similarly,

[50] proposes a matched filter on the Wavelet Transform

of the signal to detect muscle activation. However, all of

these techniques are used to recognize patterns in the signal,

which requires the specific signal waveform a priori and have

unsatisfactory performance in stochastic environments. To this

end, [51] models the inactive and active signals as Gaussian
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Systems Wearable Contraction Noise Data Electrode Type Channels Gain BW Fs ADC Res.

Detection Cancel. Trans. / Material (V/V) (Hz) (Hz) (bits)

Hercules (this paper) Yes Yes SE1 WiFi Dry / Gold Plated Copper 8 500 20-500 1000 12

Biometrics Datalog [36] No No No BLE Dry / Stainless Steel 8 1000 20-460 1000 14

Delsys Trigno [37] Yes No Notch RF Dry / Silver 16 909 0-500 1926 16

Myo Armband [21] Yes No Notch BLE Dry / Stainless Steel 8 - - 200 8

JPL V1 [38] Yes No No Wired Wet / Silver Chloride 8 100 16-600 1000-2000 -

WB-EMG [22] No No No BLE Dry / Gold Plated Copper 1 100-10000 20-450 1000 12

Paper [39] Yes No No Wired Dry / Silver Plated Copper 8 100-1000 15-1000 1000 -

Paper [40] Yes No Notch RF Dry / Silver Chloride 6 - 20-500 1000 10

Paper [41] Yes No Notch Wired Dry / Silver Chloride 16 - 20-500 1000 -

Paper [42] No No No BLE Wet / Silver Chloride 4 47-9588 8.7-952 4000 14

Table I: Comparison of the sEMG Data Acquisition Systems

processes with individual means and variances, and thresholds

the likelihood ratio to produce a decision. The parameters of

the inactive frames are calibrated at the beginning and the ac-

tive part is calculated from the observations. However, in noisy

environments (especially with PLN), erroneous estimations of

these parameters may occur.

Henceforth, instead of detecting patterns, the general ap-

proach for detecting sEMG is to use a threshold on a cer-

tain metric of the sEMG data, which cumulatively captures

its properties. Several metrics include Mean Absolute Value

(MAV), Variance (VAR), Root Mean Square (RMS), Wave-

form Length (WL), Zero Crossing (ZC), Slope Sign Change

(SSC), Discrete Wavelet Transform (DWT), Wavelet Package

(WPT), Mean Frequency (MF), Median Frequency (MDF),

Peak Frequency (PF), Mean Power (MP), Total Power (TP),

Higuchi’s Fractal Dimension (HFD), Detrended Fluctuation

Analysis (DFA), Shannon Entropy (SE) [52]–[56]. However,

most of them, especially the spectral metrics, can lead to

incorrect representations of the sEMG signal under high noise

and interference (e.g., PLN). Therefore, the most popular

choice is to use RMS or some variant as the primary metric

for determining whether there is a contraction. The general

approach is to look at a limited bandwidth of the spectrum to

determine the existence of contractions (generally with a low-

pass or a band-pass filter) [57]. However, since PLN frequency

overlaps with the bandwidth sEMG is most dominant, it can

significantly degrade the performance of these metrics. To

this end, we propose a new metric, which is based on the

smoothed geometric mean of the power spectra. This metric

highly deemphasizes the PLN power and is a suitable metric

especially in high interference environments.

Moreover, even though the general approach is to threshold

a metric, the selection of this threshold is not trivial. [58] uses

a predefined threshold, which is calibrated at the beginning of

the measurements. Another technique is to set the threshold to

the RMS of the last contraction and to compare this with the

RMS of the incoming frames while incrementally decreasing

it with a decay parameter. In [57], the authors calculate the 5%

and 95% percentile RMS values and use a convex combination

1Spectrum Estimation

of them as threshold. In [59], the authors propose a peak de-

tection algorithm, where the number of sEMG measurements

above a selected threshold are determined to make a decision.

The threshold is chosen as the closest peak to the max peak

in a time frame. However, all of these approaches either

perform unsatisfactorily or require the optimization of certain

parameters for good performance. None of these techniques

can adaptively select an appropriate threshold. To this end,

we propose a truly sequential, completely adaptive and robust

threshold selection scheme.

III. SEMG DATA ACQUISITION SYSTEM HARDWARE

In this section, we demonstrate the overall hardware imple-

mentation of the sEMG data acquisition system, from sensor

design to user interface. In the first subsection (part A),

we detail the sEMG sensor design (involving the electrode

material and size selection) and the analog signal conditioning

(amplification & filtering). In the second subsection (part B),

the data acquisition unit (DAU) is described, which includes

real-time digitalization of the signals coming from 8 different

sEMG sensors, power supply and the wireless data transmis-

sion protocol to a user interface.

A. sEMG Sensor

The main purpose of the sensor is to amplify the elec-

tromyography signals to a meaningful range without signif-

icant distortion (e.g. motion artifact). Our sensor is composed

of two basic parts, which are the electrode selection and the

signal conditioning. We first start by explaining the electrode

design and its optimal material selection.

1) Electrodes

The electromyography signals are received through the

electrodes, which are conductive materials used for gathering

and transferring the muscle activation potential [60]. The

conductance of the material the electrodes are made of plays

a significant role in acquiring high quality sEMG signal. The

commercialized metal that offers the highest conductance (i.e.,

the best quality) is silver [60]. However, since silver has a

high market value, we have used copper as the main metal

in our electrodes, which is highly affordable and offers high
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conduction similar to silver. The main problem with a pure

copper electrode is its vulnerability to corrosion and oxidation.

To this end, we have manufactured 100 nm gold-plated copper-

core disk shaped electrodes since gold has a high resistance

to corrosion and oxidation [60].

In order to determine the electrode that provides optimal

performance, i.e., the best SNR value, we have tested various

electrodes with different sizes. The electrode size is deter-

mined by two parameters, which are the electrode thickness

and the surface area in contact with the skin. To compare

the effect of size on SNR, we recorded data of gold-plated

disk electrodes with diameter of 6 mm and 10 mm, and

thickness of 2 mm and 1 mm. A larger electrode surface

area increases the sensor contact with the body, leading to

higher SNR. However, increasing the diameter of the electrode

more than 10 mm causes noise and disturbance to the sEMG

signal due to crosstalk and overrun of muscle fiber size [61].

Therefore, we avoided using electrodes with diameter more

than 10 mm. Additionally, an increased thickness causes the

electrodes to apply more pressure to the skin towards the

muscle fibers, which also increases SNR, however, it may also

create discomfort.

4 different types of electrodes were tested for 10 healthy

subjects, and the average SNR values were calculated. Elec-

trodes were placed to the biceps brachii, on the line between

the medial acromion and the fossa cubit at 1/3 from the fossa

cubit of each individual [61]. The inner space between the

electrodes (i.e., from center to center) was fixed to 20 mm

[61].

Material Diameter Thickness SNR (dB)

Gold 6 mm 1 mm 29.0694

Gold 6 mm 2 mm 30.0365

Gold 10 mm 1 mm 35.1195

Gold 10 mm 2 mm 35.9704

Table II: SNR value comparison of varied electrode types.

The results of the experiment are demonstrated in Table II,

which show that increasing the surface area and the thickness

increases the SNR value. Thus, in our sEMG sensor design,

we used gold plated disk electrode with 10 mm diameter, 2
mm thickness, since it demonstrated the best SNR, which is

35.9704 dB.

Next, we explain the signal conditioning, which involves

amplification & filtering process of the raw muscle activity

potential signals gathered from the electrodes.

2) Signal Conditioning

The electrodes collect and conduct the muscle signals,

however, these signals in their raw form are not feasible to

process. Since the collected muscle data from electrodes are

very small in amplitude (less than 5 mV), the gathered signals

are required to be amplified to a processable range, which is

0− 3 V for our sensor.

The signals gathered in the electrodes are called V + and

V − individually. The sEMG signal is the potential difference

of the signals that are collected from these electrodes. Let

EMGamp be the amplified sEMG signal, G1 be the gain of

the instrumentation amplifier and G2 be the gain of the non-

inverting amplifier. Then, the amplified sEMG signal is given

by

EMGamp = G1G2(V
+
− V −). (1)

The instrumentation amplifier calculates the potential dif-

ference between the electrodes V + and V − and amplifies it

[22], [28], [62]. In our circuitry, we used AD8221 as the

instrumentation amplifier, which is very low-power and has

high common mode rejection ratio (CMRR). CMRR is a very

significant value for instrumentation amplifiers since it shows

the attenuation amount of common mode, which reduces the

power line noise [63]. We set the instrumentation amplifier

gain, i.e., G1, to 50.

Secondly, DC offset levels of the signal coming from the

electrodes generally differ due to the displacement caused by

the skeletal motion during contraction [10], [29], [62]. This

varying DC level of V + and V − electrodes cause a huge

DC offset at the output of the instrumentation amplifier since

AD8221 takes the difference of the voltage values of the

electrodes and multiplies it with a gain of G1 = 50. In order

to prevent amplification of this DC offset, we generated an

AC coupling quasi-high pass filter with the use of a 220
uF capacitor placed between the RG pins (i.e., 2, 3) of the

instrumentation amplifier. By this simple RC filter, AD8221
outputs a zero-mean sEMG signal to the gain part.

To obtain a total gain of 500, we divided the gain into two

parts: an instrumentation amplifier gain, G1 = 50, followed

by a simple non-inverting amplifier circuit via an OP777 with

a gain, G2 = 10.

The last stage of the sEMG sensor is the filtering part, where

the amplified signal is processed prior to the data acquisition

unit (DAU). The incoming signal is filtered through a bandpass

filter with a band of 20− 500 Hz. The bandpass filter used is

a cascaded design of a high pass filter followed by a low pass

filter.

According to ISEK standards, EMG signal components at

frequencies below 20 Hz are caused by motion artifacts due to

the skeletal movement of the muscle during contractions and

the electrode-skin interface [28], [29]. In order to prevent the

motion artifact, we designed a high-pass filter with a cut-off

frequency of 18 Hz. The designed filter has a Sallen-Key filter

topology with a Butterworth response. Additionally, the corner

frequency attenuation is 3 dB and the stopband frequency

attenuation is 20 dB.

EMG signal is recommended to be sampled with a sampling

frequency of 1 kHz according to ISEK and SENIAM, i.e.,

EMG signal does not exceed 500 Hz, which enables us to

reduce noise by filtering out the frequency components (noise)

above 500 Hz [22], [28]. The designed filter has a multiple

feedback circuit topology with a Butterworth response. In

order to have a stopband frequency at 500 Hz, cutoff frequency

is selected to be 290 Hz. Also, the corner frequency attenuation

is 3 dB and stopband frequency attenuation is 20 dB.
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(a) (b)

Figure 1: (a) Photo of the amplification circuitry PCB. (b) Photo of the filter circuitry PCB.

In the next subsection, we detail the 8-channel sEMG data

acquisition unit (DAU) that uses 8 of the sensors described in

this section as inputs.

B. 8 Channel sEMG Data Acquisition Unit (DAU)

Figure 2: Overall sEMG data acquisition unit block diagram.

The sEMG data acquisition unit (DAU) mainly collects

the signals coming from the sEMG sensors and transmits

the incoming information with WiFi protocol. The incoming

signals are converted to digital and passed through certain

adaptive signal processing methods, which are the contraction

detection (Section IV-A) and the noise cancellation (Section

IV-B). Then, the sensor data is transmitted to a device (i.e.,

computer or mobile phone) via WiFi (UDP protocol).

In Figure 2, the block diagram of the overall data acquisition

unit is given. The system is composed of five main stages,

which are multiplexer (MUX), DC-Offset, micro controller

unit (MCU), power supply and data transmission (WiFi).

The first stage of DAU, i.e., MUX creates the multi-channel

architecture. The 8 different sEMG channels enter the MUX

where they are transferred to the DC-Offset unit sequentially.

Since the sEMG signal band ranges between 20− 500 Hz, it

is required to sample the incoming signals with a sampling

rate of minimum 1 kHz, which corresponds to a maximum of

1 ms period.

Thus, we decided to change the select pins (i.e., S0, S1, S2)

of the MUX with a clock of 8 kHz which would lead to

a 1 ms delay (1 kHz sampling frequency) between each

sEMG signals’ individual samples. In this way, we prevent

Figure 3: Photo of the eight channel sEMG data acquisition

unit (DAU) PCB.

any data loss and collect 8 different incoming sEMG signals

simultaneously.

The select pins (S0, S1, S2) of the MUX are controlled by

the MCU and the output of the MUX is directly connected to

the DC-Offset module where 1.5 V DC-Offset is added to the

signal. The DC-offset module converts the zero-mean signal to

a unipolar signal with a range of 0− 3 V to suitably interface

with the ADC in the ARM Cortex CPU. A Unipolar ADC

cannot convert negative voltage values. Thus, we up-shifted

the mean of the EMG signal to 1.5 V, which positions the

signal inside the ADC voltage range. After the addition of DC-

Offset, the signals are digitalized in the internal ADC of the

MCU. We used an ARM cortex-M4 based, stm32f407vgt6,

microcontroller. The MCU requires external crystal (8 MHz)

and a power supply circuit. It is possible to program the MCU

through SWD pins via an external ST-LINKV2 debugger.

The sEMG signals coming from the DC-Offset unit are first

converted to digital and stored in arrays in accordance with the

select of that time instance since each select value corresponds

to a different sensor.

Then, the digital data in arrays are cleaned from noise and

the contraction (active) frames are detected in an adaptive

manner. The cleaned contraction frames of signals are sent to

WiFi module with USART protocol for transmission purposes.
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We emphasize that only the active frames are transmitted

through WiFi in order to truly acquire the sEMG signals.

Power supply unit (PSU) is composed of a battery (3.7
V LiPo, 700 mA), regulators and an inverter. PSU supplies

3 V to the DAU for MUX, DC-Offset, MCU, WiFi and

an additional 1.5 V for again DC-Offset. Moreover, sEMG

sensors, which are fed by the DAU, require ±3 V supply for

both amplification and filtering. Thus, in total, 3 V, −3 V and

1.5 V are required for the overall system and are supplied by

PSU.In the PSU, 3 V is obtained by the TPS73130 regulator,

1.5 V is created using LM3671 regulator and −3 V by the

ICL7660 inverter.

Lastly, data transmission is realized through WiFi module

RN171. The data to be transmitted is sent to the WiFi module

via USART protocol by MCU. Since 8 different sEMG signals

are sampled with a 12-bit ADC (which is sufficient according

to SENIAM standards [22]), 3 bytes of data is needed to be

sent in order to transmit a sEMG sample correctly, where the

first byte tells the channel number of the data (i.e., select pin

of the MUX), other two bytes carry the 12-bit information (6
bits each with 2 bits of opcode showing the high and low part).

In order to send 8 different sEMG data without any loss, baud

rate is selected to be 230400.

In the following section, we explain the digital methods

(contraction detection and noise cancellation) implemented in

the MCU.

IV. EMBEDDED METHODS

In this section, we introduce two adaptive digital algorithms,

which are applied to the sEMG signals inside the MCU.

Firstly, the adaptive contraction detection algorithm detects

if a contraction is present in the sEMG signal, and uses

this information to decide whether to transmit the signal to

the user interface. Secondly, the adaptive noise cancellation

algorithm adaptively learns the PLN and removes it from the

received sEMG signal. The continuous sEMG signal streams

are split into frames of L samples (e.g., 255) sequentially with

an overlap of W (e.g., 127). Both of the proposed methods

processes these signal frames. In the following subsections,

we explain these adaptive algorithms in detail.

A. Adaptive Contraction Detection

The main purpose of this method is to determine whether

the incoming sEMG frame contains a contraction. Since the

sEMG contraction times are not necessarily provided in most

sEMG applications, it is required to classify the types of

frames (contraction or relaxation) for applications such as PLN

cancellation and fatigue detection [10], [26], [30]. The sEMG

contraction and relaxation power are highly dependent to the

subject using the sensor, sensor specifications (i.e., amount of

amplification), the type of muscle group and the noise in the

environment [24], [32]. Thus, it is beneficial to use an adaptive

approach in frame classification.

1) Feature Creation

In order to determine whether the received frame involves

contraction or relaxation data, we use the geometric mean of

the received frame’s power spectra as our comparison metric

(i.e., feature). Assume xn is the nth received frame, which is a

column vector of length L, of the incoming sEMG data stream,

then Xn is the K-point Fourier Transform of xn, which is a

column vector of size K (total number of frequency bins). The

Spectral Power In is calculated from Xn as

In = (Xn ◦Xn)
︸ ︷︷ ︸

Hadamard product

. (2)

Traditionally, the arithmetic mean of the power spectra

is used to determine the presence of a contraction since

it corresponds to the signal power. However, we use the

geometric mean instead of the arithmetic mean to decrease

the dependency of the comparison metric on the noise in

relaxation (inactive) frames. Since the inactive frames only

contain PLN, at 50/60 Hz, and AWGN at all the frequency

bins, the effect of the PLN component on the overall energy

shows high dominance over any other component. Note that

the PLN may show gradual change in amplitude in accor-

dance with the environment. Hence, using arithmetic mean

as the comparison metric would prove to be inefficient in

environments with highly varying PLN, which may lead to

misclassification of frames. On the other hand, geometric mean

calculations ignore (highly attenuate) the effect of a single

component (e.g., power at 50/60 Hz) on the overall mean,

e.g., if only In[i]
1

K changes, then the geometric mean Gn

will approximately stay the same for sufficiently high K. If

the power is distributed amongst a wider frequency bandwidth

(e.g., the spectrum of contraction as opposed to the PLN),

its geometric mean will be higher. Because of its concavity,

geometric mean function favors distributions closer to uniform

distribution. Thus, the distinction between contraction and

relaxation would be emphasized, which creates a better feature

for classification. Hence, we compute the geometric mean, Gn,

of the spectral power In as

Gn =

(
K∏

i=1

(In[i] + 1)

)1/K

, (3)

where we also used an additive smoothing factor of 1. The

reason for smoothing (adding) the power spectra with 1 is to

prevent the possible adverse effects of the AWGN noise. It is

possible for the noise power at a certain frequency bin to be

really close to zero, which can in turn make Gn really low

if the geometric mean was implemented directly. However,

with this smoothing parameter, Gn is guaranteed to be greater

than or equal to one. Even though geometric mean of the

power spectra have similar values for relaxation frames (i.e.,

creates a stable comparison metric), it is still insufficient in

creating similar values for contraction frames. Thus, we create

the feature

Ψn = logGn. (4)

This new feature, Ψn, in (4) de-emphasizes the high values

of Gn and assigns closer values to contraction frames by

attenuating the huge variations in geometric means of active

frames. The algorithm decides whether the received sEMG

frame contains a contraction by comparing it with a dynamic

threshold. Next, we show how this threshold can be adaptively

selected.
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2) Threshold Update

It is known that the acquired sEMG signal is the super-

position of electromyography signals released from measured

muscle and noise including the PLN. When there is no

contraction, i.e., during relaxation, the acquired sEMG signal

is only noise which corresponds to the AWGN along with

the PLN. To this end, we classify the received sEMG frames

through an adaptive thresholding approach on Ψn.

The selection of the threshold, τn, is very critical since the

type of the received frames would be decided according to

τn such that Ψn > τn would be a contraction and Ψn ≤ τn
a relaxation. However, the power levels of contraction and

relaxation frames show a significant change according to the

subject using the sensor, thus, using a predetermined τn is not

possible. Hence, we learn and update the threshold level in

an online manner with a moving average update. However,

simply averaging the features Ψn to determine τn would

prove to be insufficient since the averaging would provide an

undesirably large value. Instead, we choose to do this moving

average update in a different kernel space. We can generalize

the moving average calculation in accordance with a selected

kernel function Φ(·) as

yn = Φ−1

(

1

N

n−1∑

t=n−N

Φ(x[t])

)

, (5)

where N is the length of the moving average window, x[t] are

the inputs (e.g., Ψt features) and yn is the output (e.g., τn) at

frame n.

The kernel function, Φ(·) should be chosen carefully since

the learning is unsupervised, which suggests that there is no

reference showing if the received frame is contraction or re-

laxation. Since the numeric difference between the contraction

and relaxation frames is high, the selected kernel function

requires to be closer to the level of relaxation frames in order

not to classify some small contractions as relaxation.

Hence, we choose the negative exponential as our kernel

function such that

Φ(x) = e−x (6)

It is seen that the negative exponential transform of Ψn

is used in order to prevent undesirably high mean from the

accumulation of gradual contractions. Since using negative

exponential lowers the threshold level, τ∗ would approach

to the minimum bounds, i.e., even after plenty of gradual

and maximal muscle activations, a small contraction would be

detected correctly. Additionally, the use of this kernel function

effectively ignores any offset in the features Ψn, i.e., if all the

features were offset by a constant c, the threshold found from

the moving average in (5) will also be offset by the same

constant c.
We note that the equation in (5) can be written in a recursive

form. Hence, the update of τn, which is made through a

moving average in accordance with the mean function Φ(·)
can be written as

τn+1 = Φ−1

(

Φ(τn) +
1

N
(Φ(Ψn)− Φ(Ψn−N ))

)

. (7)

When the threshold update calculation in (7) is computed

using the kernel function in (6) and its inverse, the update

equation becomes

τn+1 = − log

(

e−τn +
1

N

(
e−Ψn − e−Ψn−N

)
)

, (8)

where − log (·) corresponds to the inverse mapping, i.e.,

Φ−1(·).

3) Decision

After the threshold is determined adaptively in an online

manner, the decision of the nth received frame, dn, is com-

puted as

dn =

{

1, Ψn > τn (contraction)

0, Ψn ≤ τn (relaxation)
, (9)

i.e., if the received frame is contraction, dn is assigned to be

1 and 0 otherwise.

Determining the type of frames would lead to a true

acquisition of the sEMG signal. Additionally, the decision

value, dn, is used in the noise cancellation (as explained in

IV-B), since the inactive signal spectrum estimation requires

only the frames involving noise (i.e., full relaxation involves

only noise) for a proper noise subtraction. Moreover, these

decisions dn can be used in further applications such as fatigue

level tracking, injury prevention and muscle development.

Next, we explain our adaptive noise cancellation algorithm

that can remove the PLN in an online manner.

B. Adaptive Noise Cancellation

In this section, we introduce an online adaptive noise

canceling method that significantly reduces the PLN.

Figure 4: Adaptive noise cancellation methodology.

As seen in Figure 4, incoming sEMG signal frames are first

passed through a binary classifier in order to determine if the

received frame is contraction or relaxation. The methodology

of the binary classifier is described in IV-A. Then, if the

sEMG window is a relaxation, i.e., dt = 0, the noise spectrum

estimation is updated by using the incoming relaxation frame

(i.e., noise) and the new estimate is subtracted from the

received frame. On the other hand, if dt = 1, the estimation

is directly subtracted from the received frame without any

update. After the subtraction, noise-free sEMG signal frame

is obtained. The overall noise signal may show a change since

the PLN frequency can vary ±2Hz and its amplitude is highly

dependent to the power of the nearest electronic components,

the placement of the sensor, the subject using the sensor and

the skin-electrode interaction [24], [32]. Hence, the estimated

noise should be updated with each received relaxation frame.

In the following subsections the update of the noise spectrum

estimation and subtraction of the estimated noise are described

respectively.



8

1) Update of the Noise Spectrum Estimation

In this part, we estimate the frequency spectrum of the

overall noise signal and update it along with any further

incoming noise frames. To do this, the received signal needs

to include only noise, which corresponds to the relaxation

frames. Since in IV-A, we introduce an adaptive method for

classifying contraction and relaxation frames, it would be

useful to consider only the frames that output dn = 0 from

the binary classifier in (9).

After receiving an inactive frame, the Discrete Fourier

Transform (DFT) of the window is taken. In order to lessen

the computation complexity, we only consider the first half of

the DFT transform due to the symmetry for real signals. The

calculated spectrum is updated using an exponential update

with parameter α. Let Pn be the estimated noise spectrum of

the nth frame and X̃n be the phase-shifted spectrum of the

received relaxation frame. Then, the calculation of the updated

spectrum, Pn+1 is given by

Pn+1 = (1− α)Pn + αX̃n. (10)

In the update method shown in (10), X̃n is used in order to

prevent any miscalculation due to the phase difference of the

incoming relaxation frame Xn. Since the phase values of Xn

and Pn may differ, we synchronize their phases such that

X̃n[k] = Xn[k]e
(−jkφn), (11)

where k is the frequency bins of the whole spectrum, and φn
is the phase difference between Xn and Pn. We can find the

phase difference φn from a reference frequency point, e.g., the

frequency index of the PLN, which is 50/60Hz depending on

the region. Thus, φn is calculated as

φn =
1

f
(ψ(Xn[f ])− ψ(Pn[f ])) ,

where f is the PLN frequency index and ψ(·) is the phase

function for a complex variable.

2) Subtraction of Estimated Noise

In this subsection, the estimated noise is converted to time-

domain and subtracted from the received frame whether the

frame involves contraction or relaxation signal. Before sub-

traction, the estimated noise spectrum is again phase-shifted in

accordance with the received frame similar to (11). Then, the

phase-synchronized version of the noise spectrum estimation

is converted to time-domain by taking its inverse DFT. Finally,

the time-domain estimation of the noise signal is subtracted

from the received sEMG frame, which creates the noise-free

sEMG signal window.

V. EXPERIMENTS

We have conducted three main experiments to test and

validate our sEMG data acquisition system performance. All

sEMG recordings are made from the biceps brachii, on the

line between the medial acromion and the fossa cubit at 1/3
from the fossa cubit [61]. In the experiments, sEMG data

is captured from 10 different subjects with varied gender,

age, weight and height properties as seen in Table III. The

subjects are split into two groups. The first group (involving

subjects S1 to S5) fixed their arm at a 90-degree position

and realized repetitive, approximately 1 second long, maximal

dynamic contractions with approximately 1 second relaxations

in between. The second group (involving subjects S6 to S10)

realized completely random contractions with independent

timing, contraction amount and arm movement. All sEMG

recordings lasted approximately 150 seconds. The reason for

applying varied contraction procedures, which are visualized

in Figure 5, is to create a medium for evaluating, validating

and testing proposed digital and analog applications of the

overall system in different scenarios.

Subject No Age Gender Height (cm) Weight (kg)

S1 20 Female 167 61

S2 24 Female 169 67

S3 26 Female 165 58

S4 24 Male 173 72

S5 25 Male 178 68

S6 28 Male 168 70

S7 24 Male 167 72

S8 25 Male 189 66

S9 24 Male 175 78

S10 24 Female 181 60

Table III: Information about gender, age, height and weight of

the subjects
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Figure 5: Plots of the selections of the sEMG signal stream of

S2 from the group 1 (top) and S9 from the group 2 (bottom)

In Section V-A, we compared the signal acquisition quality

of the proposed sEMG sensor to the commercially available

product Biometrics sx230-1000 [35]. In Section V-B, we

analyze the performance of the contraction detection algorithm

along with its error rates. Finally, in Section V-C, the effect

of the noise cancellation algorithm, i.e., its SNR gain, is

observed. All the experiments are realized in MatLab 2016b.
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A. Validation of the Sensor

In this part, the data acquisition quality of the proposed

sensor design in Section III is tested and compared to a

commercial, dry, active sEMG sensor Biometrics sx230-1000.

The characteristics of an sEMG signal can be analyzed through

time and frequency domain evaluations. Thus, we used SNR

(time-domain) and DFT plots (frequency-domain) as our com-

parison tools. DFT plots show the filtration characteristics and

frequency accumulation of the sEMG signal. On the other

hand, SNR demonstrates the quality of signal waveform as

opposed to the overall system noise interference. Since an

objective comparison of the two sensors requires the sEMG

recordings to be made under equal circumstances, we used

Group 1 along with the described contraction procedure.

In Table IV, it is clearly seen that both of the devices

capture approximately same amount of muscle signal and

noise, resulting in very close SNRs. However, our sensor

(Hercules) outperformed Biometrics with an extra 1dB SNR

gain.

Signal Power (dB) Noise Power (dB) SNR (dB)

Biometrics 44.4183 8.8483 35.5700

Hercules 43.8804 7.1813 36.6991

Table IV: Signal power, noise power and SNR comparisons

of Biometrics and Hercules.

Moreover, in order to validate the analog signal processing

quality (i.e., filtration), we compared the average DFT plots of

the data that is gathered from Group 1. In this part, the received

sEMG data for both devices, i.e., Biometrics and Hercules, are

classified as contraction and relaxation frames and the DFTs

of the classified frames are taken and averaged separately.

As shown in Figure 6, both sensors, during contractions,

exhibit more dense spectra in the 20 − 150Hz region, which

corresponds to the anticipated sEMG frequency accumulation.
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Figure 6: Average frequency Spectrum comparisons of con-

traction (top) and relaxation (bottom) frames of Biometrics

and Hercules.

Furthermore, the 20 − 500Hz band-pass filter impact can

be clearly seen from the average DFT plots. In the average

contraction DFT plot, the proposed sensor design, compared

to Biometrics, shows a more strict decline after 300Hz and

before 25Hz, which is one of the key factors resulting in a

lower noise power (on average 1.6dB) and a higher SNR (on

average 1.1dB).

B. Validation of the Contraction Detection Algorithm

In this section, the adaptive contraction detection algorithm

is tested via the random data recorded from Group 2, i.e.,

S6−S10. All the subjects realized 150 seconds long random

contractions as described in Section V. The recorded sEMG

signals are sent through the contraction detector, in which the

signal stream is split into frames of 255 and a decision is made

(i.e., contraction or relaxation). All the decisions are compared

with a true threshold, which is calculated sample by sample

by visual inspection. In Table V, the overall comparison of

adaptive threshold and true threshold is shown. If a relaxation

frame is received and the proposed algorithm decides that the

frame contains contraction, the system gives a false positive

error, which does not cause any critical problems. On the other

hand, a false negative, which happens when the algorithm

classifies a received contraction frame as relaxation, is the

error that is very critical and may lead to sEMG signals’

incomplete transmission since DAU sends only the contraction

frames in order to truly acquire the sEMG data.

False + False - Error Correct

Amount 23 3 26 2519

Percentage 0.9037 0.1179 1.0216 98.9784

Table V: False positive, false negative, total error and correct

decision amounts and percentages.

As seen in Table V, the false negative (false -) amount

is 3, which means only 3 contraction frames are classified

as relaxation among 2545 windows. Secondly, most of the

false positive errors are realized in the beginning of the

classification, where the adaptive thresholding was still in the

early learning stages.

In Figure 7, it is seen that only in the beginning, the adaptive

threshold misclassifies the received frames, which means that

most of the errors that are shown in Table V are due to the cali-

bration of the contraction detection algorithm. Additionally, in

order to demonstrate the sensitivity of the proposed algorithm,

very small contractions between 225th and 290th frames are

magnified and displayed in Figure 7. Figure 8 illustrates that

even very low contractions (approximately 100mVp−p) made

in a noisy platform (approximately 70mVp−p) are detected and

picked out successfully by our algorithm.

C. Validation of the Noise Cancellation Algorithm

In this part of the experiment, sEMG data from all the

subjects, i.e., Group 1 and 2, are evaluated since the noise can-

cellation algorithm does not require any specific contraction

procedure for validation. To begin with, after the application

of the noise cancellation algorithm, the average SNR gain
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Figure 7: Plots of contraction detection classifier, adaptive threshold and true threshold of subject S7 (above) and plot of

recorded sEMG signal (below)
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Figure 8: Part of the received sEMG signal before (bottom)

and after (top) the contraction detection algorithm.

of 4.583dB is obtained, which is mostly due to the 4.61dB

average decrease in the noise power. Also, the overall decrease

in the signal power is only 0.27dB, which suggests that the

valuable sEMG contraction data loss is extremely low.

In Figure 9, the average spectrum of the noise frames before

and after the noise cancellation are illustrated. It is seen that

the noise is successfully estimated since noise at the PLN

frequency (i.e., 50Hz) is decreased approximately 15dB and

the subbands are perfectly rejected. Also, the difference of the

output and the input of the noise cancellation algorithm (i.e.,

the second plot in Figure 9) gives the estimated spectrum of the

noise. Since it highly resembles the average noise spectrum,

it suggests that our estimation is successful.

In Figure 10, the average spectrum of the contraction frames

is displayed in order to show that our algorithm does not

disturb the valuable sEMG contraction signal.
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Figure 9: Average noise frequency spectrum of cleared and

raw sEMG signals(above) and the difference of those signals

in dB scale (below)

VI. CONCLUSION

In this paper, we proposed a successful implementation of a

dry, active, noise canceling, low cost and wearable 8-channel

sEMG data acquisition system along with two embedded

digital methods, which are the adaptive contraction detection

and the noise cancellation. We compared the performances of

our sEMG sensors with the commercially available product

Biometrics sx230-1000 in terms of SNR values and frequency

spectrum analysis. In our comparisons, we illustrated that our

low cost sensors showed high similarity in its signal waveform

quality with Biometrics. Hence, the data acquisition perfor-

mance of the Hercules sensor is validated since it demonstrated

similar frequency band accumulation, overall 1.1dB more SNR

and a more strict band-pass filtration (20 − 500Hz) than

Biometrics sx230-1000.

Moreover, the presented adaptive contraction detection al-
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Figure 10: Average contraction frequency spectrum of cleared

and raw sEMG signals(above) and the difference of those

signals in dB scale (below)

gorithm successfully decides if the received sEMG frame

involves contraction or relaxation. Such classifications would

make it possible for exclusive acquisition of sEMG data, which

consequently lessens the data transmission and the analysis

complexity for further sEMG signal evaluations such as mus-

cle fatigue tracking, muscle contraction rate and muscle power

development. Thus, transmitting only the contraction signals

creates an efficient tool for better sEMG signal processing.

We also demonstrated that our online adaptive power line

noise (PLN) cancellation algorithm, which estimates the spec-

trum of the noise signal and subtracts the estimation from

the received sEMG frames, successfully cancels the noise

components in the received sEMG signal.

Thus, we have proposed an sEMG data acquisition system,

which cancels PLN (−15dB on average at the PLN frequency)

without any critical disturbance to the sEMG signal (−0.5dB

on average at the PLN frequency), detects contraction with

98.9784% success rate, truly acquires sEMG data with high

quality and can be straightforwardly integrated to any wearable

device. Future work will focus on the design of a wearable

product (sportswear) that analyzes the elite athlete training

performance in real-time.
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