
Citation: Lozoya, C.; Díaz, J.M.;

Rodríguez-Esqueda, C.; Prieto-

Resendiz, C.; Aguilar-Gonzalez, A.

An Embedded Software

Development Framework for Internet

of Things Devices. Electronics 2022,

11, 4158. https://doi.org/10.3390/

electronics11244158

Academic Editors: Rashid Mehmood,

Aakash Ahmad, Mahdi Fahmideh,

Juan M. Corchado and Fernando De

la Prieta

Received: 1 November 2022

Accepted: 5 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Embedded Software Development Framework for Internet
of Things Devices
Camilo Lozoya 1,* , José Miguel Díaz 2 , César Rodríguez-Esqueda 2 , Claudia Prieto-Resendiz 2

and Alberto Aguilar-Gonzalez 1,*

1 Tecnologico de Monterrey, School of Engineering and Science, Av. H. Colegio Militar 4700,
Chihuahua 31300, Mexico

2 Tecnologico Nacional de Mexico, Av. Tecnologico 2909, Chihuahua 31310, Mexico
* Correspondence: camilo.lozoya@tec.mx (C.L.); alberto.aguilar@tec.mx (A.A.-G.);

Tel.: +52-614-439-5000 (C.L. & A.A.-G.)

Abstract: Internet of things (IoT) devices are mostly ubiquitous in this day and age, and it is hard
to imagine a life without them, especially in the productive sectors (industry, agriculture, and
automotive) and in our daily life activities (consumer electronics, home automation, and intelligent
buildings). The high demand for these devices has created significant competition to provide them at
the best price, at the right time, and with the best features. The trend in which these devices have
increased their product features has resulted in their embedded software being more complex, leading
to extended development and testing times. Consequently, as the types of advanced IoT products
keep diversifying, the field maintenance of all the different models deployed grows more complicated.
This paper proposes an embedded software development framework for IoT devices independent of
the microcontroller architecture, the compiler, and the development environment. This framework
allows having a common software baseline between different projects, which shortens the learning
curve, development time, and module validation while allowing code reuse for embedded software
professionals. A proof-of-concept evaluation is also presented to demonstrate the efficiency and
reliability of the obtained embedded software code for a simple but representative IoT application.

Keywords: internet of things; embedded software; code generator; development tools; software
framework; software engineering

1. Introduction

Internet of things (IoT) applications are rapidly expanding due to the growth in interest
and investments in the industrial, services, and consumer markets. According to a survey
by [1], two-thirds of software developer professionals indicate that their organizations are
currently working on the development and deployment of IoT solutions. These solutions
enable the interconnection of devices to provide efficiency and intelligence in different
contexts [2]. IoT devices are an essential part of our day-to-day lives; they are present in
different application areas such as manufacturing, logistics, agriculture, transportation,
cities, buildings, homes, and healthcare [3]. An IoT device comprises an embedded system
that conducts sensing, actuation, control, and communication tasks within a network
infrastructure, managing energy, timing, and space constraints [4]. Analysis, design,
implementation, and testing of embedded software for IoT devices have become more
complex, while development challenges differ among systems and sectors [5]. The increased
use of embedded applications has created new challenges for the software development
teams to fulfill user demands. The software complexity in this area has increased due to the
constant increment of software requirements, the heterogeneity of devices and applications,
the increasingly higher quality standards, and the demands for shorter delivery times.

According to a comprehensive survey of the embedded systems markets world-
wide [6], software professionals usually work in teams with an average of 15 to 20 engineers

Electronics 2022, 11, 4158. https://doi.org/10.3390/electronics11244158 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244158
https://doi.org/10.3390/electronics11244158
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0871-3449
https://orcid.org/0000-0002-5138-0686
https://orcid.org/0000-0002-7458-629X
https://orcid.org/0000-0001-9775-8413
https://orcid.org/0000-0003-3389-8577
https://doi.org/10.3390/electronics11244158
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244158?type=check_update&version=1


Electronics 2022, 11, 4158 2 of 20

sharing pieces of code and software modules. Further, 56% of developers are working
on an upgrade or improvement to an earlier or existing embedded project, while up to
81% of the projects are reusing developed in-house code. The survey also reveals that
one-third of the projects in the embedded domain must be completed in 6 months or less;
however, more than 60% of the projects are not delivered on time. Therefore, to meet these
challenges, software development tools must be in place within organizations to accelerate
the software life cycle while ensuring reliable and robust embedded software products for
IoT applications [7].

From the perspective of commercial products, most microprocessor and microcon-
troller vendors provide development tools to reduce the software life cycle and accelerate
the deployment of new products or upgrades to existing ones [8–12]. These tools are
conformed by proven drivers and code modules integrated into what is known as a devel-
opment framework with the specific purpose of simplifying the software implementation
on embedded devices by providing an abstraction to the hardware using intermediate soft-
ware elements. However, these frameworks are vendor-specific and only support a small
group of microcontroller or microprocessor families, as it is in the vendors’ best interest to
lock the client to their ecosystems. On the other hand, low-cost open-source platforms are
available to develop rapid prototypes [13–15], which simplifies the hardware design, but
their development tools [16–18] are usually hardware-specific, and software portability is
limited. Moreover, these platforms are rarely used for final product deployment.

Software development tools can significantly contribute toward reliable embedded
devices [19,20]. Specifically, automatic code generation software can produce skeletal source
codes, such as variable declarations, initializations, pre-defined constant values, functions,
and types definitions to assist the programmer [21]. Further, code generators preserve
similar code structure and coding guidelines in every generated file, facilitating teamwork
in a software development organization [22]. Moreover, due to the growing complexity of
embedded systems, the need for reusable software components during the development
process has become more evident. Specifically, peripheral configuration tools have been a
big concern since most development time is consumed in these tasks. In [23–26], software
platforms were presented that allow the designer to configure peripherals, generate code,
and build a project to implement specific applications. However, these configuration tools
only support a small group of specific microcontrollers, which cannot be extended to other
families. Recently, the work developed by [27], proposed a model-based code generator
for control systems on an embedded platform to provide software engineers with a solid
framework to set up complex control systems. Although the proposed framework generates
robust and reliable code based on the specified requirements, the software engineering
improvements were not explicitly evaluated.

The software development research community has extensively analyzed and evalu-
ated model-based design with code generator frameworks to reduce development time,
improve software quality and produce portable code across different hardware plat-
forms [28,29]. In [30], a model-based solution is implemented to produce GraphQL code for
complex cloud computing applications. In [31], RTL (Register Transfer Level) code is auto-
matically generated from UML (Unified Modeling Language) diagrams. Finally, in [32], a
model-based testing approach is proposed for user interface web applications. These works
focus on providing effective development and testing tools for complex software system
solutions; however, software development support for specific microcontroller-based IoT
devices is not explicitly addressed since C Language is not on their scope, and it is currently
the dominant programming language for embedded devices [6].

This paper presents the design and implementation of a platform-independent devel-
opment framework that software programmers can use to create embedded projects for IoT
devices. Furthermore, a simple but representative IoT application running in two different
microcontroller units from different vendors was implemented to validate the proposed
framework. This proof-of-concept was conducted on a 32-bit high-performance NXP mi-
crocontroller [33] and an 8-bit low-end Microchip microcontroller [34]. The resulting codes



Electronics 2022, 11, 4158 3 of 20

were analyzed for each case regarding detected vulnerabilities, code size, execution time,
software quality, and development time.

The novel contribution of the proposed framework is to provide a development tool for
software professionals in microcontroller-based IoT devices, with similar features offered by
the commercial proprietary tools but with the advantage of supporting multiple hardware
platforms. The scope of this work considers C Language as the development instrument to
implement embedded devices within the IoT application domain. It evaluates the potential
benefits of using a single framework for any development project instead of using different
specific tools for every microcontroller platform. The research methodology approach for
this work started with the analysis of commercial and open-source development tools, then
proposed a multiplatform solution, and finally conducted an experimental validation con-
sidering development time and software quality as the main evaluated variables. Therefore,
the work presented in this paper provides the following specific contributions:

• Conducts a comparative analysis of software development tools features (multiplat-
form support, automatic peripheral configuration, integrated framework, etc.), based
on the functional elements of typical IoT devices, to improve software life cycle.

• Proposes an embedded development framework with a code generator that effectively
configures peripherals typically used in IoT devices and automatically produces
application code that can be shared between microcontrollers without needing to
perform any modifications.

• Validates the efficiency and reliability of the obtained embedded software code com-
pared to code produced without the framework and demonstrates that using the
development framework and code generator improves software development time
and reduces compiler errors and warnings.

The proposed framework and code generator currently support the following micro-
controller platforms:

1. MIMXRT1064 (32 bits) from NXP.
2. ATMEGA4809 (8 bits) from Atmel.
3. MSP430FR6989 (16 bits) from Texas Instrument.
4. STM32F334R8 (32 bits) from STMicroelectronics.

More processor units can be added to the framework by building the specific wrappers
and static elements according to the guidelines provided by [35].

2. Materials and Methods

An embedded framework is a set of tools used by software developers to build
programs for specific applications [36]. The proposed embedded framework aims to
assist the developers in configuring and interacting with the microcontrollers’ peripherals
seamlessly and independently of the hardware specifics. Embedded systems represent
the core of the IoT devices that requires the capability to sense, actuate, and communicate
within a network infrastructure. Although IoT devices target different application domains,
they share common design challenges to build optimal and cost-effective heterogeneous
sensors and actuator networks [37].

Typically, embedded software professionals deal with multiple microcontroller plat-
forms to deliver cost-effective solutions for final product deployment. Therefore, they
spend a relevant amount of time analyzing hardware specifications and configuring device
peripherals; also, application software reusability across platforms is limited by hardware
differences. This section presents a comparative analysis of development tools based on the
common requirements for IoT solutions, then the proposed framework and code generator
design and implementation details are presented.

2.1. Internet of Things Design and Development Tools

Broadly speaking, an IoT system architecture is composed of three layers: the percep-
tion layer, the network layer, and the application layer [38]. The perception or sensing layer



Electronics 2022, 11, 4158 4 of 20

is composed of heterogeneous smart and interconnected devices that interact with physical
objects to measure, collect, and process their state information while transmitting data into
the IoT network [39]. Different communication technologies in the network layer, such as
Bluetooth, Zigbee, Wifi, LoRa, LTE, and 5G, are used to transfer data from the devices to a
cloud server for further analysis and decision-making that takes place in the application
layer [40].

An IoT device comprises a microcontroller, sensors, actuators, a communication
transceiver, and a power unit, as depicted in Figure 1. To implement the interface with the
sensor, the microcontroller requires the use of an analog-to-digital converter unit (ADC),
while the interface with the actuator requires a digital-to-analog unit (DAC), which may
include the use of on/off or pulse width modulated (PWM) signals. On the other hand, the
interface with the transceiver is typically implemented through serial communication using
protocols such as UART (universal asynchronous receiver transmitter), SPI (serial peripheral
interface), and I2C (inter-integrated circuit), among others. Examples of implementations
of IoT devices for different applications that include these functional elements can be found
in [41–47].

Figure 1. Basic functional elements of an IoT device.

IoT devices typically operate with energy, memory, and computational constraints;
therefore, designers must select the adequate microcontroller according to the specific needs
of the applications to implement cost-effective solutions. For example, high-performance
microcontrollers may be too expensive for basic IoT devices, while low-end microcon-
trollers may not have enough computational power to support more complex IoT tasks.
Additionally, the software developer must consider memory management and energy
consumption when implementing the algorithms for IoT devices.

Based on these previous development requirements, Table 1 summarizes the compar-
ative analysis of different software development frameworks conducted to evaluate the
following features:

• Hardware platforms: the support of different microcontroller families from differ-
ent vendors in a single framework assists the developer in focusing more on the
application solution rather than on the hardware specifics.

• Peripheral configuration: automatic peripherals configuration simplifies software
development and reduces development time.

• Integrated framework: code portability reduces maintenance and promotes the reuse
of application code.

• Software solution: software solutions are heterogeneous and may be implemented
using either embedded operating systems (OS) or the bare-metal (BM) direct cod-
ing approach.

• Targeted applications: the selected development tools provide IoT solutions through
embedded devices. However, some tools focus on rapid prototypes while others focus
on final user products.



Electronics 2022, 11, 4158 5 of 20

Table 1. Comparative analysis of features for the different evaluated software development tools
(Fully supported: X, Limited support: ◦ , Not supported: × ).

Development
Tool

Multiple
Platforms

Peripheral
Configuration

Integrated
Framework

Software Solution Targeted
ApplicationsOS BM

Proposed
framework X X X X X

Embedded
and IoT

Commercial
tools [8–12] × X ◦ X X

Embedded
and IoT

Open-source
tools [16–18] ◦ X ◦ ◦ ◦ IoT prototypes

SoEasy
framework [25] X X X ◦ ◦ IoT prototypes

EBGES
framework [26] X × X X X

Embedded
and IoT

Firmware
generator [27] X × X X X

Data
acquisition

Commercial development tools are vendor-specific to promote their devices, while
open-source tools target the development of prototypes, usually for non-professional
software developers. Similar approaches found in the literature focus on solving specific
problems for IoT applications. The proposed framework provides a platform-independent
solution not addressed by commercial tools.

2.2. Software Development Framework Architecture

The proposed software development framework has been designed to allow the
migration of an IoT application code into any microcontroller regardless of its family,
architecture, and vendor. This allows faster code development, promotes code reusabil-
ity, and encourages developers to select the adequate microcontroller according to the
application requirements.

The framework architecture has been divided into a static element, a dynamic element,
and a set of wrappers. Figure 2 shows the architecture of a typical embedded application
that uses the framework, which contains the application code, an optional operating system,
the framework, and vendor drivers. The architecture allows either the use of an embedded
operating system-based implementation or the bare-metal approach.

The application code includes the software modules that do not directly interface with
the hardware, but they implement functions and sequential logic required for the system to
behave according to the device requirements. Even though this element is represented as a
single module, it can contain several modules, each in charge of specific functionality of
the IoT device, e.g., network communication, control algorithm, and data acquisition.

The driver element is composed of different code files, which the microcontroller
vendors usually provide. These files contain functions, definitions, and data types that
can be used to configure and use the different elements in the device, such as general
purpose input/output pins and clock sources, among others. The drivers are specific for
each microcontroller, and there might be huge differences among them, even if they come
from the same vendor.



Electronics 2022, 11, 4158 6 of 20

Figure 2. Architecture of an embedded application using the framework as a software development tool.

The three elements that compose the framework are: static, dynamic, and vendor
wrappers. The static element’s primary function is to abstract the different operations that
can be performed with the microcontroller and its peripherals. The functions defined within
this element are generic in order to be able to handle the peripherals without knowing any
specific information about the microcontroller being used. This element acts as a bridge
between the application module and the other framework elements, and since it contains
generic functions, it allows the application code that uses the framework to be used in any
microcontroller without requiring any modification. Each peripheral in the microcontroller
requires a set of files for the static element (peripheral.h and peripheral.c files), and
every microcontroller supported by the framework can reuse this.

The dynamic element contains the files produced by the code generator, which contain
the description of how each peripheral used by the application should be configured. The
static element consumes these files in order to perform this configuration. The files from this
element are application-specific and, therefore, must be one set of files for each peripheral
used (peripheral_cfg.c and peripheral_cfg.h files).

The wrappers act as translators between the functions from the static element and the
functions contained within the vendor drivers. These files contain generic labels connected
with data types and definitions from the vendor drivers. The wrappers also contain
functions from the static element that make direct calls to the code contained within the
drivers to interact with the peripherals. These labels and functions allow portability in
the application module between the different supported microcontrollers because they are
defined in the wrappers of every microcontroller. The application module needs to call
the functions from the static element using these labels, and the framework will translate
and perform the desired operation in the microcontroller. Since the wrappers depend
on the microcontroller characteristics, a set of these files (peripheral_wrapper.c and
peripheral_wrapper.h files) must be created for each peripheral contained in each
microcontroller supported by the framework.

2.3. Supported Peripherals

The peripherals that are currently supported by the framework are the general pur-
pose input/outputs (GPIOs), the analog-to-digital converter (ADC), and the universal
asynchronous receiver-transmitter (UART). These represent the essential elements for an
IoT device.

The GPIO framework element is formed by the files gpio.c and gpio.h for the static
element, gpio_cfg.c and gpio_cfg.h for the dynamic element, and gpio_wrapper.c



Electronics 2022, 11, 4158 7 of 20

and gpio_wrapper.h for the wrappers. This module allows the user to configure the
following fields on any GPIO contained in a microcontroller: mode (input, output, or
used by a microcontroller peripheral), pull resistor (pull-up, pull-down, or none), speed (if
supported), output type (open drain or push-pull) and the alternate mode, in the case a
peripheral is using the GPIO as another function such as UART or ADC. The framework
also allows the user to read and write either to individual pins or the complete port in the
microcontroller. The currently supported GPIO functions are shown in Figure 3.

Figure 3. General Purpose Input/Outputs functions diagram.

The ADC framework module is formed by the files adc.c and adc.h for the static ele-
ment, files adc_cfg.c and adc_cfg.h for the dynamic element, and files adc_wrapper.c
and adc_wrapper.h for the wrappers. This module allows the user to configure the fol-
lowing fields on any ADC contained in the microcontroller: the clock source, the clock
pre-scaler, conversion channel, resolution in bits, number of samples, voltage reference, and
the justification (right or left) to store the result in a register. The framework also allows
the user to enable or disable the ADC, start a conversion, check the conversion status, and
get the conversion result for any ADC in the microcontroller. The supported functions are
illustrated in Figure 4.

The UART framework module is formed by the files uart.c and uart.h for the static
element, uart_cfg.c and uart_cfg.h for the dynamic element, and uart_wrapper.c
and uart_wrapper.h for the wrappers. This module allows the user to configure the
following fields on any UART contained within the microcontroller: the clock source, the
clock pre-scaler, the baud rate, the number of stop bits, the number of data bits, and the
parity (even, odd, or no parity). The framework also allows the user to enable or disable
the UART and send or receive data through the polling method. The UART functions are
shown in Figure 5.



Electronics 2022, 11, 4158 8 of 20

Figure 4. Analog-to-Digital Converter functions diagram.

Figure 5. Universal Asynchronous Receiver-Transmitter functions diagram.

2.4. Code Generator Implementation

The code generator consists of a desktop application that allows the user to select
the project’s microcontroller, configure peripherals, create the dynamics elements, and
integrate them into the framework. Figure 6 shows the software modules that implement
the code generator.



Electronics 2022, 11, 4158 9 of 20

Figure 6. Implementation of the code generator that provides the dynamic elements to the framework.

Each microcontroller model supported by the framework requires an XML (eXtensible
Markup Language) file with its hardware specifications. This feature file contains the
device’s characteristics, such as manufacturer and model, supported peripherals, and pins’
capabilities. Each pin in the device contains its name, integrated circuit, port, and pin
number in the port. It can also contain any alternate function, such as analog-to-digital
converters or serial communication. This file is created once and can be used anytime
the specific microcontroller is required to develop a solution. First, the XML parser reads
the features file and loads the information in the peripherals configuration module. Then,
through a user interface, the developer visually configures the peripherals according to
the project requirements and stores the selection in the project configuration XML file for
further modifications, if required. Finally, the code generator module selects configuration
and produces code files based on template files. The resulting source code (.c) and headers
(.h) files are integrated into the framework as the dynamic element.

2.5. Code Generator User Interface

The developer configures the project’s settings using the code generator’s user inter-
face. Figure 7 shows the application’s main screen allowing the user to open an existing
project file and see the project’s properties. This allows the user to get configuration files
for a microcontroller without needing to code for the specific hardware capabilities and
limitations and create the dynamic elements of the framework.

Figure 7. Code generator’s user interface main screen.

Figure 8 shows the configuration window for the GPIOs. This window displays all
pins set as gpio in the microcontroller features file divided by port. When the port is



Electronics 2022, 11, 4158 10 of 20

selected, all its pins become available for configuration; the selected checkbox indicates if
any code will be generated for that pin. Supported modes are input, output, and alternate.

Figure 8. General Purpose Input/Outputs configuration screen.

Figure 9 shows the configuration window for the ADC. This window displays the
configuration options separated in instances of ADCs. When the ADC is selected, all its
settings become available for configuration. Additionally, each channel must be selected to
indicate what code will be generated.

Figure 9. Analog-to-Digital Converter configuration screen.



Electronics 2022, 11, 4158 11 of 20

Figure 10 shows the configuration window for the UART. This window displays the
configuration options separated into instances of UARTs. When the UART is selected, all
its settings become available for configuration. Moreover, each channel must be selected to
indicate what code will be generated.

Figure 10. Universal Asynchronous Receiver-Transmitter configuration screen.

Finally, the code generator creates the following configuration files that conform the
framework’s dynamic elements through the following four steps:

1. Elements generation: creates structure elements as macro definitions for each peripheral
selected by the user and stores them in the module_cfg.c file.

2. Elements definition: creates a header file module_cfg.h, where the generator matches
the data types and values used by the static element to each pin in the peripheral.

3. Common definition: creates another header file frameworkCommon.h, containing
every definition needed by all the framework files to build the project correctly.

4. Common file generation: creates a header file frameworkCommon.h with every periph-
eral header file reference: gpio.h, adc.h, and uart.h.

Once these files have been created, they are automatically incorporated into the
framework so the developer can codify the logic that implements the functionality required
by the IoT device.

3. Results

Two different microcontrollers were used to validate the framework and the code
generator, as specified in Table 2. They were selected based on their vendor, family, and
architecture to validate that the proposed development tool worked correctly regardless
of these parameters. The developed code, on both microcontrollers, from the framework
was compared in terms of binary size, configuration execution time, and stack memory
size, with the case where the code was implemented directly by the developer with no
framework. Then, a group of professional embedded developers was asked to implement
a representative IoT application for both microcontrollers, using first the framework and
later the same application using just the vendor drivers.



Electronics 2022, 11, 4158 12 of 20

Table 2. Microcontroller specifications supported by the software development framework.

Parameter MIMXRT1064 ATMEGA4809

Vendor NXP Microchip

Family ARM Cortex M7 AVR Series 0

Bit Number 32 8

Maximum Frequency 600 MHz 20 MHz

Internal Memory 4 MB 48 KB

UART Ports 8 4

I2C Ports 4 1

ADC Number 2 1

3.1. Simple IoT Application

A small but representative application was developed using the code generator and
the framework for both microcontrollers. The application represents a simple IoT device
that requires the use of the three currently supported peripherals: a UART to communicate
with a network transceiver, an ADC to take a measurement from a sensor, and a GPIO
to activate an actuator element. The application code implements the sequence of events
described by the state machine from Figure 11.

Figure 11. Simple IoT application state machine.

Each state conducts the following tasks:

• Init—The microcontroller is initialized, and the peripherals are configured. After this
is completed, a transition is made to the “Wait” state.

• Wait—In this state, a message is received from the UART interface. If the message is
valid, a transition is made to the “Sense” state.



Electronics 2022, 11, 4158 13 of 20

• Sense—A measurement from the sensor is performed, and the physical value is calcu-
lated from the ADC read.

• Communicate—The obtained value from measurement is transmitted through UART
to the network, and then, a transition is performed to the “Actuate” state.

• Actuate—In this state, a digital output is updated depending on the measured value
obtained from the sensor. The output is activated if the value exceeds a high threshold.
If the value is less than a lower threshold, the output is deactivated. After this is
performed, a transition is made to the “Wait” state.

The code of the application was shared between both microcontrollers, and once
they were programmed with the final application, they both worked as expected. These
results validate that the framework allows application code compatibility between micro-
controllers, regardless of their vendor or architecture.

3.2. Static Code Analysis

Static code analysis allows code examination without the need to run the program
and helps to find vulnerabilities and errors in the code. The projects developed for both
microcontrollers to create the test application were analyzed using SonarQube, which is an
automatic tool for static code analysis [48]. This tool reports bugs, vulnerabilities, and code
smells. Bugs are errors in the code that should be fixed immediately, vulnerabilities are
points in the code that might be vulnerable to attacks, and code smells are issues that might
make the code difficult to be maintained by other developers, but they do not represent
a major problem. As observed in Figure 12, both projects got the highest grade, “A”, for
bugs, vulnerabilities, and code smells. Although some code smells were detected, they are
not critical enough to present maintainability issues.

Figure 12. Static code analysis results using SonarQube for the 8-bit Microchip microcontroller
(ATMEGA4809) and the 32-bit NXP microcontroller (MIMXRT1064).

3.3. Code Evaluation

To verify how the use of framework may impact the size of the binary file generated
when a program is compiled, the projects developed were compiled with and without size
optimization to obtain their corresponding binaries. As a result, the size of the binaries for
both microcontrollers can be observed in Figure 13.



Electronics 2022, 11, 4158 14 of 20

Figure 13. Binary size comparison for the 32-bit NXP microcontroller (MIMXRT1064) and for the
8-bit Microchip microcontroller (ATMEGA4809) considering four evaluated cases.

As can be observed, the use of the framework increases the size of the obtained binary
size. For the high-performance NXP microcontroller, the increment is not very significant,
and it should not represent any problem for the application. However, for the low-end
Microchip microcontroller, the framework practically doubles the total binary size, which
may be a problem if the application is running under very tight space constraint issues. In
any case, the compiler size optimization option benefits the obtained code even when the
framework is used.

Another relevant parameter that was evaluated is the running time spent by the
program in the peripheral configuration during the initialization state. In this state, the
UART, the ADC, and the GPIO are configured according to the device specifications, and
the total running time results for both microcontrollers are shown in Figure 14. Notice that
the use or not of the compiler’s speed optimization option is included in the evaluation.

Figure 14. Peripheral configuration running time comparison for the 32-bit NXP microcontroller
(MIMXRT1064) and for the 8-bit Microchip microcontroller (ATMEGA4809) considering the four
evaluated cases.



Electronics 2022, 11, 4158 15 of 20

Since the framework uses a code generator to configure the peripheral automatically,
it is expected that the produced code may increase the execution time during initialization
since every peripheral register is updated even if it is not required since the default values
are used. However, only in the low-end Microchip microcontroller is the increment in
running time considerable and may impact the application performance. On the other
hand, for the high-performance NXP microcontroller, the increment is minimum.

Finally, the last evaluated parameter is the dynamic use of memory due to the maxi-
mum stack size during running time. The stack analysis was conducted for each microcon-
troller to evaluate the risk of stack overflow running-time error; the results can be observed
in Figure 15.

Figure 15. Stack usage comparison for the 32-bit NXP microcontroller (MIMXRT1064) and for the
8-bit Microchip microcontroller (ATMEGA4809) considering the two evaluated cases.

It was detected that slightly more stack is consumed when the framework is used,
but this represents only a few bytes (9 for the ATMEGA4809 and 28 for the MIMXRT1064).
Therefore, the framework does not have a noticeable negative impact on any microcon-
troller’s stack and does not induce the risk of generating a major running-time mem-
ory problem.

3.4. Development Process Evaluation

A group of professional software developers was asked to implement the application
described previously to evaluate the development process. The software developers have
an average of four years of experience developing embedded IoT solutions for the industry;
however, none of them had previous experience with these two specific microcontrollers.
Each developer was given a manual explaining how to use the framework and code
generator and was asked to log the time it took them to complete each test case, along with
the number of compiler errors and warnings obtained in each. The test cases include both
microcontrollers with and without the use of the framework. Figures 16–18 summarize the
results in terms of development time in hours, the total number of compiler errors, and the
total number of compiler warnings, respectively.

The obtained results are very favorable for the framework since the number of errors,
warnings, and development time tends to be lower when this tool is used. Specifically, the
development time is reduced by practically 50% when the framework is used, which means
that the proposed framework effectively improves the software life cycle by automatically
generating a software baseline for the application.



Electronics 2022, 11, 4158 16 of 20

Figure 16. Summary of spent time to finish the application by the developers. Average of 4.82 h
without the framework and 2.44 h with the framework.

Figure 17. Summary of compiler errors during development. Average of 17.5 errors without the
framework and 16.6 errors with the framework.

Figure 18. Summary of compiler warnings during development. Average of 35.3 warnings without
the framework and 17.0 warnings with the framework.

4. Discussion

The proposed embedded software development framework has been designed to
support multiple microcontrollers from different vendors with different architectures and
different computing performances to allow faster code development while producing
reusable code. The context where the framework performance was evaluated considers
the typical basic requirements for an IoT device application using two different types of



Electronics 2022, 11, 4158 17 of 20

microcontrollers: a 32-bit high-performance NXP microcontroller and an 8-bit low-end
Microchip microcontroller.

According to the results, the application code with the framework can be directly
shared between the two microcontrollers, even though they are from different vendors and
with very different computing characteristics. This means that the framework provides an
adequate environment where the same code can be reused for different targeted microcon-
trollers, and the developer can choose the more suitable destination according to the specific
IoT application needs. Furthermore, cost-effectiveness is a relevant attribute of an IoT de-
vice; therefore, finding the optimal microcontroller for an application is a time-consuming
task that developers must conduct, and the framework alleviates these efforts.

The framework’s significant contribution to the software life cycle is to reduce the
time spent to finish an application by the developer. The obtained results indicate that
for a simple IoT application, the developer time can be reduced by up to 50%. For more
complex applications, the impact may be less, but the produced software is robust and
reliable, allowing faster code development.

The framework’s major opportunity area can probably be found in running time
optimization. In general, the produced code by the framework is more extensive (occupying
more program memory), slower (specifically during the peripheral initialization), and uses
more run-time memory (specifically in the stack area). However, these increments are
practically imperceptible for the high-performance NXP microcontroller. On the other hand,
for the low-end Microchip microcontroller, the impact may look large, but considering
its characteristics, the increment can be easily supported without affecting the overall
device performance. Anyway, this is an area where the framework design can be improved.
Ultimately, we may state that the framework’s benefits surpass its drawbacks.

This proof-of-concept evaluation considered the implementation of a simple IoT
application. However, real-life IoT applications are more complex and may require more
application development hours to cover any possible use case scenario. As a result, it is
expected that the impact on the development time, compiler errors, and warnings would
be less significant. However, the fixed amount of development time used during the
peripheral configuration would be saved. More importantly, if a previously developed
embedded solution requires the change of another microcontroller due to cost reduction or a
deprecated device, then the code portability feature may provide a straightforward solution.

5. Conclusions

This paper presented a software tool consisting of a development framework with a
code generator to assist the developer during the software implementation for embedded
IoT devices. The code generator allows the user to set the different peripherals in the micro-
controller and generate files containing the corresponding configuration using a graphical
user interface. The framework uses these files to configure the microcontroller properly
and provides the user with standardized functions to interact with the microcontroller and
its peripherals regardless of its architecture.

A simple but representative IoT application was developed for two microcontrollers
with different architectures and vendors to validate the proposed tool. The obtained
code from the application module was successfully shared between the microcontrollers
without requiring any modifications. A performance evaluation shows that the proposed
development tool does not significantly affect the size of the binary code, the configuration
execution time, and the memory used by the microcontrollers. Further, using the framework
and the code generator effectively accelerates the software life cycle.

The following steps to enhance the proposed software development tool include
supporting more microcontrollers and developing new modules to support additional
peripherals, such as interrupts and clock management, which directly affect the power
management of an IoT device.



Electronics 2022, 11, 4158 18 of 20

Author Contributions: Conceptualization, C.L. and C.P.-R.; methodology, C.L., J.M.D. and C.R.-E.;
software, J.M.D. and C.R.-E.; validation, A.A.-G., C.L. and C.P.-R.; formal analysis, C.P.-R.; investiga-
tion, C.L. and A.A.-G.; resources, C.P.-R.; writing—original draft preparation, C.L., A.A.-G., J.M.D.
and C.R.-E.; writing—review and editing, C.L., J.M.D. and C.R.-E.; supervision, C.L. and C.P.-R. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Instituto Tecnologico de Chihuahua and Tecno-
logico de Monterrey for their support in the development of this project.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
GPIO General Purpose Input/Outputs
I2C Inter-Integrated Circuit
IoT Internet of Things
PWM Pulse Width Modulator
RTL Register Transfer Level
SPI Serial Peripheral Interface
UART Universal Asynchronous Receiver-Transmitter
UML Unified Modeling Language
XML eXtensible Markup Language

References
1. Eclipse. IoT Developer Survey 2019 Results. Technical Report, Eclipse Foundation, 2019. Available online: https://iot.eclipse.

org/community/resources/iot-surveys/ (accessed on 10 July 2021).
2. Xu, H.; Yu, W.; Griffith, D.; Golmie, N. A Survey on Industrial Internet of Things: A Cyber-Physical Systems Perspective. IEEE

Access 2018, 6, 78238–78259. [CrossRef] [PubMed]
3. Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How Can Heterogeneous Internet of Things Build Our Future: A Survey.

IEEE Commun. Surv. Tutorials 2018, 20, 2011–2027. [CrossRef]
4. Ray, P. A survey on Internet of Things architectures. J. King Saud Univ. Comput. Inf. Sci. 2018, 30, 291–319. [CrossRef]
5. Akdur, D.; Garousi, V.; Demirörs, O. A survey on modeling and model-driven engineering practices in the embedded software

industry. J. Syst. Archit. 2018, 91, 62–82. [CrossRef]
6. Evanczuk, S. 2019 Embedded Markets Study Reflects Emerging Technologies, Continued C/C++ Dominance; Technical Report; Aspen-

core, 2019. Available online: https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-
continued-c-c-dominance/ (accessed on 5 October 2021).

7. Devine, J.; Finney, J.; de Halleux, P.; Moskal, M.; Ball, T.; Hodges, S. MakeCode and CODAL: Intuitive and efficient embedded
systems programming for education. J. Syst. Archit. 2019, 98, 468–483. [CrossRef]

8. Microchip Technology. Atmel Start. 2020. Available online: https://start.atmel.com/ (accessed on 21 October 2021).
9. Renesas Electronic Corporation. AP4 Applilet. 2021. Available online: https://www.renesas.com/us/en/software-tool/ap4

-applilet (accessed on 21 October 2021).
10. NXP Semiconductors. MCUXpresso Secure Provisioning Tool. 2021. Available online: https://www.nxp.com/design/software/

development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-
PROVISIONING (accessed on 26 October 2021).

11. STMicroelectronics. STM32Cube Initialization Code Generator. 2021. Available online: https://www.st.com/en/development-
tools/stm32cubemx.html (accessed on 26 October 2021).

12. Texas Instrument. SYSCONFIG System Configuration Tool. 2022. Available online: https://www.ti.com/tool/SYSCONFIG
(accessed on 22 October 2022).

13. Arduino. Arduino: Open Source Electronic Prototyping Platform. 2022. Available online: https://www.arduino.cc/ (accessed on
16 September 2022).

https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/
http://doi.org/10.1109/ACCESS.2018.2884906
http://www.ncbi.nlm.nih.gov/pubmed/35531371
http://dx.doi.org/10.1109/COMST.2018.2803740
http://dx.doi.org/10.1016/j.jksuci.2016.10.003
http://dx.doi.org/10.1016/j.sysarc.2018.09.007
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
https://www.embedded.com/2019-embedded-markets-study-reflects-emerging-technologies-continued-c-c-dominance/
http://dx.doi.org/10.1016/j.sysarc.2019.05.005
https://start.atmel.com/
https://www.renesas.com/us/en/software-tool/ap4-applilet
https://www.renesas.com/us/en/software-tool/ap4-applilet
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.nxp.com/design/software/development-software/mcuxpresso-software-and-tools-/mcuxpresso-secure-provisioning-tool:MCUXPRESSO-SECURE-PROVISIONING
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.ti.com/tool/SYSCONFIG
https://www.arduino.cc/


Electronics 2022, 11, 4158 19 of 20

14. Espressif Systems. ESP32 Wi-Fi and Bluetooth MCU. 2022. Available online: https://www.espressif.com/en/products/socs/
esp32 (accessed on 16 September 2022).

15. Raspberry Pi Foundation. Teach, Learn, and make with the Raspberry Pi Foundation. 2022. Available online: https://www.
raspberrypi.org/ (accessed on 16 September 2022).

16. Cayene. The Raspberry Pi Internet of Things Toolkit. 2015. Available online: http://webiopi.trouch.com/ (accessed on 10
August 2022).

17. Blynk Inc. Blynk IoT Platform. 2022. Available online: https://blynk.io/ (accessed on 10 August 2022).
18. OpenJS Foundation. Node-RED Low-Code Programming for Event-Driven Applications. 2022. Available online: https:

//nodered.org/ (accessed on 10 August 2022).
19. Hsiung, P.A.; Lin, S.W.; Tseng, C.H.; Lee, T.Y.; Fu, J.M.; See, W.B. VERTAF: An application framework for the design and

verification of embedded real-time software. IEEE Trans. Softw. Eng. 2004, 30, 656–674. [CrossRef]
20. Rehman, S.; Shafique, M.; Kriebel, F.; Henkel, J. Reliable software for unreliable hardware: Embedded code generation aiming at

reliability. In Proceedings of the 2011 Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), Taipei, Taiwan, 9–14 October 2011; pp. 237–246. [CrossRef]

21. Viswanathan, S.E.; Samuel, P. Automatic code generation using unified modeling language activity and sequence models. IET
Softw. 2016, 10, 164–172. [CrossRef]

22. Shinde, K.; Sun, Y. Template-Based Code Generation Framework for Data-Driven Software Development. In Proceedings of the
2016 4th Intl Conf on Applied Computing and Information Technology/3rd Intl Conf on Computational Science/Intelligence and Applied
Informatics/1st Intl Conf on Big Data, Cloud Computing, Data Science Engineering (ACIT-CSII-BCD); IEEE: Piscatvey, NJ, USA, 2016;
pp. 55–60. [CrossRef]

23. Jose, F.; Pillai, A.S. Code configuration tool for real time systems. In Proceedings of the 2017 International Conference
on Computation of Power, Energy Information and Commuincation (ICCPEIC), Melmaruvathur, India, 22–23 March 2017;
pp. 342–346. [CrossRef]

24. Hussein, M.; Nouacer, R.; Radermacher, A.; Puccetti, A.; Gaston, C.; Rapin, N. An end-to-end framework for safe software
development. Microprocess. Microsystems 2018, 62, 41–49. [CrossRef]

25. Lee, J.; Park, G.i.; Shin, J.h.; Lee, J.h.; Sreenan, C.J.; Yoo, S.e. SoEasy: A Software Framework for Easy Hardware Control
Programming for Diverse IoT Platforms. Sensors 2018, 18, 2162. [CrossRef]

26. Sasongko, A. Hardware/Software Co-design Flow Using Automatic Generation of Embedded System Framework Based on
Interacting FSM Model. Int. J. Electr. Eng. Informatics 2020, 12, 859–877. [CrossRef]

27. Baeyens, R.; Denil, J.; Steckel, J.; Daems, W. Model-Based Firmware Generation for Acquisition Systems Using Heterogeneous
Hardware. Automation 2022, 3, 471–485. [CrossRef]

28. Kelly, S.; Tolvanen, J. Domain-Specific Modeling: Enable Full Code Generation; IEEE Computer Society Publications: Los Alamitos,
CA, USA, 2008.

29. Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice; Morgan and Claypool: San Rafael, CA,
USA, 2012.

30. Samea, F.; Azam, F.; Rashid, M.; Anwar, M.W.; Haider Butt, W.; Muzaffar, A.W. A model-driven framework for data-driven
applications in serverless cloud computing. PLoS ONE 2020, 15, e0237317. [CrossRef] [PubMed]

31. Anwar, M.W.; Rashid, M.; Azam, F.; Naeem, A.; Kashif, M.; Butt, W.H. A Unified Model-Based Framework for the Simplified
Execution of Static and Dynamic Assertion-Based Verification. IEEE Access 2020, 8, 104407–104431. [CrossRef]

32. Yousaf, N.; Azam, F.; Butt, W.H.; Anwar, M.W.; Rashid, M. Automated Model-Based Test Case Generation for Web User Interfaces
(WUI) From Interaction Flow Modeling Language (IFML) Models. IEEE Access 2019, 7, 67331–67354. [CrossRef]

33. NXP Semiconductors. i.MX RT1064. 2022. Available online: https://www.nxp.com/products/processors-and-microcontrollers/
arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1064-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1064 (accessed on
16 September 2022).

34. Microchip Technology. ATmega4809. 2022. Available online: https://www.microchip.com/en-us/product/ATMEGA4809
(accessed on 16 September 2022).

35. Rodriguez, C.; Diaz, M. Framework for Embedded Systems. 2022. Available online: https://github.com/cesaresq209
/Framework-for-Embedded-Systems-with-Residential-Applications (accessed on 1 June 2022).

36. Noergaard, T. Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers; Elsevier: Amsterdam, The
Netherlands, 2012.

37. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The Sensable City: A Survey on the Deployment and Management for
Smart City Monitoring. IEEE Commun. Surv. Tutorials 2019, 21, 1533–1560. [CrossRef]

38. Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart
Building: A Review. IEEE Sens. J. 2019, 19, 9036–9046. [CrossRef]

39. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142. [CrossRef]

40. Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [CrossRef]
41. Lozoya, C.; Mendoza, C.; Aguilar, A.; Román, A.; Castelló, R. Sensor-Based Model Driven Control Strategy for Precision Irrigation.

J. Sens. 2016, 2016, 12. [CrossRef]

https://www.espressif.com/en/products/socs/esp32
https://www.espressif.com/en/products/socs/esp32
https://www.raspberrypi.org/
https://www.raspberrypi.org/
http://webiopi.trouch.com/
https://blynk.io/
https://nodered.org/
https://nodered.org/
http://dx.doi.org/10.1109/TSE.2004.68
http://dx.doi.org/10.1145/2039370.2039408
http://dx.doi.org/10.1049/iet-sen.2015.0138
http://dx.doi.org/10.1109/ACIT-CSII-BCD.2016.023
http://dx.doi.org/10.1109/ICCPEIC.2017.8290389
http://dx.doi.org/10.1016/j.micpro.2018.07.004
http://dx.doi.org/10.3390/s18072162
http://dx.doi.org/10.15676/ijeei.2020.12.4.10
http://dx.doi.org/10.3390/automation3030024
http://dx.doi.org/10.1371/journal.pone.0237317
http://www.ncbi.nlm.nih.gov/pubmed/32857770
http://dx.doi.org/10.1109/ACCESS.2020.2999544
http://dx.doi.org/10.1109/ACCESS.2019.2917674
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1064-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1064
https://www.nxp.com/products/processors-and-microcontrollers/arm-microcontrollers/i-mx-rt-crossover-mcus/i-mx-rt1064-crossover-mcu-with-arm-cortex-m7-core:i.MX-RT1064
https://www.microchip.com/en-us/product/ATMEGA4809
https://github.com/cesaresq209/Framework-for-Embedded-Systems-with-Residential-Applications
https://github.com/cesaresq209/Framework-for-Embedded-Systems-with-Residential-Applications
http://dx.doi.org/10.1109/COMST.2018.2881008
http://dx.doi.org/10.1109/JSEN.2019.2922409
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1016/j.agsy.2017.01.023
http://dx.doi.org/10.1155/2016/9784071


Electronics 2022, 11, 4158 20 of 20

42. Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 25. [CrossRef]
43. Risteska Stojkoska, B.L.; Trivodaliev, K.V. A review of Internet of Things for smart home: Challenges and solutions. J. Clean. Prod.

2017, 140, 1454–1464. . [CrossRef]
44. Alahi, M.E.E.; Pereira-Ishak, N.; Mukhopadhyay, S.C.; Burkitt, L. An Internet-of-Things Enabled Smart Sensing System for

Nitrate Monitoring. IEEE Internet Things J. 2018, 5, 4409–4417. [CrossRef]
45. Benammar, M.; Abdaoui, A.; Ahmad, S.H.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality

Monitoring. Sensors 2018, 18, 581. [CrossRef] [PubMed]
46. Ahmed, N.; De, D.; Hussain, I. Internet of Things (IoT) for Smart Precision Agriculture and Farming in Rural Areas. IEEE Internet

Things J. 2018, 5, 4890–4899. [CrossRef]
47. Dwivedi, A.D.; Srivastava, G.; Dhar, S.; Singh, R. A Decentralized Privacy-Preserving Healthcare Blockchain for IoT. Sensors 2019,

19, 326. [CrossRef]
48. SonarQube. Code Quality and Code Security. 2021. Available online: https://www.sonarqube.org/ (accessed on 17 Decem-

ber 2021).

http://dx.doi.org/10.1155/2017/9324035
http://dx.doi.org/10.1016/j.jclepro.2016.10.006
http://dx.doi.org/10.1109/JIOT.2018.2809669
http://dx.doi.org/10.3390/s18020581
http://www.ncbi.nlm.nih.gov/pubmed/29443893
http://dx.doi.org/10.1109/JIOT.2018.2879579
http://dx.doi.org/10.3390/s19020326
https://www.sonarqube.org/

	Introduction
	Materials and Methods
	Internet of Things Design and Development Tools
	Software Development Framework Architecture
	Supported Peripherals
	Code Generator Implementation
	Code Generator User Interface

	Results
	Simple IoT Application
	Static Code Analysis
	Code Evaluation
	Development Process Evaluation

	Discussion
	Conclusions
	References

